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ABSTRACT

For complex dynamical systems such as the atmosphere, improved estimates of future behaviour
can be obtained by making ensembles of forecasts starting from a set of Monte Carlo perturbed
initial conditions. Ensemble forecasting, however, generates an overwhelming amount of data
that is difficult to analyse in detail. Fortunately, the main features of interest are often summar-
ised by certain statistics estimated from the sample of forecasts. By considering an ensemble of
forecasts as a realisation of a linear mapping from phase space to sample space, it is possible
to construct two types of sample covariance matrix. The ensemble covariance can be visualised
by constructing multidimensional scaling maps, which show at a glance the relative distances
between the different ensemble members. Multivariate skewness and kurtosis can also be estim-
ated from ensembles of forecasts and provide useful information on the reliability of the sample
mean and covariance estimated from the ensemble. They can also give useful information on
the non-linearity of the evolution in phase space. Entropy can also be defined for an ensemble
of forecasts and shows a regular increase due to the smooth and rapid loss of initial information
in the first 3 days of a meteorological forecast. These new tools for summarising ensemble
forecasts are illustrated using a single ensemble of 51 weather forecasts made at the European
Centre for Medium-Range Weather Forecasts for the period 20–30 December 1997.

1. Introduction include the motion of three or more celestial
bodies, balls on a billiard table, irregularly drip-
ping taps, and geophysical fluid systems such asIn a prize-winning analysis of the stability of

the solar system, Poincaré (1890) demonstrated the atmosphere and the oceans. To quote Jules-
Henri Poincaré:that the evolution can sometimes be extremely

sensitive to the initial conditions. Hadamard
‘‘Many persons find it quite natural to pray for

(1898) confirmed that rapid exponential diver-
rain or shine when they would think it ridiculous

gence of trajectories is a generic feature of many
to pray for an eclipse . . . [O]ne tenth of a

quite simple dynamical systems such as geodesic
degree at any point, and the cyclone bursts here

flows on negative curvature surfaces (Ruelle,
and not there, and spreads its ravages over

1989). Examples of sensitive dynamical systems
countries it would have spared. This we could
have foreseen if we had known that tenth of a

degree, but . . . all seems due to the agency* Corresponding author.
Address: D.B. Stephenson, Department of Meteorology, of chance.’’
University of Reading, Earley gate PO Box 243, Reading

Since the initial conditions can never be meas-RG6 6BB, UK.
e-mail: D.B.Stephenson@reading.ac.uk ured with infinite precision, rapid non-linear
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growth of initial errors fundamentally limits our routinely used at national weather forecasting
ability to forecast such systems (Thompson, 1957). centres (Molteni et al., 1996; Buizza et al., 1998;
Small perturbations of the initial conditions grow Toth and Kalnay, 1993; Toth and Kalnay, 1997;
exponentially fast, leading to a rapid loss of initial Houtekamer et al., 1996) and are also starting to
information and predictability. Lorenz (1963) con- be applied in longer-range climate studies
firmed this sensitivity in numerical simulations of (Brankovic and Palmer, 1997; Zwiers, 1996; and
a three equation simplification of atmospheric references therein). Because of the computational
convection, and discussed its fundamental implica- cost of physically based forecasting models,
tions for atmospheric predictability. ensembles are currently limited to small sample

Ever since the pioneering forecasts of Charney sizes of about 10–100 members.
et al. (1950), weather forecasting centres have An important practical problem with ensemble
made daily numerical weather forecasts on an forecasting is that it increases the amount of
operational basis. Global numerical models cur- forecast data by a factor equal to the ensemble
rently resolve horizontal distances down to about size, thereby transforming the already difficult
50 km, and iterate the state of the atmosphere verification exercise into an almost Herculean
about every 10 min. The models represent the task. An information bottle-neck occurs when the
state of the atmosphere by storing pressure, tem- unfortunate human analyst is faced with such
perature, wind velocity, and humidity variables at large amounts of data, since it is practically
many grid points covering the whole globe, impossible (and not very inspiring) for a person
amounting to a total of typically 107 variables to routinely examine 10–100 weather maps and
(not all independent). Forecasting the atmospheric subjectively compare their individual merits. There
state using such models is the non-trivial problem is, therefore, a great necessity to develop optimal
of predicting the motion of a point in a 107

methods for projecting out the most relevant
dimensional phase space. Furthermore, because of

information from all the data. Various techniques
the sensitivity to initial conditions, and our impre-

have recently been developed, for example, ‘‘spa-
cise knowledge as to what are the exact initial

ghetti plots’’ in which a specified contour level is
conditions, no single forecast of the atmosphere

drawn for each ensemble member all on the same
can be considered completely trustworthy (Sutton,

figure (Toth et al., 1997; Sivillo et al., 1997), and
1951; Thompson, 1957; Epstein, 1969a). To estim-

‘‘tubing’’ which aims to identify directional clusters
ate the maximum time limit for useful weather

(Atger, 1999). The large number of variables and
forecasts, twin forecasts were made starting from

ensemble members suggest that statistical methods
two slightly different initial states. Different cli-

are appropriate and are the focus of this study.
mate models gave quite different estimates for the

Section 2 of this article presents the weathertime taken for the root mean squared difference
forecasting example used to illustrate the newbetween the two realisations to double
ideas, while Section 3 introduces some basic math-(Smagorinsky, 1969). The shortest time was found
ematical concepts. Sections 4–6 describe the meansto be close to 2 days for synoptic scales in the
and covariances that can be calculated from ansimplified turbulence closure model of Lorenz
ensemble, and discuss the unifying concept of the(1969a,b).
singular value decomposition of an ensemble.Epstein (1969b) and Leith (1974) discussed the
Section 7 uses the ensemble covariance to makebenefits of this Monte Carlo approach to
simple ‘‘multidimensional scaling maps’’ of theforecasting that is based on making averages of
ensemble forecasts that summarise at a glance thean ensemble of forecasts that start from randomly
mutual distances between different ensemble mem-perturbed initial conditions. The mean of an
bers. Section 8 goes beyond covariances to discussensemble of forecasts gives a Best Linear Unbiased
the probability distribution in phase space and itsEstimator (BLUE) of the future state, and the
deviations from normality. Section 9 introducesspead of the ensemble forecasts can be used to
the important concept of loss of information andassess the possible reliability (Murphy, 1988). In
shows how it can be used to define the entropy ofgeneral, a wide spread of the ensemble forecasts
an ensemble of forecasts. Section 10 concludesimplies less reliability in the ensemble mean

forecast. Ensemble forecasting techniques are now with a brief summary.
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2. An example: 51 weather forecasts looked source of forecast uncertainty can be
caused by unrepresented sub-grid scale features20–30 December 1997
such as convective systems that feed upscale into

the represented scales (personal communication,The methods in this article will be demonstrated
by applying them to a single ensemble of 51 G. Craig). Alternative finite bases for representing

functions, such as spherical harmonic coefficients,weather forecasts made at the European Centre

for Medium-Range Weather Forecasts (ECMWF) can also be described using the same multivariate
notation. Throughout this article, vector andfor the period 20–30 December 1997. The study

concentrates on the height of the 500 hPa geopot- matrix symbols representing functional fields will

appear in boldface. The p variables describe theential surface, which gives much information about
tropospheric dynamics in mid-latitudes. The spat- ‘‘phase’’ (state) of the system and represent a point

in p-dimensional ‘‘phase space’’.ial domain is restricted to the European–Atlantic

region (90°W–30°E, 25°N–90°N) which covers
1225 grid point variables (25 latitudes×49 longit-

3.2. Evolution in phase space
udes). Each forecast is made to 10 days into the

The evolution of atmospheric or oceanic fieldsfuture with the results stored every 12 h. There
is described by the motion in phase spaceare 51 ensemble members consisting of 1 control

forecast using the best estimate of the initial

conditions, and 50 forecasts starting from
dx
dt

=F[x; a(t)], (2)
perturbed initial conditions about the control.

More information about the numerical weather where F is a non-linear functional of x, and a(t)
forecasting model and how the forecasts were represents external controlling parameters such as
initialised is given in Section 12. solar radiation and sea surface temperatures. For

typical meteorological gridded fields, the phase

space dimension, p, is of the order of 103–107, yet
3. Basic concepts because of strong spatial correlations between

neighbouring grid point variables, the total
This section introduces some basic concepts in number of independent degrees of freedom is

ensemble forecasting. They make use of simple estimated to be around 20–40 for Northern
linear algebra methods that are well described in Hemisphere daily geopotential height (Toth 1995;
the introductory book by Strang (1988). Wallace et al., 1991; Selten, 1997). The Eulerian

approach of describing fields by their values at
many fixed grid points is responsible for this3.1. Finite representation of a field
dramatic overestimation in the number of dimen-

Geophysical spatial fields such as the height of sions, and could perhaps be alleviated by using a
the 500 hPa geopotential surface are often repres- more Lagrangian description of the dominant
ented by a finite vector spatially coherent structures.

3.3. Monte Carlo sampling
x=Ax1x2

e
x
p
B , (1)

Forecasting applications do not typically

require complete knowledge of the future evolu-
tion of the whole probability distribution, but
instead demand (a) a good estimate of the meandefined by values of the field at p points on a

regular spatial grid. The vector x is a finite p- future value, and (b) an estimate of how sensitive
the forecasts are to the initial conditions. In otherdimensional representation of a continuum field

and is a good approximation for spatially smooth words, for normally (Gaussian) distributed fields,
it is useful to have an estimate of the evolution offields. For spatially discontinuous fields such as

rainfall amounts, the finite grid point representa- both the mean and the covariance of the distribu-

tion. For non-normal quantities such as precipita-tion can sometimes be difficult to interpret (Skelly
and Henderson-Sellers, 1996). An often over- tion these 2 low-order moments may not suffice
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(Hamill and Colucci, 1998). To calculate the evolu- sphere and ocean. As in previous forecasting
studies, we will consider the generalised quadratiction of the mean and variance, it is necessary to

evaluate integrals of first and second low order norm

moments over the whole of p-dimensional phase
space. One way to obtain approximations to these dxd2

G
=

1

p
xTGx=

1

p
∑
p

i,j=1
x
i
G
ij
x
j
, (4)

integrals is to use a finite sampling Monte Carlo

method, in which the integral over phase space is
where dxd2

G
is the squared length of the vector xapproximated by a sum over a finite number of

and G is a general multivariate weighting metric.initially randomly chosen ensemble members
To avoid having negative distances (e.g., forecast(Epstein, 1969b; Leith, 1974). This computa-
errors), the metric must be positive semi-definite*tionally feasible method is the most widely used
Because positive semi-definite metrics can beapproach in meteorological forecasting. Finite
Cholesky factored into G=ATA, the norm dxd2

GMonte Carlo sample estimates converge slowly
for variables x is equivalent to considering theand can seriously undersample the integrals when
transformed variables x∞=Ax with the dot prod-the phase space has very many dimensions.
uct norm dx∞d2

I
. In other words, there is someTherefore, much care needs to be exercised when

freedom of choice in selecting the field variables,choosing initial perturbations and when interpret-
and this freedom can be used to transform theing ensemble sample estimates.
metric into the identity matrix. For example, theAn ensemble (sample) of n forecasts of a spatial
inverse covariance (Mahalanobis) metric, G=map is naturally represented by the (n×p) rectan-
C−1, is equivalent to performing a dot product ofgular ‘‘data matrix’’
the principal components (uncorrelated linear
combinations of grid point variables) as explained

in Stephenson (1997). Another example is pro-
X=AxT1

xT2
e

xT
n
B=Ax11 x12 … x

1p
x21 x22 … x

2p
e e e

x
n1

x
n2

… x
np
B , (3) vided by area-weighting of the grid point variables

to account for the convergence of the meridians

at the poles. To account for the decrease in the
area of grid boxes near the poles, it is necessarywhere the kth row, xT

k
, is the kth forecast in the

to use the metric G
ij
=(p/2) cos (h

i
)d
ij
, where h

i
isensemble. Typically in meteorological applica-

the latitude of grid point i. This metric can betions, the number of members in the ensemble
transformed away by considering instead the vari-(the sample size n), is of the order of 10–100,
ables x∞

i
=E(p/2) cos(h

i
)x
i
, and such an approachwhereas the rank of the vectors, p, is of the order

has been adopted in this study. Non-linear trans-of 103–107. In general, there are many more col-
formations of phase space variables can also beumns than rows in the data matrix and the rank
advantageous. For example, by considering theof the data matrix never exceeds the smallest
square root of rainfall amounts it is possible todimension (the ensemble size n). Since each row
improve the skill of ensemble forecasts of Indianof the data matrix represents a point in phase
monsoon rainfall (Stephenson et al., 1999). Suchspace, the whole data matrix represents a cloud
transformations used to reduce the impact ofof n points in phase space, referred to as a ‘‘Gibbs
extreme events, induce a positively curved metric,ensemble’’ in statistical physics (Landau and
in which anomalies of larger values correspond toLifshitz, 1980).
smaller distances. Throughout this article, it will
be assumed that the appropriate transformations

3.4. Forecast errors and distances have been applied to the phase space variables, so
that with no loss of generality, the dot productTo address the important question of how
dxd2

I
can be assumed.‘‘close’’ a forecast is to the observed truth, it is

necessary to define ‘‘distance’’ in phase space.
There are many possible ways of defining distances
(norms) and it is not at all evident which norms * Not all metrics need to be positive semi-definite, e.g.,
are the most appropriate for assessing the predict- the Minkowski metric gives both positive and negative

distances in space-time (Weinberg, 1972).ability of sheared fluid flows such as the atmo-
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4. Central quantities for each ensemble member. For data on equal
area grids, such means correspond to area aver-
ages over the domain and can be used to provideHow can we efficiently summarise the ensemble

of points in phase space? One possible way is to simple indices. For example, the widely used
Niño-3 index is obtained by averaging sea surfaceexamine the low order moments of the cloud. In

this section, we will briefly discuss the mean of temperatures over the region (150–90°W, 5°S
–5°N). This area-average approach to reducingthe distribution (centre of mass), before examining

higher order moments later in the article. the large amount of ensemble information depends
on the subjective choice of area domain. Area-

averaging is one of the simplest ways of making
4.1. Means over the ensemble

univariate indices out of multivariate climate data,
The cloud of points in phase space can be yet it takes no account of the dominant spatial

considered to be a deformable (and tearable) phys- patterns present in the data (unless the areas are
ical object. As in classical dynamics, it can be carefully chosen). A more optimal way of defining
helpful to decompose the dynamics into the sum indices is to make weighted averages using the
of two parts: (a) motion of the centre of mass, and eigenvectors of the covariance matrix as loading
(b) motion about the centre of mass. The center weights — in other words, to use principal com-
of mass of the cloud of points in phase space is ponents as indices.
given by the ‘‘ensemble mean’’ Fig. 2 shows the evolution of the area-averages

calculated over the Euro-Atlantic region

(90W–30E, 25–90N). It can be seen that thex:=
1

n
∑
n

k=1
x
k

(5)
individual ensemble means spread out in time,
and that the ensemble mean forecast divergesobtained by summing over the rows of the data
strongly from the verification after day 6. Verymatrix. Linear transformations in phase space
similar results are obtained if the ensemble medianmap the centre of mass to the centre of mass of
is used instead of the ensemble mean (not shown).the transformed ensemble. The ensemble mean

and linear transformation operations commute,

which suggests a simple test for the presence of
4.3. Mean, median, or mode?

non-linear evolution (Smith and Gilmour, 1997).
The center of a distribution can be estimatedThe displacements about the centre of mass,

using either the ‘‘mean’’, the ‘‘median’’, or they
k
=x

k
−x: , constitute a centred data matrix,

‘‘mode’’. Although these measures are identical forYT= ( y1 , y2 , . . . , y
n
)=XTH, where H=I− (1/n)1

variables that are normally distributed, they can(where 1 has unity for all elements). The ‘‘ensemble
provide different information when the distribu-mean error’’ is the difference, x:−x0 , between the
tion is skewed. For positively skewed distributions,ensemble mean and the best estimate of the
the mean is biased towards the large positiveobserved state, x0 , referred to as the ‘‘verification
values, whereas the median is more ‘‘robust’’ toanalysis’’. The individual forecast error of each
such extremes. The median also has the advantageensemble member x

k
−x0 can be written as the

over the mean and the mode in that there is equalsum of the ensemble mean error and the displace-
chance of forecasts falling either above or below -ment: (x:−x0 )+y

k
. Fig. 1 shows maps of the

a desirable feature if one is interested in tendencies.ensemble mean error as a function of forecast
The mode is the ‘‘most probable’’ value to occurtime, in which it can be seen that the ensemble
and provides a maximum likelihood estimate ofmean error increases in time especially over the
the future. For distributions encountered in prac-North Atlantic ocean.
tise, the median generally lies between the mode
and the mean. For an ensemble of forecasts that

4.2. Means of the field
deviates strongly from ‘‘normality’’, the choice of
central measure can lead to quite different inter-The centre of mass of the ensemble was obtained

by taking the mean of the rows of the data matrix. pretations. For example, there is currently a ser-

ious debate concerning the Bank of England’s useIn a similar manner, one can take averages of the
columns of the data matrix to yield a mean value of ‘‘mode’’ rather than ‘‘median’’ for summarising
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Fig. 1. Spatial maps of ensemble mean error x:−x0 of the 500 hPa geopotential height as a function of forecast lead
time. Contours are in meters.

ensemble forecasts of inflation (T he Economist, able information about the stretching and rotation
of the cloud of points in phase space.1999). This important topic will be revisited in

Subsection 8.4.

5.1. Ensemble spread

A natural measure of the typical spread of the5. Dispersion
ensemble in phase space is provided by the mean
squared dispersionThis section uses covariances to quantify the

dispersion of both the cloud in phase space, and
D2=

1

n
∑
n

k=1
dx

k
−x: d2=

1

n
∑
n

k=1
1

p
∑
p

i=1
y2
ki
. (6)the ensemble members. Covariances are the second

order moments about the mean, and in classical

mechanics correspond to the moment of inertia An unbiased yet less efficient estimate of the
population spread can be obtained by dividing bytensor about the centre of mass. They give invalu-
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Fig. 2. Plume plot showing the evolution of the area average 500 hPa geopotential height over the Euro-Atlantic
region (90°W–30°E, 25°N–90°N) for each of the 51 ensemble members (solid lines). The mean of all the forecasts
(dashed line) strongly diverges from the verification analysis (solid black line) after about 6 days into the forecast.

n−1 instead of n. The mean squared dispersion, J. Hunt). Fig. 3b shows the evolution of the dimen-

sionless ratio D/S, which diagnoses the relativeD2, contributes with the squared error, dx:−x0d2,
to the mean squared error of all the ensemble contribution of the dispersion to the total root

mean squared error. Initially the ratio is unity,forecasts

since by definition the ensemble mean error is
zero at day 0. It then rises rapidly in the first dayS2=

1

n
∑
n

k=1
dx

k
−x0d2=D2+dx:−x0d2. (7)

before finally reducing to the theoretical value of

1/E2 expected for uncorrelated forecasts (Leith,Because of the dispersion of ensemble forecasts,
1974). Several studies have investigated the pos-the squared error of the ensemble mean forecast
sibility of predicting the ensemble mean forecastis less than the mean squared error of all the
skill by using the ensemble spread (Buizza, 1997;individual forecasts. The smaller squared error is
Whitaker and Loughe, 1998; and referencesone of the reasons that motivates the use of
therein). However, an additional constraint is cle-ensemble mean forecasts (Epstein, 1969b; Leith,
arly necessary in addition to eq. (7) such as con-1974; Brankovic et al., 1990).
stant D/S=1/E2 which occurs after day 1 due toFig. 3a shows the evolution of both the root
the individual forecasts becoming uncorrelated.mean squared dispersion D, and the root mean

squared error S of all the forecasts calculated over
the Euro-Atlantic domain. The dispersion, and to 5.2. Covariance of the field variables
a lesser extent the root mean squared error, evolve

A sample estimate of the covariances betweenalmost linearly in time over the 10 days with no
the p grid point variables can be obtained bysuggestion of the rapid exponential growth
averaging over the ensemble members to yield aexpected from chaos and instability arguments.
( p×p) sample covariance matrix:Such quasi-linear growth is typical of medium

range finite amplitude error growth (Stroe and
C=

1

n
YTY=

1

n
XTHX , (8)Royer, 1993), and occurs when initial perturba-

tions are no longer infintessimal (c.f. Section 12).
During this regime, the atmospheric flow is deter- where the identity HTH=H has been employed.

The sample covariance matrix is the outer productmined by the far-field dynamics of synoptic-scale
coherent structures (personal communication, of the data matrix with itself and gives useful
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likelihood of each member, by including a diag-
onal weighting matrix, W, as part of the more
general expression C=YTWY.

A local estimate of the ensemble spread at each
grid point can be obtained by examining the
variances on the diagonal of the covariance matrix.

Fig. 4 shows the evolution of the spatial distribu-
tion of ensemble spread obtained by taking the
square root of the diagonal elements of the covari-

ance matrix. The spread increases in time fairly
linearly and is particularly large over the North
Atlantic region, where there is much instability

and storm activity.
The eigenvectors of the covariance matrix corre-

spond to the major axes of the ensemble of points

in phase space, and represent the spatial patterns
that contribute the most to the total ensemble
spread shown in Fig. 4. The eigenvectors are the

columns of the ( p×p) orthogonal matrix V which
diagonalises the covariance matrix as follows

VTCV=
1

n
(STS ) , (9)

where the (n×p) matrix S is zero except on the
diagonal which contains the square root of the

Fig. 3. (a) Evolution of the root mean square dispersion eigenvalues (singular values) of nC.
D (dashed line), and the root mean squared error S of
all the ensemble forecasts of the ensemble 500 hPa geo-
potential height calculated over the Euro-Atlantic sector,
and (b) the ratio D/S of the dispersion to the ensemble 5.3. Covariance of the ensemble members
root mean squared error.

It is also possible to estimate the (n×n) covari-
ance between the different ensemble members by

information on how the ensemble vectors span
averaging over the field variables to obtain the

phase space. An unbiased estimate of the popula-
inner product of the data matrix

tion covariance is given by nC/(n−1) which takes

into account the loss of one degree of freedom
B=

1

p
YYT=

1

p
HXXTHT . (10)(the ensemble mean). The covariances of the

ensemble mean forecast errors are also equal to

C, since covariances are always defined relative to The ensemble covariance matrix gives valuable
the mean and therefore are independent of the information about which members are most sim-
choice of origin. The field covariance matrix is ilar and can be diagonalised as follows:
obtained by summing over the ensemble members
with equal weight given to each ensemble member.

UTBU=
1

p
(SST) , (11)Unless the ensemble was generated in such a

manner that each member was equally likely to
occur in reality, for example by incorporating where the (n×n) orthogonal matrix U has the

eigenvectors of B as its columns. The leadinginformation about the prior evolution (Toth and
Kalnay, 1997), then the sample covariance matrix eigenvector gives the n loading weights for the

linear combination of ensemble forecasts that con-will not be representative of the true population

covariance matrix. For this to be so, it is necessary tributes the most to the domain-averaged squared
spread shown in Fig. 4.to account for prior information about the possible
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Fig. 4. Spatial maps of ensemble spread of 500 hPa geopotential height as a function of forecast lead time. Note the
large amplitudes near the eastern end of the Atlantic storm track where strong mixing occurs. Contours every 2 m
for day 0 and then every 25 m for later forecast days.

5.4. Singular value decomposition of an ensemble products:

The matrices nC and pB share the same leading
Y
ij
= ∑

r

k=1
s
k
U
ik
V
jk

, (13)eigenvalues. This can easily be demonstrated by
considering inner and outer products of the singu-
lar value decomposition of the data matrix where the index k runs over the singular modes.

The (n×p) matrix S is zero apart from on the
Y=USVT , (12)

diagonal, which contains rank r real positive singu-

lar values {s1 , s2 , . . . , s
r
}. The rank of the dataremembering that U and V are both orthogonal

matrices. More generally, the data matrix can be matrix is an important quantity that gives the
effective dimensionality of the ensemble. Forconsidered to be a realisation of the linear operator

that maps ‘‘phase space’’ onto ‘‘sample space’’. example, if all the ensemble members are in the
same direction then the rank is unity and there isThe SVD decomposition is a sum of tensor direct
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the same linear information as using only one example, any linear combination of two vectors
in 3-dimensional space will always remain in themember in the ensemble. The rank depends on

the singular spectrum of the data matrix and is 2-dimensional plane spanned by the two vectors.

There is no way that linear combinations canbounded from above by min (n, p), typically equal
to the ensemble size n. The mean squared disper- generate a vector lying outside the original plane,

although non-linear transformations could gener-sion of the ensemble can be expressed in terms of

either the trace of the ensemble covariance matrix, ate a vector that escapes the plane. For linear
transformations that are continuous differentiableD2=Tr B/n, or the trace of the field covariance

matrix, D2=Tr C/p, and the SVD expansion then functions of time, the eigenvalues of the covariance

matrix also evolve continuously and differentiablyshows that D2= (W s2
k
)/np.

(Strang, 1988).
Fig. 5 shows the 12 hourly evolution of the

6. Evolution of the covariance covariance eigenvalues (normalised by the total
variance) from which it may be noted that the

For ensemble members that are sufficiently close leading four eigenvalues explain more than 60%
together in phase space, the ensemble transforms of the total covariance. Because the ensemble was
linearly x(t1 )�x(t2 )=L ( t2 , t1 )x(t1 ) with the ‘‘tan- initially formed as anomaly pairs, the 25 trailing
gent linear operator’’ given by eigenvalues at day 0 explain zero amounts of total

variance — in other words, at day 0 the 51
member ensemble has a rank of only 25. In theL (t2 , t1 )=P exp P t2

t
1

∂F
∂x

dt, (14)
1st 2 days, the 25 trailing eigenvalues evolve (non-
linearly!) into slightly larger values and the rankwhere P exp( ) is the path-ordered exponential
deficiency disappears (not shown). Over the 1st 3operator. The tangent linear operator is linear and
days, a separation starts to develop between thenon-singular in phase space, yet varies non-lin-
two leading eigenvalues and the rest of the eigen-early in time. Under such a linear non-singular
values. After this initial period of structural meta-transformation, the field covariance undergoes a
morphosis, the leading two eigenvalues show some‘‘congruence transformation’’
evidence of evolving continuously for several con-
secutive days, for example, the second largestC=

1

n
YTY�C∞

eigenvalue over days 2.5–5.5 and 6–9.

=
1

n
(YL )T(YL )=LTCL , (15)

6.2. Evolution of the eigenvectors

Figs. 6, 7 show respectively the evolution of theas explained in Ehrendorfer and Tribbia (1997).
first two leading eigenvectors of the covarianceThe effect of this transformation can be under-
matrix. In accordance with the 2-dimensionalstood in more detail by examining its impact on
turbulence concept of upscale cascade of energythe eigenvalues and eigenvectors of the covari-
(Lorenz, 1969a; Leith 1971; Leith and Kraichnan,ance matrix.
1972), it can be seen that the eigenvector patterns
increase their characteristic spatial scales in evol-

6.1. Evolution of the eigenvalues
ving from day 0 to day 2. In other words, small

spatial scale perturbations become larger scaleWhat properties of C remain invariant under
such transformations? By Sylvester’s law of inertia, perturbations — described poetically by the meta-

phor of a butterfly flapping its wings and therebythe number of positive, and zero eigenvalues

remain constant under congruence transforma- causing a tornado. After day 2, the upscale cascade
begins to saturate and the main eigenvectortions and therefore the rank of C remains constant

under non-singular linear transformations. If one features become located in the eastern end of the
Atlantic storm track, where strong non-linearstarts with a rank deficient ensemble, by choosing,

say, one member to be a linear combination of mixing occurs. The eigenvectors are spatially fixed

over periods of several days coinciding with thethe others, then the ensemble will always remain
rank deficient under linear transformations. For periods when their respective eigenvalues evolved
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Fig. 5. Evolution of the percentage of variance explained by each eigenvalue of the covariance matrix
(100%l/W l). Note the periods of apparently continuous evolution in the leading eigenvalues.

continuously — for example, days 6–9 for the (L x)TGy=xTGL*y for all vectors x and y. Using
this identity, LGLT can be rewritten as (LL*)Gleading eigenvectors.
where LL* is the Oseledec operator whose eigen-
vectors correspond to the fastest growing modes

6.3. Evolution of the ensemble covariance
used as initial perturbations in this and other
studies. If the metric is chosen to be EuclideanUnder linear transformations, the ensemble
and the ensemble members are constructed bycovariance transforms as
adding the fastest-growing singular vectors to the
control initial condition, the evolution of theB=

1

p
YGYT�B∞=

1

p
Y (LGLT)Y , (16)

ensemble covariance matrix in the case of linear
evolution is simply given by B=I/p�L/p wherewhere the general metric has been reintroduced in
L is a diagonal matrix containing the respectiveorder to demonstrate that the transformation
growth rates of each of the modes.induces a congruence transformation on the

metric: G�LGLT. This result is well-known in the
theory of relativity where linear transformations 7. Multidimensional scaling
map space-time coordinates from one frame to

another (Weinberg, 1972). The adjoint of the Mean squared errors play a crucial role in the
assessment of many forecasts, and have the meritlinear tangent operator is defined as L* where
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Fig. 6. Evolution of the first leading eigenvector of the field covariance, which explains 20–25% of the total variance
in the Euro-Atlantic region. Note the increase in spatial scale in the first few days, and the emergence of a fixed
wave pattern from day 6 onwards.

that they can be considered geometrically as between the kth and lth ensemble members is
given bysquared distances in phase space. Geometrical

interpretation of mutual distances between en- D2
kl
=dx

k
−x

l
d2= (x

k
−x

l
)T(x

k
−x

l
)/p. (17)

semble members can help give deeper insights into
A common example of a distance matrix is thatensemble forecasts as will emerge from reading
often printed in road atlases giving the roadthis section.
distances between different towns. Another
example is presented in Table 1, which gives the

7.1. Mutual distances between ensemble members distances between the first 6 members of the
ECMWF forecast ensemble at day 1. The distanceThe n(n−1)/2 mutual distances between the
matrix can be expressed in terms of ensembleensemble members can be conveniently stored in
covariances using the cosine law transformationa (n×n) real symmetric distance matrix, D, having

zeros on the diagonal. The squared distance D2
kl
=B

kk
+B

ll
−2B

kl
, (18)
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Fig. 7. Evolution of the second leading eigenvector of the field covariance, which explains 15–17% of the total
variance in the Euro-Atlantic region. Note the increase in spatial scale in the first few days, and the quasi-stationary
wave pattern from day 6 onwards, in quadrature to the first eigenvector depicted in Fig. 6.

and, hence, all the information about mutual
Euclidean distances between members of the

Table 1. Euro-Atlantic 500 hPa geopotential height ensemble is contained in the (n×n) ensemble
distances between the first 6 ensemble members on covariance matrix B.
day 1 of the forecasts (m)

Member 1 2 3 4 5 6 7.2. Multidimensional scaling (MDS)

When there are more than just a few ensemble1 0.00 20.38 16.98 12.90 12.85 17.23
2 — 0.00 12.80 16.66 17.26 12.99 members, a table of mutual distances becomes
3 — — 0.00 21.74 18.04 13.07 difficult to interpret, and it becomes more helpful
4 — — — 0.00 13.41 17.83 to have a simple map marking the relative loca-
5 — — — — 0.00 22.35

tions of the members. In general, to make such
6 — — — — — 0.00

maps for all n-ensemble members, requires an
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n-dimensional embedding space since the rank of is a natural choice for displays on two dimensional
sheets of paper or computer screens, yet largerthe distance matrix can take values up to n.

However, more than 2 to 3 dimensions are difficult dimensions such as q=3 can also sometimes be

useful. For the classical solution based onto visualise using flat pieces of paper or computer
screens, and for more than 2 dimensions a projec- Euclidean distances, the principal coordinates are

proportional to the principal components of thetion is required.

Optimal projection methods have been covariance matrix. However, for non-Euclidean
distances, principal coordinates and principaldeveloped for this kind of problem and are known

in statistics as ‘‘multidimensional scaling’’ (MDS). components are no longer simply related, and

MDS solutions differ from those obtained by PCAMDS is concerned with the problem of con-
structing optimal configurations of n points in q- (Principal Component Analysis). By using non-

Euclidean metrics, it is possible to obtain moredimensional Euclidean space using information

about the n(n−1)/2 mutual distances between the robust solutions than those obtained using
Euclidean distances (Cox and Cox, 1994).points in a p-dimensional space (Mardia et al.,

1979). For example, a trivial application of MDS

is to generate a 2-dimensional map showing the
7.4. An illustration: classical MDS for the

locations of towns when given only a table of
ECMWF forecasts

distances between the various towns. Multi-

dimensional scaling is a useful exploratory tool Fig. 8 shows classical MDS projections of the
ensemble forecasts for each day. They provide afor describing ensembles of forecasts. Since MDS

is based on the mutual distances between objects, simple way of illustrating which ensemble mem-
bers are close to one another, and are much easierit is a natural method to use to describe the

‘‘closeness’’ of forecasts. MDS is widely used in to interpret than large tables of distances! The

distances between the points in the projected spacepsychology and the social sciences and a readable
introduction can be found in Cox and Cox (1994). are least square approximations to the distances

in the original space and are good approximations

when the leading two eigenvalues of B explain a
7.3. T he classical MDS solution

large amount of the total variance. In our example,
For Euclidean distances, the ‘‘classical’’ solution the leading two eigenvalues explain more than a

to the MDS problem is given by plotting the third of the total variance* (Fig. 5). Fig. 8 also
‘‘principal coordinates’’ of the n points (Mardia includes the verification analysis (marked by a
et al., 1979). The q ‘‘principal coordinates’’ of circle), which was included in the MDS by con-
ensemble member k are defined as sidering it to be the zero’th member of an aug-

mented n+1 member ensemble. Because the
ensemble size is large, the inclusion of the verifica-

tion analysis has a negligible effect on the projec-z
k
=As1Uk1

s2Uk2
e

s3Ukq
B , (19)

tion of the individual ensemble members (not
shown).

As a result of been constructed initially to be
equal and opposite (c.f. Section 12), successivewhere U

ki
denotes the kth element of the ith

pairs of ensemble members lie diagonally oppositeleading eigenvector of the ensemble covariance B.
one another at day 0 (e.g., pairs 17 and 18, 43 andThe projection can be seen more clearly in terms
44, etc. in Fig. 8a). This symmetry under rotationsof the (n×q) data matrix containing the ensemble
of 180° is preserved under linear evolution, andvectors in the projected space
can be used as a pair-wise test for the presence of

Z=US
q
=YVP , (20)

non-linear dynamics (Smith and Gilmour, 1997).

Remarkably, some of the symmetry in Fig. 8 stillwhere S
q
=SP is a (n×q) projection of the (n×p)

singular value matrix S, and P is the ( p×q) remains until day 4, for example, in the pairs of
projection matrix having ls on the diagonal only.

The ensemble mean projects onto the origin in * Larger fractions could be explained by focusing on
smaller regions (e.g., western Europe).the reduced space. A projection space with q=2
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Fig. 8. Multidimensional scaling projections of the ensemble members at different forecast lead times. Ensemble
members are numbered for identification purposes and the verification analysis is also marked on the plot as a circle.
Note the symmetry under rotations of 180° in the initial day 0 ensemble due to the perturbations being defined as
pairs of opposite sign anomalies. Even up until day 6 many of the adjacently numbered members lie diagonally
opposite the origin from one another. Also note the marked clustering near the origin at day 2.

members 11 and 12, 27 and 28, 49 and 50. Another The ring is most likely due to initial perturbations

having the same initial energy but different spatialnoteworthy feature is the cluster of remnant mem-
bers near the origin at day 2 (Fig. 8b). Standard phases (the spatial scales of the two leading eigen-

vectors are similar). The appearance of a centralcluster algorithms generally have difficulty in

isolating central clusters surrounded by a ring of cluster near the origin at day 2 is possibly due to
the evolution of new leading modes havingother points — MDS offers a powerful alternative.
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different spatial scales orthogonal to the initial dynamics will generally cause such a cloud to
disperse, and when sufficiently non-linear, cansmaller scaled structures. For later forecasts at
cause parts of the cloud to be torn off from theday 8, although most of the points in Fig. 8e are
main body. Direct numerical integration of theclustered around the verification analysis, there
Liouville equation is prohibitively expensive inare some points lying further away in the upper
computer time for systems with many degrees oflefthand quadrant. These points bias the ensemble
freedom such as the atmosphere. This is the reasonmean away from the main cluster of points (the
that approximate finite sampling (ensemblemode) close to the verification analysis.
forecasts) or parametric methods (‘‘stochasticMultivariate methods in the following section
dynamic prediction’’) have to be employed.confirm that the day 8 forecasts were some of the
Stochastic dynamic prediction was proposed bymost skewed forecasts.
Epstein (1969b) and is based on the second order
closure assumption that the p.d.f. remains multi-

8. Distribution in phase space normal. Since ANY linear combination of multi-
normal distributed variables is also multinormal

The mean and the covariance provide a distributed (Mardia et al., 1979), linear trans-
COMPLETE description of the distribution formations can NEVER cause the distribution to
ONLY when the forecasts are normally distrib- evolve away from multinormal. Such invariance
uted. However, non-linear evolution can lead under linear transformations provides the basis
to skewness (asymmetry) and other deviations for a useful test for non-linearity (Burgers and
from normality in the ensemble of forecasts. Stephenson, 1999).
Furthermore, the presence of skewness and kur- Although there are regions of the planet having
tosis (flatness) can cause ensemble sample estim- strongly non-linear evolution and strong correla-
ates of the mean and covariance to become less tions with weather elsewhere, many regions are
robust and less reliable. This section will quantify neither strongly non-linear nor strongly correlated
deviations from normality in the ensemble of with elsewhere, especially over short forecast inter-

vals. Because of only weak interactions betweenforecasts by introducing two new tools: ‘‘multivari-
the large number of degrees of freedom, the atmo-ate skewness’’ and ‘‘multivariate kurtosis’’.
spheric and oceanic general circulations are often
close to statistical equilibrium (normality). A8.1. T he probability density function (p.d.f.)
number of studies have clearly shown that the

Consider an ellipsoidal cloud of points in phase anomalies in the northern hemisphere wintertime
space that is multinormally distributed about the 500 hPa geopotential height are unimodally
ensemble mean with a probability density distributed (Wallace et al., 1991; Atger, 1999).

Furthermore, there is evidence suggesting thatV[x]= (det 2pC)−1/2
500 hPa geopotential height anomalies are close

×exp[−D(x−x: )TC−1 (x−x: )], (21) to normally distributed (Toth, 1991; Stephenson,
1997). While this may be disappointing news forwhere det 2pC is the matrix determinant of 2pC.
chaos theorists desperately seeking non-linearThe probability of finding a point in a certain
regimes, it offers some hope of recovering someregion of phase space is given by integrating the
order from the collective behaviour of a largedensity over the specified region. The evolution
number of degrees of freedom. An appropriateof V(x) is described by the Liouville equation
analogy is provided by a room full of gas molecules(Epstein, 1969b; Ehrendorfer, 1994):
in which the dynamical interactions between col-
liding molecules are highly non-linear, yet the∂V

∂t
+VΩ (uV)=0, (22)

velocities of the molecules are normally distributed
(Maxwell–Boltzmann distribution).

where u=dx/dt is the rate of change in time of
the phase space coordinates (the flow). After initial

8.2. Moment tests for multinormality
transients have damped out, the density starts to

measure the probability of visiting different parts Mardia (1970) developed powerful multivariate
tests for multinormality by defining momentof phase space (Ruelle, 1989). Phase space
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measures of multivariate skewness (b
1,q

) and kur- are not robust in in the presence of multivariate
skewness (Mardia, 1970). Despite skewnesstosis (b

2,q
):

increasing due to non-linear interactions, it

remains below the 95% asymptotic confidenceb
1,q

=
1

n2
∑
n

k=1
∑
n

l=1
G3
kl
, (23)

limit of 3.695 expected for a normally distributed
ensemble of forecasts. Under the null hypothesis

b
2,q

=
1

n
∑
n

k=1
G2
kk

, (24)
of normality, b

1,q
is asymptotically distributed as

6x2
f
/n with f=q(q+1)(q+2)/6 in the limit n�2

based on the invariant correlations between the
(Mardia et al., 1979).

principal components of the ensemble members
Initially, the multivariate kurtosis b

2,4
of the

ensemble is significantly less than the value of
G
kl
=yT

k
C−qy

l
=n ∑

q

i=1
U
ik
U
il
, (25)

q(q+2)=24 expected for a multinormal distribu-

tion (Fig. 9b). The distribution in phase space iswhere C−q is the rank q pseudo-inverse of the
more clustered near the origin with thinnerensemble covariance matrix C (Stephenson, 1997).
extreme tails than a multinormal distribution (i.e.,Deviations of b

1,q
from zero, and b

2,q
from q(q+2)

it is top hat rather than bell-shaped). Such ‘‘platyk-indicate the presence of non-normality, and these
urtis’’ is due to the initial perturbations havingmeasures resort to the usual univariate expressions
been chosen to all have the same energy, ratherfor skewness and kurtosis in the case when q=1.
having a random selection over all possible ampli-Furthermore, the measures are invariant under
tudes. Such a choice avoids ensemble membersaffine linear transformations (Mardia et al., 1979),
being too similar to the control forecast, yet isand therefore should remain constant when the
inconsistent with analysis errors that are mostensemble evolves linearly in phase-space. Constant
likely to be almost normally distributed.multivariate skewness and kurtosis, however, do
Platykurtis can lead to sample covariance estim-not always imply that the evolution is linear.
ates underestimating the population covarianceIn order to sample multivariate skewness and
(Mardia, 1974). After 2 days, the multivariatekurtosis, there must be at least as many samples
kurtosis increases to values consistent with the(n) as variables (q ). Unfortunately, this is not
multinormal distribution at 95% confidence. Two-usually the case for meteorological gridded data
sided confidence limits are calculated using thewhere ensemble sizes are small and the number of
asymptotic expressiongrid point variables are large. However, the multiv-

ariate skewness and kurtosis can be estimated for b
2,q

−q(q+2)~N[0, E8q(q+2)/n]
the leading q<n principal components by

given in Mardia et al. (1979).adopting the rank q pseudo-inverse C−q of the
To summarise, not only do the ensembleensemble covariance matrix C (Stephenson, 1997).

forecasts spread out in time but they also become

more skewed and less platykurtic at later times.
8.3. An illustration: skewness and kurtosis of the

This can lead to less reliable estimates of the mean
ECMWF forecasts

forecast, yet more reliable estimates of the covari-

ance at later times. Furthermore, the multivariateFig. 9 shows the multivariate skewness and kur-
tosis calculated for the first q=4 leading principal measures are far from constant especially from

days 2–5 indicating the presence of strongly non-components of the ensemble that explain more

than 60% of the total variance. linear evolution in phase space. After day 2, both
the multivariate skewness and kurtosis have valuesThe multivariate skewness b

1,4
is initially zero

due to the symmetrical way in which the ensemble consistent with those that could be sampled from

a multinormal distribution at 95% confidence.perturbations were constructed. It then steadily
increases, especially after day 2, and becomes When the multivariate tests reveal that the distri-

bution is close to multinormal, one should belargest for the long-lead forecasts after day 7. The
skewness at day 8 was previously noted in the careful in searching for and finding ‘‘clusters’’ that

might simply be due to sampling. However, largeMDS plot in Fig. 8e and led to the ensemble mean

being slightly displaced from the mode and veri- values of multivariate skewness imply that aniso-
tropies do exist, and these can then be examinedfication analysis. Sample estimates of the mean
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Fig. 9. Evolution of (a) the multivariate skewness b
1,4

, and (b) the multivariate kurtosis b2,4−24 for the first four
leading principal components of the ensemble, which explain more than 60% of the total variance. Multinormal
95% confidence limits are marked as dashed lines based on Mardia’s asymptotic large sample expressions.

in more detail using directional clustering ensemble mean (Buizza, 1994; Buizza and Palmer,
1995; Barkmeijer, 1996). Such a sampling strategymethods.

has the advantage that a small sample can capture
a large fraction of the total variance (Ehrendorfer

8.4. Reliability of ensemble estimates
and Tribbia, 1997), yet has the disadvantage that

it can lead to less reliable sample estimates due toEnsemble forecasting is based on the implicit
assumption that ensemble sample estimates pro- the creation of ‘‘outlier’’ forecasts. Outlier forecasts

should not be considered to be ‘‘erroneousvide reliable estimates of population values.

However, when ensemble forecasts deviate forecasts’’ since they also provide useful informa-
tion about the probability distribution. Never-strongly from normality, sampling errors increase

and sample estimates become less reliable and theless, it may be possible to obtain more robust

and reliable estimates of the mean by either ‘‘trim-eventually less meaningful. For example, the p.d.f.
for certain low order systems can sometimes ming’’ or ‘‘downweighting’’ extreme outliers once

they have been identified. For multivariate quant-bifurcate into a bimodal distribution, for which
the mean is no longer a physically realisable state ities, iterative ‘‘peeling’’ methods may also be used

to obtain more robust estimates of the covariance(Smith, 1996). Such strong deviations from nor-

mality can be favoured by selecting initial per- (Mardia et al., 1979). Because of the small size of
ensembles, the robustness of sample estimates isturbations that diverge the most rapidly from the
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an important issue that merits more serious By substituting eq. (21) into eq. (26), the maximum
entropy of the multinormal distribution can beattention.
shown to be completely determined by the deter-

minant of the covariance matrix:
9. Entropy of an ensemble of forecasts

E=
1

2
log det(2pC)+

r

2An ensemble of forecasts in phase space can be
considered to be a gas of n atoms moving in p-

= a
r

k=1
s
k
+

r

2
logA2pe

EnB . (27)dimensions. Initially, the atoms are all close to
one another but are most likely to spread apart
over time as do atoms in a real gas. The atoms The changes in the entropy of the ensemble are
disperse because there are more ways of being proportional to the relative changes in the
arranged over a large domain, than the unique ensemble volume since det 2pC transforms to
way of being arranged to all be at the same point det 2pLCLT=det 2pC det LLT, and det LLT is
in phase space. This very general law of nature is simply the Jacobian of the transformation.
embodied in the second law of thermodynamics, A regular increase in the maximum entropy of
which states that the ‘‘entropy’’ or disorder of a the ensemble over the Euro-Atlantic region can
closed system will tend to increase in time. The be seen in Fig. 10. The increase in entropy is due
law is independent of detailed dynamical argu- to a continual growth in ensemble volume, and
ments, yet offers a general explanation for why indicates a loss of initial information. The regular
forecasts from slightly perturbed initial conditions monotonic evolution of entropy resembles that
generally spread out in time. shown in Fig. 1 of Carnevale and Holloway (1982)

How can entropy be defined for an ensemble of calculated for turbulent flows on a rotating b-
forecasts? The discussion above suggests that it is plane using 2 member ensembles. By considering
somehow related to the dispersion of the ensemble the inequality between arithmetic and geometric
in phase space, and hence the covariance. The means of the eigenvalues, it can be shown that the
dispersion of the ensemble is inversely related to maximum entropy is bounded from above by
the sharpness of the probability distribution in the logarithm of the volume Dr estimated from
phase space, which can be measured by the
‘‘information content’’ of the probability density
function defined as the functional

I[V]= P V (x) log V (x) dpx . (26)

Identifying entropy with the ‘‘loss of information’’

gives a working definition of entropy as E[V]=
−I[V]. H-theorems have been proved which
show that entropy defined in this manner will

increase in time for non-linear fluid systems
(Carnevale et al., 1981; Carnevale, 1982). For a
given covariance, the maximum entropy is

obtained when the distribution is multinormal
(Carnevale, 1982). The multivariate central limit
theorem defines more precisely the conditions that

are necessary for the emergence of this most
disordered of distributions (Mardia et al., 1979).

Put simply, the net result of MANY uncorrelated
processes, even non-linear ones, will generally

Fig. 10. Evolution of the maximum entropy of the
cause entropy to increase thereby leading to the ensemble (solid line). The dashed line gives the upper
emergence of the maximum entropy state — the bound of entropy based on the spread. Note the rapid

increase in the maximum entropy in the 1st 3 days.multivariate normal (multinormal) distribution.
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the mean spread of the ensemble: C — ‘‘field covariance’’ and B — ‘‘ensemble covari-
ance’’. The 2 covariance matrices share the same
eigenvalues.E∏ log Dr+

r

2
logA2pepEn

r B . (28)
(3) Ensemble covariance B contains complete

information on the mutual Euclidean distancesBefore day 2, the maximum entropy grows faster
between ensemble members, and can be summar-than does the upper bound because of major
ised by multidimensional scaling techniques. Thestructural changes that occur in the eigenvalue
resulting maps show at a glance how the membersspectrum (Fig. 10). For later forecasts, the upper
of the ensemble are clustered. This exploratorybound exceeds the maximum entropy by an almost
tool provides a useful method for summarisingconstant amount. Especially during transitions,
ensembles.the maximum entropy can provide additional

(4) Certain initialisation procedures anduseful information to that provided by the disper-
strongly non-linear evolution can lead to devi-sion. For example, abrupt changes in entropy
ations from normality of the ensemble forecasts.associated with changes in the rank of the
The deviations can be investigated using multivari-ensemble (‘‘dimensional phase transitions’’) are
ate measures of skewness and kurtosis. Strongexpected to occur as the ensemble passes from
deviations from normality lead to biases in theone dynamical regime to another. Consider, for
ensemble mean and covariance that may degradeexample, the motion of an ensemble described by
the skill of ensemble forecasts. After day 2, thethe well-known three variable model of Lorenz
ensemble of forecasts studied in this article was(1963), whose attractor resembles two butterfly-
found to be normally distributed at 95% confid-wings. An ensemble of forecasts initially confined
ence. In other words, the ensemble of forecastsin one of the wings will have a rank close to 2,
had evolved towards a state close to ‘‘statisticalyet will temporarily become 3 dimensional while
equilibrium’’.some of the members make the regime transition

(5) Loss of predictability is due to the irrevers-into the other wing*. Ensemble entropy may there-
ible evolution from an orderly state having allfore be a useful probe for detecting regime trans-
members close together, to a more disorderly stateitions especially in regions where atmosphere
with ensemble members spread all over theblocking occurs.
attractor. The irreversible loss of information can

be quantified by estimating the entropy of an
ensemble based on the determinant of the covari-10. Concluding remarks
ance matrix. The rate of entropy production puts

strong limits on the predictability of a dynamicalBecause of the ever increasing amount of data
system, and may also be useful for detecting regimegenerated by ensemble forecasts, it is crucial that
transitions. More general definitions of entropynew methods are developed to extract useful
such as Kullback-Leibler and Renyi informationsinformation from such forecasts. This study has
would also be worth investigating in future studiesdeveloped and illustrated some statistical methods
(Ruelle, 1989).that can be usefully applied.

Statistical methods can be used to extract useful(1) An ensemble of forecasts can be considered
coarse-grained information from complex systemsto be a linear map between phase-space and
such as the atmosphere. They can be used to pansample space. The linear map is naturally repres-
out the precious predictable signals from the com-ented by a rectangular data matrix. Important
plex disorder created by synoptic-scale non-linearinformation about the ensemble can be obtained
dynamics, and offer a useful complimentary para-by making the singular value decomposition of
digm to that of low-order chaos for understandingthe data matrix.
complex dynamical systems. Statistical methods(2) Inner and outer products of the data matrix
exploit the high dimensionality of phase space andwith itself give rise to the two covariance matrices:
may ultimately be able to provide simple descrip-
tions of the complex atmospheric and climate* Dimension here refers to the rank of the ensemble,
variations that occur on large time and spacei.e., the ‘‘local’’ dimension rather than the ‘‘global’’

dimension of the attractor. scales.
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the ECMWF forecasting system were kindly sup- 1995; Toth and Kalnay, 1993, 1997; Houtekamer
plied by Dr. Jan Barkmeijer. We are grateful to and Derome, 1995). There is a potential danger
Dr. Philippe Besse, Michel Déqué, Jean-Francois in this approach since it is known that for systems
Royer, Dr. David Ruelle, Dr. Zoltan Toth, Dr. with only a few variables, dynamical constraints
Christine Ziehmann and an anonymous reviewer on the initial conditions can lead to severe under-
for their helpful remarks. It is a pleasure to sampling (Anderson, 1997). The initial perturba-
acknowledge Dr. Greg Holloway and Dr. George tions of the ECMWF ensemble are based on the
Carnevale for interesting discussions and for fastest growing modes (singular vectors of the
copies of their profound studies on the statistical linearised dynamics) calculated at the coarser hori-
mechanics of fluids. Finally, we wish to thank zontal truncation of T42. These identify directions
Dominique Besson for her ever efficient and in which maximal energy growth would occur
friendly help in retrieving the more historical over the next 2 days with the linearised dynamics
articles. The authors of this study were supported (Buizza and Palmer, 1995). The energy norm at
as visiting scientists at Météo-France by the initial time is used as a crude yet computationally
European Commission contract ENV4-CT95- cheap approximation to the inverse of the analysis
0122 (SHIVA) and the CYCIT contract error covariance (Mahalanobis) norm, that should
CLI97-0558. be used if the analysis errors are normally distrib-

uted (Stephenson, 1997; Barkmeijer et al., 1998,

1999). For the extra-tropics in each hemisphere,
12. Appendix around 40 singular vectors are computed by apply-

ing a Lanczos algorithm, and then 25 are retained.
T he ECMWF 51-member forecast ensemble The 4 fastest growing singular vectors are always

selected, and each subsequent singular vector isThe global weather forecasting Ensemble
only chosen when half of its total energy is outsidePrediction System is routinely employed at
the areas where the singular vectors alreadyECMWF to make weather forecasts (Molteni
selected are located. After selection, a rotation andet al., 1996; Buizza et al., 1997). The state-of-the-
scaling is applied separately to the 25 singularart numerical weather forecasting model is based
vectors in each hemisphere. The rotation generateson physical conservation laws and represents the
perturbations which are more spatially uniform,atmosphere by 31 levels in the vertical and a
and the scaling guarantees that the perturbationspatial grid resolution of about 100 km (TL159
amplitudes are consistent with typical estimatesspectral truncation). The best estimate of the
of analysis error variance (Molteni et al., 1996). Itobserved current state of the atmosphere is
should be noted that initial perturbations are notobtained by continuously assimilating observed
infintessimal (‘‘the flapping of a butterfly’s wings’’),data into the model, and serves both as a suitable
since they are chosen to have finite amplitudes toforecasting initial condition, and also for verifying
those of typical analysis errors. The first Northernthe accuracy of previous forecasts. More details
Hemisphere perturbation is added to the firstabout the model are presented in Buizza et al.
Southern Hemisphere perturbation, and so on, up(1998).
to the 25th, after which the 25 resulting globalBecause there are many more grid point vari-
perturbations are alternately added and subtractedables than there are ensemble members, it is not
to the analysis to define 50 perturbed initialevident how to choose the small number of per-

turbed initial conditions so as to optimally sample conditions.
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