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ABSTRACT

This study investigates ways of quantifying the skill in forecasts of dichotomous weather events. The odds
ratio, widely used in medical studies, can provide a powerful way of testing the association between categorical
forecasts and observations. A skill score can be constructed from the odds ratio that is less sensitive to hedging
than previously used scores. Furthermore, significance tests can easily be performed on the logarithm of the
odds ratio to test whether the skill is purely due to chance sampling. Functions of the odds ratio and the Peirce
skill score define a general class of skill scores that are symmetric with respect to taking the complement of
the event. The study illustrates the ideas using Finley’s classic set of tornado forecasts.

1. Motivation

Forecasts of the future state of our environment are
possible due to the fundamental conservation of energy
and momentum. For example, operational weather fore-
casts have been made routinely since 1950 based on
numerical approximations of the dynamical equations
governing the atmosphere. More recently, there has been
a growing interest in forecasting climatic variations sea-
sons in advance using numerical coupled ocean–atmo-
sphere models.

In order to assess the ability of such forecasts, it is
necessary to have accurate ways of quantifying ‘‘fore-
cast skill.’’ Forecast skill, also sometimes referred to as
forecast ‘‘accuracy’’ or ‘‘quality,’’ is an overall measure
of how well previous forecasts were associated with
previous observations (Murphy and Daan 1985; Murphy
1993). Forecast evaluation and verification is confound-
ed by the many possible skill measures that can be used
to summarize the complex behavior that occurs in even
quite simple forecasts. Forecasts of M distinct categories
require M 2 2 1 numbers to fully describe the joint prob-
ability distribution between the forecasts and observa-
tions. For several categories, this leads to many possible
measures of forecast skill (‘‘curse of dimensionality’’),
and it is not obvious which measures are most suitable
for comparing forecasts with observations (Murphy
1991). One guiding principle is that skill measures
should be as invariant/constant as possible, so as to
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provide robust measures that are less prone to being
manipulated.

It is also important to know the sampling distribution
of the skill score under no-skill conditions so that the
skill score can be tested for statistical significance. The
old saying that ‘‘a measurement without an error esti-
mate is meaningless’’ is applicable to skill scores. This
aspect has not received much attention from meteorol-
ogists and climate researchers yet is a necessary and
vital part of forecast verification. Furthermore, it is im-
portant to distinguish between ‘‘skill’’ and ‘‘value/util-
ity’’ of a forecast. Skill measures the general association
between the forecasts and observations, whereas value
focuses on user-specific costs (or utilities) that are ex-
pected to arise from using the forecasts. Significant skill
does not necessarily imply useful value for any partic-
ular user, neither does useful value in certain situations
imply any significant overall skill.

This study focuses on measuring the skill of forecasts
of a discrete number of events, referred to as ‘‘cate-
gorical forecasts.’’ Furthermore, only the case of yes/
no type dichotomous forecasts will be considered, for
example, forecasts of whether or not a tornado will oc-
cur later in the same day. No account will be made of
possible ordering of the categories, and it will be as-
sumed that the number of forecast trials is fixed in ad-
vance. Other experimental designs can also be imagined,
for example forecasts continued until a certain score is
achieved, yet this is not usually the case in practice.

After more than 100 yr of research, fresh approaches
to categorical skill scores are still possible as will be
shown in this study. The following section will present
a description of the example forecasts used in this study.
Section 3 will then briefly describe some useful concepts
from signal detection theory. Section 4 will introduce
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TABLE 1. Contingency table for Finley’s original tornado forecasts.

Fore-
cast

Tornado observed

Yes No Total

Yes
No
Total

28
23
51

72
2680
2752

100
2703
2803

TABLE 2. Schematic contingency table for categorical forecasts of
a binary event. The symbols a–d represent the different number of
events observed to occur in each category.

Event
fore-
cast

Event observed

Yes No Total

Yes
No
Total

a (hit)
c (miss)
a 1 c

b (false alarm)
d (correct rejection)
b 1 d

a 1 b
c 1 d
a 1 b 1 c 1 d 5 n

TABLE 3. Contingency table for the unbiased tornado forecasts
obtained by hedging Finley’s original forecasts.

Fore-
cast

Tornado observed

Yes No Total

Yes
No
Total

14
37
51

37
2715
2752

51
2752
2803

the central idea of odds/risk. A brief comparison of skill
scores will be presented in section 5, and the following
section will examine the statistical significance of var-
ious scores. Section 7 will consider some more theo-
retical issues concerned with the sensitivity and invari-
ance of the various skill scores. Section 8 concludes the
article with a brief summary and some possible future
applications.

2. Finley’s tornado forecasts

a. Finley’s original tornado forecasts

Sergeant John Finley’s twice daily forecasts of tor-
nados provide a useful historical dataset for illustrating
the advantages and disadvantages of different forecast
evaluation methods (Finley 1884; Murphy 1996). Using
telegraphed synoptic information, Sgt. Finley issued
forecasts at 0700 EST and 1500 EST each day stating
whether tornadoes would form in 18 regions east of the
Rocky Mountains. In common with many other envi-
ronmental phenomena of human interest, tornadoes oc-
cur infrequently, yet can incur major loss and damage.
By counting the number of successful forecasts of both
‘‘tornado’’ and ‘‘no-tornado’’ events, Sgt. Finley
claimed that his forecasts were 96.6% correct. Gilbert
(1884) pointed out a ‘‘serious fallacy’’ in Finley’s mea-
sure of accuracy in that it took no account of the rare
occurrence of tornado events, and that an even higher
skill of 98.2% could have been obtained by forecasting
no tornado every time! By considering different skill
measures and their statistical significance, it will be
shown that Finley’s forecasts did have some real skill
at reproducing the observations.1 The total number of
events in Finley’s original forecasts are given in Table 1.

The numbers in each category will be represented by
the symbols given in Table 2. In this study, the columns
are used to denote the observed variable, while the rows
are reserved for the predicted variable. Note that other
conventions have sometimes been used, for example,
Stanski et al. (1989) in which columns and not rows
represented the forecast events.

1 But this does not imply that there was any useful value for any
forecast users!

b. Hedging to obtain unbiased forecasts

A simple question that should be asked is whether
the same fraction of events were forecast as were ob-
served. The ‘‘bias’’ of the forecasts is given by the
fraction of events forecast to those observed,

a 1 b
B 5 , (1)

a 1 c

and should be unity (unbiased) for a perfect forecasting
system that aims to offer valuable forecasts to many
diverse users. However, in practice, it generally differs
from unity due to the presence of systematic biases (er-
rors) in the forecasting model or observing system.
Sometimes such biases are introduced intentionally in
order to minimize the risk of missing potentially costly
events (J. E. Thornes 1999, personal communication).
Finley forecast nearly twice as many tornados as were
actually reported leading to a bias B of 1.96 (5100/51).
This bias is most likely due to the sparseness of the
observing network rather than to a severe bias in the
forecasting method (Finley 1884). Finley could have
obtained unbiased forecasts by randomly rejecting 49%
of the cases when he forecast a tornado to occur. He
could have done this approximately by flipping a coin
each time he had forecast a tornado, and then keeping
the forecast only if the coin showed heads. Such a pro-
cedure entails moving a fraction a 5 (b 2 c)/(a 1 b)
of events from each box in the upper row of the con-
tingency table to the corresponding box in the lower
row. In other words, it transforms the number of events
(a, b, c, d) into the number of events (a 2 aa, b 2 ab,
c 1 aa, d 1 ab), and reduces the bias from B to 1.

Table 3 gives the contingency table for the unbiased
forecasts obtained with a 5 0.49. Such an adjustment
procedure can be thought of as a way of correcting
systematic bias by ‘‘hedging’’ the forecasts toward the
most frequently observed category (climatology). Hedg-
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TABLE 4. Contingency table constructed for random tornado fore-
casts having the same marginal totals as Finley’s original forecasts.

Fore-
cast

Tornado observed

Yes No Total

Yes
No
Total

2
49
51

98
2654
2752

100
2703
2803

ing can be considered to be either an optimal adjustment
procedure, or a mild form of cheating that can in prin-
ciple be used to obtain higher forecast skills (Gandin
and Murphy 1992).

c. Random no-skill forecasts

A simple no-skill benchmark is provided by ‘‘random
forecasts,’’ in which each event is forecast randomly but
with the constraint that the marginal totals of both the
forecasts and the observations in the contingency table
remain the same as the marginal totals in the original
verification table. Note that the phrase climatological
forecast (without the word random) is commonly used
to describe constant forecasts of the climatologically
most likely category. For a random forecast, the ex-
pected number of events is given by a9 5 np(o)p( f ) 5
(a 1 c)(a 1 b)/n, b9 5 np(o)p( f ) 5 (b 1 d)(a 1 b)/n,
c9 5 np(o)p( f ) 5 (a 1 c)(c 1 d)/n, and d9 5 np(o)p( f )
5 (b 1 d)(c 1 d)/n. The ‘‘base rate’’ p(o) 5 (a 1 c)/n
is an estimate of the probability that the event will occur,
whereas p(o) 5 1 2 p(o) is an estimate of the probability
that the event will not occur. Despite the base rate for
rare catastrophic events such as tornadoes being van-
ishingly small, it nevertheless plays an important role
in determining the useful ‘‘value’’ of such forecasts
(Matthews 1996). Table 4 shows a contingency table
constructed in this manner based on Finley’s original
forecasts. A small error is introduced into the random
forecasts by rounding the cell counts to integers. For
example, a9 should be 1.82 but is instead rounded to 2
in Table 4. By construction, the rows and columns of
contingency tables for random forecasts are completely
independent of one another and there is no association
between the forecasts and the observations.

3. Detection of signals

How can the overall skill of Finley’s tornado forecasts
be diagnosed? With a fixed total number of events, as
is normally the case for forecast trials, three degrees of
freedom are needed to fully describe the four values in
a 2 3 2 contingency table. One quantity has already
been introduced, namely, the bias B of the forecast and
two others remain to be chosen. Ideas from signal de-
tection theory suggest two other useful quantities: the
‘‘hit rate’’ and the ‘‘false alarm rate.’’ Many diverse
disciplines such as radio communications, medical im-

aging, medical diagnosis, and psychology use signal
detection theory to optimally detect and diagnose sig-
nals (Swets 1973, 1988; Macmillan and Creelman 1991;
Green and Swets 1996; Swets and Pickett 1982). Signal
detection theory was first applied to the verification of
meteorological forecasts in the pioneering studies of
Mason (1980, 1982) and provides a universal framework
for evaluating the joint probability distribution of fore-
casts and observations (Stanski et al. 1989; Harvey et
al. 1992; Mason 1997; and references therein). As ex-
plained in Murphy and Winkler (1987), the joint dis-
tribution can be factorized by either stratifying on the
observations (likelihood-base rate factorization) or on
the forecasts (calibration-refinement factorization). Both
these stratifications will now be considered.

a. Likelihood-base rate factorization

The hit rate (H) gives the relative number of times
an event was forecast when it occurred, whereas the
false alarm rate (F) gives the relative number of times
the event was forecast when it did not occur. False
alarms are nicely illustrated by the Grimm brothers’
story about a boy who cries (shouts) wolf when there
is none. A tragedy finally happens when the boy en-
counters a wolf (the observed event) because people in
the village no longer believe the boy’s shouts (the fore-
cast) due to his numerous previous false alarms. The
rates are usually estimated by the ratios of the number
of events,

a
H 5 5 p̂( f | o) (2)

a 1 c

b
F 5 5 p̂( f | o), (3)

b 1 d

and provide ‘‘frequentist’’ estimates of the conditional
likelihoods p( f | o) and p( f | o). The hit rate is sometimes
referred to as the ‘‘probability of detection’’ in the ear-
lier literature. Borrowing terminology that is used in
statistical hypothesis testing, the false alarm rate is in-
terpreted as the rate of making a ‘‘type I error’’ whereas
the ‘‘miss rate,’’ equal to one minus the hit rate, mea-
sures the chance of making a ‘‘type II error.’’ The two
types of error often have very different consequences;
for example, failing to forecast a tornado that then oc-
curs (type II error—a miss) is generally more damaging
than forecasting a tornado that does not then appear
(type I error—a false alarm). For catastrophic events,
the expected loss incurred by the forecast user generally
depends more on the hit rate than on the false alarm
rate. Note that a complete analogy with hypothesis test-
ing is not possible since hypothesis testing is concerned
with making decisions between unknown ‘‘parameters’’
whereas categorical forecasting is concerned with mak-
ing decisions between possible processes.

Improved estimates may be obtained by using Bayes-
ian methods that incorporate prior information about
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TABLE 5. Signal detection statistics for the different tornado forecasts.

Statistic Symbol Range Finley Hedged Random

Hit rate
Odds of a hit
False alarm rate
Odds of a false alarm

H
H/(1 2 H )
F
F/(1 2 F )

[0, 1]
[0, `]
[0, 1]
[0, `]

0.549
1.217
0.026
0.027

0.275
0.378
0.014
0.014

0.039
0.041
0.036
0.037

Odds ratio
Log odds ratio
Degrees of freedom

u
logu
nh

[0, `]
[2`, `]
[0, `]

45.31
3.81 6 0.31

10.70

27.76
3.32 6 0.36

7.95

1.11
0.10 6 0.73

1.88

TABLE 6. Categorical forecast totals expressed in terms of the bias
B 5 (a 1 b)/(a 1 c), the hit rate H 5 a/(a 1 c), and the false alarm
rate F 5 b/(b 1 d ). The multiplier m 5 n/(B 2 H 1 F ) multiplies
all the totals and does not therefore contribute to ratios of any of the
totals.

Event
fore-
cast

Event observed

Yes No Total

Yes
No
Total

F Hm
F(1 2 H)m
Fm

F(B 2 H)m
(1 2 F )(B 2 H )m
(B 2 H)m

F Bm
(F 2 H 1 (1 2F )B)m
(B 2 H 1 F)m 5 n

possible uncertainty in model bias, etc. For example, an
improved Bayesian estimate of the hit rate can be ob-
tained using the simple ‘‘rule of succession’’ based on
a uniform prior (Fisher 1990). In other words, p̂( f | o)
can be estimated using the Bayesian expression (a 1
1)/(a 1 c 1 2) (‘‘add one hit and one miss’’) rather
than the more common frequentist expression a/(a 1
c). Such an estimate is slightly closer to 0.5 and avoids
either under- or overestimating the rate especially when
the sample size is small.

b. Calibration-refinement factorization

One can also estimate alternative rates by stratifying
on the forecasts:

a
H9 5 5 p̂(o | f ) (4)

a 1 b

c
F9 5 5 p̂(o | f ). (5)

c 1 d

The ratio 1 2 H9 is sometimes referred to as the ‘‘false
alarm ratio,’’ which should not be mistaken with the
previously discussed false alarm rate (e.g., Wilks 1995,
chap. 7). The ratio F9 is a ‘‘conditional miss rate.’’ The
likelihood-base rate and calibration–refinement are re-
lated to one another by expressions derived from Bayes’
theorem such as

p( f | o)p(o)
p(o | f ) 5 (6)

p( f | o)p(o) 1 p( f | o)p(o)

and can be expressed in terms of one another as

H
H9 5 (7)

B

F(1 2 H )
F9 5 . (8)

F 2 H 1 B(1 2 F )

They therefore contain equivalent information.
Table 5 gives the hit and false alarm rates calculated

for the different forecasts. It can be seen the hit rate is
greater in the Finley forecasts (0.549) than in the hedged
forecasts (0.275). The Finley and hedged forecasts cor-
rectly predicted the event (a tornado) on more than 25%
of the occasions when a tornado actually occurred. The
false alarm rate is less than 4% for all three forecasts,
suggesting that very few tornadoes were forecast when
none occurred. When forecasts of a particular event (tor-
nado, wolf, etc.) are rare, the conditional probability
p( f | o) 5 p( f and o)/p(o) is generally small. For ex-
ample, for no-skill random forecasts the false alarm rate
is given by p( f ), which is small for events that are
forecast rarely. Because of the rarity of wolves, most
‘‘normal’’ children do not cry wolf very often and so
generally have a low false alarm rate. The rarity of the
forecast event often implies a low false alarm rate, yet
conversely, a low false alarm rate cannot be entirely
attributed to the rarity of the event since a low false
alarm rates can also result from high forecast skill.

c. The BHF representation

For a fixed total number of events, the three quan-
tities, B (bias), H (hit rate), and F (False alarm rate),
completely describe the numbers of events in the con-
tingency table. The numbers a, b, c, and d can be ex-
pressed in terms of B, H, and F as shown in Table 6.

This provides a useful representation for describing
dichotomous forecasts. The bias B compares the mar-
ginal probabilities of the forecasts and observations,
whereas H and F are conditional probabilities that com-
pletely describe the joint conditional distribution. As
explained in Murphy and Winkler (1987), it is useful
to factor the joint distribution in such a way especially
when the base rates (i.e., climatological probabilities)
are quite dissimilar. Note that the quantity m becomes
singular when B is exactly equal to H 2 F, yet this is
likely to never occur in practice.

A useful visual representation is obtained by marking
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(F, H) values in the unit square. When a control param-
eter such as the threshold for the event is varied, a locus
of points is traced in the (F, H) plane. In the medical
and psychological literature, this curve is referred to as
a ‘‘receiver operating characteristic’’ (ROC), or less
commonly as a ‘‘relative operating characteristic.’’ The
ROC provides a useful diagnostic summary of the dis-
criminatory capability of the forecast system, and should
not be confused with the operating characteristic (OC)
curve that is widely used to test between different sta-
tistical hypotheses/parameters.

4. Odds assessment of forecasts

Forecasting is an inherently risky business that in-
volves making predictions about which events are most
likely to occur in the future.2 Fortunately, in weather
forecasting it is possible to produce skillful forecasts by
making use of the physical laws that determine the evo-
lution of the universe. This section will discuss the cen-
tral concept of odds for assessing the overall risk in-
volved in making forecasts.

a. Odds and risk

The ‘‘odds’’ or ‘‘risk’’ of an event is the ratio of the
probability that the event occurs to the probability that
the event does not occur. In other words, the odds of
an event that has a probability p of occurring is given
by p/(1 2 p), and ranges from zero to infinity. For
example, an event with probability of 0.8 of occurring
has an odds of 0.8/(1 2 0.8) 5 4 (or 4 to 1 ‘‘on/for’’
in bookmaker’s jargon). Odds and probability/chance
differ because of the denominator, which becomes im-
portant for more frequent events. An interesting prop-
erty of odds is that the odds for the complement of an
event (i.e., not the event) is the reciprocal of the odds
for the event. For example, an event with probability
of 0.2 5 1 2 0.8 of occurring has an odds of 0.2/(1 2
0.2) 5 ¼ (or 4 to 1 ‘‘against’’ in bookmaker’s jargon).
Hit and false alarm rates can be interpreted in terms of
odds. For example, the odds of Finley’s forecasts cor-
rectly predicting a tornado (a hit) given that one oc-
curred is given by H/(1 2 H) 5 0.549/(1 2 0.549) 5
1.22 and so the odds of a correct tornado forecast is
1.22 (or about 6 to 5 for), which is close to ‘‘evens’’
(odds of 1.0).

b. The ‘‘odds ratio’’

Forecast skill can be judged by comparing the odds
of making a good forecast (a hit) to the odds of making
a bad forecast (a false alarm). In other words, by using
the ‘‘odds ratio’’:

2 Prophesy is a good line of business, but it is full of risks—Mark
Twain, Following the Equator: A Journey Around the World.

21H F
u 5 . (9)1 21 2 H 1 2 F

This ratio is greater than one when the hit rate exceeds
the false alarm rate. For Finley’s tornado forecasts, the
ratio of odds for the hit rate (1.22) to the odds for the
false alarm rate (0.027) is greater than 1 and equals
45.31. The odds ratio is equal to the ‘‘cross-product
ratio’’:

ad p( f | o)p( f | o)
u 5 5 , (10)

bc p( f | o)p( f | o)

which can easily be calculated from a contingency table.
The odds ratio is unity when the forecasts and obser-
vations are independent and provides a good way of
summarizing the ‘‘association’’ in the joint probability
distribution. Note that it depends solely on the condi-
tional joint probabilities and not on the marginal prob-
abilities; it is therefore independent of any bias between
the observations and the forecasts. It is widely used in
medical trials for testing the associations between clin-
ical drug treatment and side effects (Agresti 1996).

The difference of the odds ratio from unity is equal
to the weighted difference between the hit and false
alarm rate:

H 2 F
u 2 1 5 . (11)

F(1 2 H )

From this it can be seen that the odds ratio is unity when
the hit and false alarm rates are identical. Associated
variables gives odds ratios larger than unity and can be
easily tested for significance by considering the natural
logarithm of the odds ratio referred to as ‘‘log odds’’:

logu 5 loga 1 logd 2 logb 2 logc, (12)

which is approximately Gaussian distributed for large
enough a, b, c, and d (each at least greater than 5).
Rather than being a weighted sum of the the raw counts
as is generally assumed for scores (Gandin and Murphy
1992; Potts et al. 1996), log odds is a weighted sum of
the logarithms of the counts and thereby accounts to
some extent for the larger sampling uncertainties in the
larger numbers of events.

c. Odds ratio parameterization of ROC curves

The definition of odds ratio [Eq. (9)] can be used to
obtain the hit rate as a function of the false alarm rate:

uF
H 5 . (13)

1 1 (u 2 1)F

Examples of isopleth curves obtained using this ex-
pression for different values of odds ratio are shown in
Fig. 1. They closely resemble the ROC curves that have
been found in previous weather forecasting studies (e.g.,
Mason 1982; Harvey et al. 1992). The interesting sim-
ilarity between isopleths of u and empirical ROC curves
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FIG. 1. ROC curves for different values of odds ratio. Tornado
forecasts are also marked on the diagram as asterisks.

TABLE 7. Scores for the different tornado forecasts. Except for PC
and GSS, all the scores would have been exactly zero for the random
no-skill forecasts if the cell counts had not been rounded to whole
numbers in Table 4.

Skill score Range Finley Hedged Random

Proportion correct
Heidke
Gilbert
Peirce

PC
HSS
GSS
PSS

[0, 1]
[21, 1]
[0, 1]

[21, 1]

0.966
0.365
0.228
0.523

0.974
0.261
0.159
0.261

0.948
0.002
0.013
0.004

Yule’s Q
Pearson
Likelihood

ORSS
X 2/n
G2/n

[21, 1]
[0, 1]
[0, 1]

0.957
0.142
0.045

0.931
0.068
0.020

0.050
0.000
0.000

has also been noted in the nonmeteorological context
(Swets 1986). The odds ratio is almost invariant with
decision threshold and may provide a threshold-inde-
pendent skill score and an effective way to parameterize
empirical ROC curves.

5. Comparison of various scores

This section will briefly review some commonly used
scores and compare their performance on the tornado
forecasts (Table 7). Differences between the skill be-
come most apparent in biased real-world cases such as
Finley’s original tornado forecasts.

a. Proportion correct (PC)

Finley (1884) judged forecast accuracy by consid-
ering the simple matching coefficient based on the ‘‘pro-
portion’’ of total ‘‘correct’’ hits and rejections (PC):

a 1 d B 2 H 2 FB 1 2HF
PC 5 5 . (14)

n B 1 F 2 H

The scores are given in Table 7 where it can be seen
that all the forecasts including even the random forecasts
give high scores. Furthermore, the hedged forecasts
have a higher score than the original forecasts. In this
particular case, hedging the forecasts toward the most
observed category has increased the proportion correct.
As explained in Gandin and Murphy (1992), PC is not
an ‘‘equitable’’ score since it can be improved by fore-
casting more frequently the most observed category.
This can be undesirable because it may encourage some
forecasters to hedge their forecasts away from fore-
casting less likely yet important events.

b. Heidke skill score (HSS)

By comparing the proportion correct PC to that ob-
tained for no-skill random forecasts PC0 5 (a9 1 d9)/n,
it is possible to construct the widely used Heidke skill
score (HSS):

PC 2 PC0HSS 5
1 2 PC0

2(ad 2 bc)
5 , (15)

(a 1 c)(c 1 d) 1 (a 1 b)(b 1 d)

which is the number of correct hits and rejections stan-
dardized so that random forecasts have zero skill (Doo-
little 1888; Heidke 1926). The Heidke skill score ranges
from 21 to 1, and in BHF representation has the rather
cumbersome form

2(B 2 H )(H 2 F )
HSS 5 , (16)

F 2 H 1 B(1 1 B 2 H 2 F )

which depends on the bias. Table 7 shows that a larger
skill score of 0.365 is obtained for the Finley forecasts
than the skill score of 0.261 obtained for the hedged
forecasts. This is because the proportion correct (0.964)
for random forecasts based on the hedged forecasts is
slightly larger than the proportion correct (0.948) for
random forecasts based on the original forecasts. By
standardizing relative to random forecasts, the Heidke
skill score becomes a more ‘‘equitable’’ measure than
the proportion correct score.

c. Gilbert skill score (GSS)

In his critique of Finley’s scoring procedure, Gilbert
(1884) proposed an alternative verification statistic for
forecasts of rare events, which is referred to as either
the ‘‘critical success index,’’ the ‘‘threat score’’ (Schae-
fer 1990), or the Jaccard coefficient. The Gilbert skill
score (GSS) is defined as

a H
GSS 5 5 (17)

a 1 b 1 c 1 1 B 2 H

and so takes no account of the false alarm rate. It com-
pletely ignores the large number of frequent events (d)
when a tornado was not observed and was not forecast
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to occur. This can be an advantage in the large number
of forecast situations where it is difficult or impossible
to define d with any certainty. If a tornado were forecast
correctly on every occasion (c 5 0), then GSS would
give H9. It can be seen from Table 7 that the GSS avoids
the problem noted for PC in which the hedged forecasts
have a higher score than the unhedged forecasts. Un-
fortunately, however, the Gilbert skill score has the dis-
advantage of not being zero even for no-skill climato-
logical or random forecasts (Wilks 1995). The GSS can
be a useful index but only if supplemented with addi-
tional information such as the frequency of occurrence
of the event (Mason 1989).

d. Peirce skill score (PSS)

A simple reliable measure of skill is obtained by tak-
ing the difference between the hit rate and the false
alarm rate:

ad 2 bc
PSS 5 H 2 F 5 . (18)

(a 1 c)(b 1 d)

Stimulated by Gilbert’s remarks on the accuracy of Fin-
ley’s tornado forecasts, Peirce (1884) offered this al-
ternative as a ‘‘measure of the science of the method.’’
It has since been rediscovered and renamed several
times: ‘‘Hanssen–Kuipers discriminant’’ (Hanssen and
Kuipers 1965), ‘‘Kuipers’ performance index’’ (Murphy
and Daan 1985), and the ‘‘true skill statistic’’ (Flueck
1987). To respect its original discovery, it will be re-
ferred to as the Peirce skill score (PSS) in this article.
When the score is greater than zero, the hit rate exceeds
the false alarm rate and this can then be used to infer
that there is some forecast skill. For example, a boy who
cries wolf frequently when there is none, should not be
ignored if it can be shown that he actually cries wolf
at a more frequent rate when there is one! Most people
behave less rationally than this and would tend to ignore
the boy because of his previous high false alarm rate
as is illustrated in the Grimm story-tale when a wolf
eventually does visit the village.

The Peirce skill score is larger for the Finley forecasts
than for the hedged forecasts (Table 7). For the Finley
forecasts, it is also larger than the other scores. The
majority of this skill comes from the high hit rate based
on the number of tornadoes forecast when tornadoes
were actually observed. In other words, the skill is com-
ing from the two small numbers in the first column of
the contingency table (a 5 28 and c 5 23), and the
other numbers of events (b and d) make a negligible
contribution. It is a weakness of the Peirce skill score
that when one cell count in the contingency table is
large (e.g., d), then the other cell count in the same
column is almost completely disregarded (e.g., b).

e. Odds ratio skill score (ORSS)

A simple skill score ranging from 21 to 11 can be
obtained from the odds ratio by the transformation

u 2 1 H 2 F
ORSS 5 5 . (19)

u 1 1 H 1 F 2 2HF

This score was proposed long ago as a ‘‘measure of
association’’ by the statistician G. U. Yule (Yule 1900)
and is referred to as Yule’s Q. Despite its wide use for
measuring association in contingency tables (Agresti
1996), until now, it has never been applied for verifying
meteorological forecasts. It is based entirely on the joint
conditional probabilities, and so is not influenced in any
way by the marginal totals.

The odds ratio skill scores for the tornado forecasts
are presented in Table 7. Finley’s original and the
hedged forecasts have high skill scores close to 1,
whereas the random forecasts have an odds ratio skill
score (ORSS) close to zero. Because ORSS is indepen-
dent of the marginal distribution, it strongly discrimi-
nates between the cases with and without association
even when the different contingency tables appear to
have similar cell counts. This is in contrast to other
scores such as the proportion correct, which gave similar
scores for all three sets of forecasts. However, one
should not be misled into thinking that high values of
ORSS imply significant amounts of skill. To test for real
skill or real differences in skill, it is essential that careful
significance testing is performed on the skill scores as
will be discussed in more detail in section 6. Smaller
skill scores based on the odds ratio can be obtained if
so desired by using simple functions of ORSS such as
ORSS to some power.

f. Chi-squared measures of association

Although rarely used in evaluating meteorological
forecasts, association can also be tested by using the
‘‘Pearson’’ and the ‘‘likelihood ratio’’ chi-squared dis-
tributed measures of fit:

2 2(n 2 m )i j i j2x 5 (20)O
mi, j51 i j

2 nij2G 5 2 n log , (21)O i j 1 2mi, j51 i j

where nij are the observed cell counts and m ij 5 ni·n·j/n
are the counts expected from climatology (ni· is the total
count for the ith row, etc.). For independent events, both
measures are asymptotically chi-squared distributed
with one degree of freedom. These statistics normalized
by the total number of events are given in Table 7 and
are significantly different from zero at 99.9% confidence
(x2 . 10.83) for Finley’s original and the hedged tor-
nado forecasts. For 2 3 2 contingency tables, the mea-
sure x2/n is equal to

2(ad 2 bc)

(a 1 b)(c 1 d)(a 1 c)(b 1 d)
25 (1 2 H9)F9(1 2 H )F(u 2 1) (22)
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and provides a squared correlation measure r2 of two-
sided association in the contingency table that was first
proposed for use in forecast verification by Doolittle
(1885). It has been used for thunderstorm forecast ver-
ification by Pickup (1982). From Eq. (22), it can be seen
that x2/n contains a factor of (u 2 1)2 that depends
directly on the odds ratio. Since this is generally the
most variable factor in the chi-squared skill score, the
odds ratio can be used instead of chi squared to provide
a simpler and more direct measure of association (Yule
1900; Agresti 1996).

6. Do forecasts have any real skill?

Skill scores compiled from contingency tables are
‘‘sample estimates’’ of past performance and, therefore,
contain sampling uncertainties. Impressively good
scores can sometimes be obtained purely by chance,
especially if the score has been compiled over an in-
sufficient number of independent events. For example,
it would be grossly misleading to claim that a coupled
model forecasting system had skill based on the suc-
cessful forecast of only one El Niño event. Statistical
significance testing can be used to reject the null hy-
pothesis that good scores occurred simply by chance
sampling fluctuations. With the exception of only a few
studies, the rather dull yet important business of testing
the significance of skill scores has received relatively
little attention by meteorologists (Woodcock 1976; Sea-
man et al. 1996). The sampling distributions are not
even known for most of the frequently used skill scores.
Furthermore, for skill scores such as Heidke’s, that have
quite complicated dependence on the number of events,
the sampling distribution is likely to be difficult if not
intractable to calculate analytically. This section will
briefly discuss how statistical error estimates (confi-
dence intervals) can be used to judge both the hit and
false alarm rates, and the Peirce and odds ratio skill
scores.

a. Confidence intervals for hit and false alarm rates

The ‘‘score confidence interval’’ (Agresti and Coull
1998) for proportions such as hit rates and miss rates
is given by

2za/2 2p̂ 1 6 z Ï[p̂(1 2 p̂) 1 z /4n]/na/2 a/22n
. (23)

21 1 z /na/2

The statistic p̂ is the estimated hit or false alarm rate
and n is the total number of events used to estimate the
rate (Agresti and Coull 1998). The parameter za/2 is the
1 2 a/2 quantile of the standard normal distribution
used to determine the 100(1 2 a)% confidence interval.
For example, the hit rate of Finley’s tornado forecasts
is 0.549 (528/51) calculated with n 5 51 events and
so has an estimated 95% confidence interval of 60.13

(za/2 5 z0.0275 5 1.96). The hit rate is therefore signif-
icantly different from zero at 95% confidence. The score
confidence interval enables error bars (confidence in-
tervals) to be added to ROC plots to give a better idea
of possible uncertainties.

b. Standard error of the Peirce skill score

Assuming independence of the hit and false alarm
rates, the standard error in the Peirce skill score is simply
the square root of the sum of the squared standard errors
in the hit and false alarm rates. For large enough sam-
ples, the standard error is approximated by

H(1 2 H ) F(1 2 F )
1 , (24)! n nH F

where nH 5 a 1 c and nF 5 b 1 d. For Finley’s fore-
casts, this expression gives an estimated standard error
of 0.069 in the Peirce score of 0.523, and hence the
Peirce score is significantly different from a zero score
no-skill forecast.

c. Significance testing of the odds ratio

The odds ratio can be easily tested for significance
by considering the natural logarithm of the odds ratio,
which is asymptotically Gaussian distributed with a
standard error given by 1/(nh)1/2, where nh is the effec-
tive number of degrees of freedom (d.o.f.’s) 1/nh 5 1/a
1 1/b 1 1/c 1 1/d (Agresti 1996). The d.o.f. takes into
account the number of events in each category and can
never exceed the smallest cell count. To test whether
there is any forecast skill, one can test against the null
hypothesis that the forecast and observations are in-
dependent with a log odds of zero. For Finley’s tornado
forecasts, log odds is 3.81 with an asymptotic standard
error of 0.31 (Table 6) and therefore the log odds is
more than 1.96 standard errors away from zero implying
that there is less than 5% chance that the skill could be
due to pure chance. At more than 95% confidence, Fin-
ley’s tornado forecasts were not independent of the ob-
servations and therefore had some skill (but not nec-
essarily any useful value!). Log odds is simply twice
the Fisher z transform of the ORSS measure of asso-
ciation; that is, log u 5 log(1 1 ORSS)/(1 2 ORSS).
An alternative score F( ) logu) can be constructedÏnh

that incorporates the sampling error. It is approximately
equal to 1 1) and can be conveniently in-1/2 1/2(n ) (n )h hu /(u
terpreted as the probability that the forecasts and the
observations are positively associated. An easy-to-use
lookup table for assessing the significance of the odds
ratio skill score can be constructed.

Singular behavior occurs when any one of the num-
bers a, b, c, or d is zero. If either b or c becomes zero,
then ORSS 5 1 indicating perfect association. If either
a or d becomes zero, then ORSS 5 21 indicating perfect
negative association. Because the odds ratio can be unity
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for forecasts that are not completely ‘‘perfect’’ (i.e., both
b and c are zero), Woodcock (1976) argued that the
odds ratio was unsuitable for use in forecast evaluation.
However, when any one of the cell counts is zero, the
asymptotic standard error in log odds becomes infinite
and the odds ratio can no longer be meaningfully tested
for significance (Agresti 1996). By taking into account
the significance of the score, it is possible to avoid
Woodcock’s criticism and thereby use the odds ratio for
forecast evaluation. If all the boxes in any of the rows
or columns have small counts equal or close to zero,
the 2 3 2 verification problem becomes rank deficient
and lower-dimension verification should be considered.
In summary, the odds ratio is no longer a meaningful
measure of association when any of the cell counts are
zero. Furthermore, care should be exercised in testing
the significance of the odds ratio when any of the cell
counts become particularly small (i.e., less than 5). In
such cases, exact significance tests should be performed
numerically using software such as StatXact. A com-
prehensive account of significance testing for various
measures of association is given in Bishop et al. (1975).

7. Invariance of skills

Skill scores are measures of similarity between the
forecasts and observations, and can be chosen in many
different ways. To be useful overall measures, skill
scores should not depend strongly on the way the fore-
caster decides to define the categories etc. Skill scores
that do not depend on such choices are in principle less
easily manipulated and are, therefore, more powerful
than other less invariant measures. For example, spatial
correlations made using the Mahalanobis metric are in-
variant under linear transformations and, therefore, re-
main the same regardless of linear mapping of the var-
iables onto different spatial grids (Stephenson 1997).
This section will discuss various transformation prop-
erties of categorical skill scores.

a. Improvement by hedging towards climatology?

It is desirable that overall measures of skill should
not be improvable by hedging the forecasts toward the
most frequent category, otherwise forecasters may be
discouraged from making forecasts of the possibly more
useful yet less frequent category (e.g., tornados). Hedg-
ing toward the most frequent category, which is rep-
resented in our example by the lower row in the con-
tingency table, transforms the number of events as fol-
lows:

(a, b, c, d) → (a, b, c, d)9

5 (a 2 aa, b 2 ab, c 1 aa, d 1 ab).

(25)

Hedging toward the most frequent category reduces B
→ (1 2 a)B, H → (1 2 a)H, and F → (1 2 a)F. The

reduction in the hit and false alarm rates is due to there
being less chance of making a hit or a false alarm if
less events are being forecast.

Since the Peirce skill score is the difference H 2 F,
it is also reduced by the same factor PSS → (1 2 a)PSS.
An unscrupulous forecaster would therefore be unable
to improve their Peirce skill score by hedging their fore-
casts toward climatology! The Peirce skill score cannot
be improved by forecasting a particular class of events—
it is an ‘‘equitable’’ score (Gandin and Murphy 1992).
Furthermore, Gandin and Murphy (1992) demonstrated
that the Peirce skill score is the only equitable linear
score for binary forecasts.

Since the odds ratio is a linear combination of the
logarithm of the number of events rather than being a
linear combination of the number of events, it is outside
the general class of linear scores considered by Gandin
and Murphy (1992). It is therefore necessary to treat the
odds ratio skill score as a special case. Under hedging
toward climatology, the odds ratio skill score transforms to

H 2 F
ORSS 5 → ORSS9

H 1 F 2 2HF

H 2 F
5 . (26)

H 1 F 2 2HF 1 2aHF

The positive quantity 2aHF is added to the denominator,
which causes the transformed ORSS to always be small-
er than the unhedged ORSS. For small amounts of hedg-
ing, a Taylor expansion in a gives

2aHF
ORSS9 ø ORSS 1 2 . (27)1 2H 1 F 2 2HF

The relative reduction 2aHF/(H 1 F 2 2HF) is less
than that of a obtained for the Peirce skill score, when
either the hit or false alarm rate are small. In such cases,
the odds ratio skill score is less sensitive to hedging as
can be noted, for example, in the similar ORSS values
obtained for Finley’s original and the hedged forecasts
in Table 7. This is an advantage since it means that the
ORSS is less sensitive to small changes in bias that can
easily occur due to changes in either the forecast model
or the base period climatologies. The ORSS provides a
robust measure of association that is independent of
such changes in the marginal distributions.

b. Complement symmetry

Instead of choosing the event to be ‘‘tornado occurs,’’
it would have been equally possible to choose the event
to be ‘‘tornado does not occur.’’ A complementary con-
tingency table would then have been obtained having
swapped rows, and swapped columns, in other words,
(a, b, c, d) → (a, b, c, d)9 5 (d, c, b, a). Which skill
scores give the same value for the complementary table
as for the original table? It is easily verified that the
proportion correct, Heidke, and Peirce skill scores are
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all invariant under this operation, and so do not depend
on the subjective choice of the event or its complement.
The Gilbert skill score, however, depends on the sub-
jective choice of what is the event and the nonevent.
The event is invariably chosen to be the rarer outcome
(e.g., tornado rather than no tornado), yet additional
information about base rates should also be supplied
(Mason 1989).

Hit rates and false alarm rates transform to H → 1
2 F and F → 1 2 H and, therefore, also depend on
the choice of event and nonevent. This transformation
corresponds to a reflection of the points about the line
H 5 1 2 F in the (F, H) plane. Because the Peirce
score is the special combination H 2 F it remains in-
variant under such reflections. One might suspect that
the ratio H/F could also be a suitable measure of forecast
skill. However, this quantity transforms to the different
value of (1 2 F)/(1 2 H), and so depends on whether
one chooses the event or its complement. For example,
for Finley’s tornado forecasts H/F is 20.99 if one choos-
es the event to be tornado occurs but is 2.16 if the event
is chosen to be no tornado occurs. However, unlike the
ratio of rates, the ratio of odds u 5 ad/bc is invariant
under taking the complement and so, therefore, are all
functions of the odds ratio such as log odds and ORSS.

All other complement symmetric combinations of hit
and false alarm rate can be expressed as functions of
the Pierce and odds ratio skill scores. Because the Ja-
cobian

2H(1 2 H ) 2 2F(1 2 F )
(28)

2(H 1 F 2 2HF )

is never singular except on the line H 5 F, it is possible
to express any complement symmetric function of
(H, F) in terms of the the transformed variables (PSS,
ORSS). Explicit expressions for H and F can be found
by using the definitions of u and PSS given in Eqs. (9)
and (19). By simultaneously solving these equations,
one obtains H 5 F 1 PSS, and x 5 1/F as a solution
to the quadratic equation:

PSSx2 1 (1 2 PSS)(1 2 u)x 2 (1 2 u) 5 0. (29)

This then allows u and PSS to be substituted for H
and F. In other words, the isopleths of PSS and ORSS
in the (H, F) plane can be used as curvilinear coordi-
nates for describing any complement symmetric quan-
tity. As an example, consider the skill score:

(ad 2 bc)(a 1 c)(b 1 d)
SS 5

(ad 1 bc)(ad 1 bc)

H 2 F
5 , (30)

2(H 1 F 2 2HF )

which is a complement symmetric function of the hit
and false alarm rate. A little algebra reveals that this
complement symmetric score can be rewritten in terms
of PSS and ORSS as PSS12kORSSk with k 5 2. Func-

tions of the Pierce and odds ratio skill score define the
entire class of complement symmetric skill scores based
on just the hit and false alarm rate.

c. Transpose symmetry

Suppose that the computer files containing the ob-
served results and the forecast results were inadvertently
mixed up. Which of the skill scores would still give the
same values? Swapping the forecast and observations
corresponds to transposing the contingency table (a, b,
c, d) → (a, c, b, d). For unbiased forecasts, b 5 c and
so this transformation would not change the contingency
table.3 However, for biased forecasts the contingency
table and scores based on it may change. Certain scores
such as the proportion correct, Heidke, and odds ratio
skill scores remain invariant under this transformation.
However, the Peirce skill score transforms to

ad 2 bc ad 2 bc
PSS 5 →

(a 1 c)(b 1 d) (a 1 b)(c 1d)

ad 2 bc
5 (31)

B(a 1 c)[B(b 1 d) 1 (1 2 B)n]

and is therefore not invariant under transposing the fore-
casts and observations when the table is biased. For
example, when Finley’s forecasts and observations are
transposed, the PSS of 0.523 predominantly based on
a and c transforms to the much smaller value of 0.272
based predominantly on a and b. In other words, the
Peirce skill score is defined in terms of the likelihood-
base rate factorization and not the calibration–refine-
ment factorization and so requires prior information
about which are the forecasts and which are the obser-
vations. It should be noted that this distinction may be
important for value decisions based on forecasts and
that there is no inherent merit in a score being transpose
symmetric. Interestingly, the invariant score obtained
by taking the product of both Peirce skill scores is iden-
tical to the squared correlation derived from the Pearson
chi-squared statistic (r2 5 x2/n).

8. Concluding remarks

The 2 3 2 problem was stated by M. H. Doolittle
(1888) as follows:

‘‘Having given the number of instances respectively in
which things are both thus and so, in which they are thus
but not so, in which they are so but not thus, and in
which they are neither thus nor so, it is required to elim-
inate the general quantitative relativity inhering in the
mere thingness of the things, and to determine the special

3 This invariance of unbiased forecasts can be tested using Mc-
Nemar’s simple test (Agresti 1996, p. 227).
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quantitative relativity subsisting between the thusness
and the soness of the things.’’

These remarks give an indication of the possible com-
plexity involved when quantifying even small 2 3 2
contingency tables. It is amazing how such an appar-
ently simple problem can prove to be so complicated
and controversial as evidenced by the proliferation of
association measures and skill scores (Goodman and
Kruskal 1979). After more than a century of heated
debates, there are still simmering arguments about
whether it is important to condition on the margins of
the table (Yates 1984).

In this study, it has been argued that the ‘‘odds ratio’’
can provide a useful new measure of association for
verifying binary forecasts. A simple and powerful skill
score, ORSS, can easily be constructed from the odds
ratio that has the following useful properties:

1) It is simple to calculate and is easily interpreted in
terms of signal detection theory quantities; it is the
ratio of the odds of making a hit given that the event
occurred to the odds of making a false alarm given
that the event failed to occur.

2) It is a single measure that summarizes the (M 2 1)2

degrees of freedom in the conditional joint proba-
bility distribution. It does not depend on the marginal
totals and so is an ‘‘equitable’’ score that cannot be
easily hedged.

3) It can easily be used to test whether the forecast skill
is significant (i.e., not due to chance sampling). This
is achieved by testing if the Gaussian distributed log
odds is zero.

4) It is complement symmetric and so measures the skill
of forecasting both the event and its complement.

5) The score does not distinguish between which are
the forecasts and which are the observations, and so
is a transpose symmetric measure for comparing the
forecasts with observations.

6) It becomes indeterminate if any of the rows or col-
umns in the contingency table are completely zero.
This is reasonable since 2 3 2 contingency tables
are no longer appropriate when all the forecasts or
all the observations fall into only one particular cat-
egory.

The independence of the odds ratio with respect to
the marginal totals makes it a valuable quantity for sum-
marizing the joint conditional probability distribution of
diagnostic systems such as weather forecasts. For ex-
ample, the log odds can provide a reliable measure of
how well the system discriminates between hits and
false alarms. This study has shown that the odds ratio
and the Peirce skill score can be used to completely
summarize the joint conditional distribution of 2 3 2
categorical forecasts [i.e., (F, H) behavior]. However,
these two scores provide no information about the mar-
ginal distributions of the forecasts and observations,
which instead can be compared by considering the bias

(B). In other words, the triplet ORSS, PSS, and B form
a useful complete set for describing the three degrees
of freedom in 2 3 2 categorical forecasts. In addition
to using PSS and bias to summarize forecasts, more use
should be made of the odds ratio in forecast verification.
However, care should be exercised when any of the cell
counts are very small (i.e., less than about 5), in which
case the odds ratio may become unreliable. The odds
ratio is no longer a suitable measure of skill for testing
hypotheses if any of the cell counts become zero (Wood-
cock 1976).

To understand how certain factors control the skill of
forecasts, a regression can be performed of the skill on
the various possible factors. Unlike bounded skill scores
or probabilities, log odds is a an asymptotically Gauss-
ian distributed quantity that is suitable for regressions
such as logu 5 ax 1 b, where x is a possible factor and
a and b are regression parameters to be determined. This
type of regression using log odds as the dependent var-
iable is known as ‘‘logistic regression’’ and is widely
used in medical trials for assessing the factors that con-
trol risk (Agresti 1996). The approach is justified by
elegant theoretical arguments concerning generalized
linear models (GLMs). Regression of log odds provides
a natural way of quantifying the influence of various
factors on forecast skill, and it would be interesting to
use it to investigate the effect of model resolution, model
parameters, forecaster stress, etc. on the forecast per-
formance of an operational weather forecasting system.

It is important to realize that forecast skill does not
necessarily imply anything about the possible utility or
value of the forecasts. For rare catastrophic events such
as tornadoes, the value comes from correctly forecasting
the rare events (tornadoes) and not the nonevents (no
tornadoes). Skill scores are measures of overall asso-
ciation between the forecasts and observations, and do
not give the same information as forecast value, which
depends on the particular needs of the forecast user. For
example, Finley’s tornado forecasts have a significant
association with the observations, yet are of generally
little useful value except perhaps to the rare individual
who might incur a substantial loss if a tornado did not
happen! The purpose of skill scores is to quantify the
overall agreement between the forecasts and the obser-
vations, and so by definition should not depend on what
the user considers to be important (e.g., tornado rather
than not tornado as the event). Certain skill scores can,
however, be useful in specific value calculations; for
example, the Peirce skill score is of direct use in simple
cost–loss decision models (Mason 1980).

This study has shown that the odds ratio is a useful
measure for evaluating the skill of binary yes/no fore-
casts. The odds ratio can also, however, be used for
verifying ‘‘probabilistic’’ forecasts in which forecasts
are used to estimate the probabilities of a future event.
By making ensembles of forecasts, it is possible to es-
timate the probability that a tornado might occur for
each event. An m 3 2 contingency table can be compiled
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over many such forecasts that consists of two columns
for whether or not a tornado was observed and m rows
for the number of times forecast probabilities fell into
m distinct probability ranges, for example, p 5 0.0–0.1,
0.1–0.2, . . . , 0.9–1.0 [as explained in more detail in
Harvey et al. (1992)]. The odds ratio can then be cal-
culated for different probability thresholds by accu-
mulating the number of events in the probability classes
into two classes: one above and one below the threshold.
This could be a promising new direction for evaluating
the overall forecast skill of probabilistic forecasts.
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