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Abstract. Robust statistical tools have been used to investigate non-normality and nonlinearity of
the El Niño Southern Oscillation (ENSO) in observations and coupled model simulations. The
analysis confirms previous suggestions that the observed Niño-3 sea surface temperature (SST)
anomalies are positively skewed. The non-linearity is estimated using a simple nonlinear stochastic
model, which relates the sea surface temperature anomalies to the observed thermocline depth
anomalies in the Niño-3 region. There is evidence that saturation of SST only occurs when the
thermocline is deep. The nonlinearity has also been estimated for the Niño-3 SST indices from
twenty four different coupled models participating in the El Niño Simulation Intercomparison
Project (ENSIP). Large differences are found between models and observations. In particular, the
majority of the coupled models underestimate the nonlinearity seen in the observed Niño-3 sea
surface temperature index. More than half of the models have Niño-3 SST indices that are normally
distributed at 99% confidence level. Only a few models exhibit significant nonlinearity yet this
tends to be rather different in character from the nonlinearity seen in the observations. Furthermore,
no significant association is found between the means and the spread nor between the spread and
the skewness for the different coupled model Niño-3 SST indices.

1

Introduction

El Niño Southern Oscillation (ENSO), the largest climate phenomenon on the planet, is primarily a
coupled ocean-atmosphere phenomenon in the tropical Pacific (Philander 1990). It can be
considered to be a coupled nonlinear oscillator forced by stochastic weather events such as westerly
wind bursts (Philander 1990; Kindle and Phoebus 1995; Burgers 1999). It has a large impact on
atmospheric circulation through teleconnection from the tropics, which influences the large scale
redistribution of vorticity (Bjerknes 1969, 1972; Horel and Wallace 1981; Hoskins and Karoly
1981; Trenberth et al. 1998 and references therein). For example, the El Niño event of 1982-83 was
so strong that the sufficiently strong winds generated through a remarkable atmospheric response
slowed down the earth resulting in an increase in the length of the day by about 1/5 of a millisecond



(Salstein and Rosen 1984). The effect of ENSO on the northern hemispheric circulation is obtained
through air-sea interaction, and involves nonlinear processes of thermodynamical control on deep
convection by which the midlatitude is likely to respond nonlinearly (Hoerling et al. 1997; Zhang
and Wallace 1996; Sardeshmukh et al. 2000; Hannachi 2001).

A major feature of ENSO is the clear asymmetry between the positive phase, El Niño, and the
negative phase, La Niña of the "oscillation" (see Hoerling et al. 1997; Sardeshmukh et al. 2000).
Table 1 shows the events corresponding to the ten largest magnitude Niño-3 SST anomalies in
December over periods of three consecutive years over the last three decades of the record, i.e. from
1971 to 2000. Both the non-detrended and detrended Niño-3 SST anomaly time series are used in
Table 1. The detrended time series is obtained by removing a linear trend. Table 1 shows that El
Niño events have generally larger magnitudes than La Niña’s and that this observation is not
affected by the (weak) trend. Note the strong 1997/98 El Niño event, which has been hailed as the
El Niño of the century (Wolter and Timlin 1998). Table 2 shows the number of Niño-3 SST events
classified into 0.5 °C wide bins again for both the non-detrended and detrended Niño-3 SST
anomalies. Table 2 clearly shows the asymmetry between the number of positive and negative SST
anomaly events again irrespective of the trend. The number of positive SST events are larger than
their negative counter-parts. 

Table 1. The ten largest magnitude Niño-3 SST anomalies (°C) in December over periods of three
consecutive years from 1971 to 2000. The anomalies are computed with respect to the annual cycle.
The three major El Niño events during this period are in bold. The detrended time series is obtained
by removing a linear trend from the Niño-3 SST anomalies

Year 1972 1975 1979 1982 1984 1988 1991 1994 1997 1999

SST (°C) 2.48 -1.64 0.46 3.34 -1.38 -1.89 1.39 1.01 3.77 -1.48

Detrended SST (°C)2.50 -1.64 0.43 3.29 -1.45 -1.99 1.27 0.86 3.60 -1.66

Table 2. Number of Niño-3 SST anomaly events classified into 0.5 °C wide bins for both the
non-detrended and detrended Niño-3 index. For example, in the interval -1.5 °C  SST < -1 °C,

there are respectively 43 and 42 events in the non-detrended and detrended Niño-3 index in the
entire record between 1950 and 2000

Limits (°C) -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4

Niño-3 index 0 1 17 43 132 157 115 61 50 17 7 4 6 2

Detrended Niño-3 index 0 0 17 42 131 159 111 65 51 17 8 5 4 2

A natural question arises as to how best can we understand and diagnose such asymmetric
behaviour? To answer this question it is necessary to understand the nature of the nonlinearity
present in the system. Investigating nonlinearity for a given system is best approached using a
probabilistic frame work. The probability distribution function (p.d.f.) of a time series can provide
useful information regarding its normal (Gaussian) versus non-normal behaviour. Penland and
Sardeshmukh (1995a) analysed the 41-year (1950-1990) monthly mean Niño-3 SST anomalies for
normality in order to validate their linear system driven by Gaussian white noise. They suggest that
SST anomalies deviate equally from Gaussian behaviour during both extreme warm and cold events
(see their Fig. 11a), but skewness was not discussed nor any formal statistical test was carried out.
Also, in his review on the meaning of the term "El Niño", Trenberth (1997) computed histograms
of two ENSO indices for the period Jan 1950-Mar 1997, and pointed out in particular that the



Niño-3 index is "strongly" positively skewed (see his Fig. 2) although no formal statistical test was
carried out. Burgers and Stephenson (1999) showed that the observed Niño-3 SST index was
significantly positively skewed. They used moment measures of skewness and kurtosis to assess the
non-normal behaviour of various Niño indices. However, these measures are non-resistant and non
robust (Lazante 1996) and can be sensitive to outliers (Hosking 1990). This study has used more
robust and resistant techniques based on quantiles and L-moments (Hosking 1990) to analyse the
observed Niño-3 time series. In addition, these results have been interpreted physically by
developing a simple stochastic model that has a nonlinear transfer function.

Because of the importance of the phenomenon, it is important that climate models can correctly
simulate ENSO variability. Compared to early climate models, whose simulations of the
interannual tropical Pacific SST variability were typically about 50% the observed amplitude
(Sperber et al. 1987; Lau et al. 1992; Tett 1995), the recent generation of global coupled models has
made significant improvement. While some models simulate realistic amounts of Niño-3 SST
variance, many models either under or over estimate variance in the western Pacific, and the annual
cycle of tropical Pacific SST is often poorly simulated (Latif et al. 2002). A major shortcoming is
the underestimate of the windstress variance in the western/central tropical Pacific, which is clearly
related to the Niño-3 SST variance (Davey et al. 2001). Additionally, coupled climate models often
incorrectly simulate other aspects of ENSO variability, such as the periods of events, and aspects
related to nonlinearity. For example, different global coupled models often give shorter ENSO
periods of 3-4 years as pointed out by Timmermann et al. (1999), AchutaRao et al. (2002) and
Meehl et al. (2001). Burgers and Stephenson (1999) also showed that several coupled models were
unable to reproduce the observed skewness and kurtosis, and therefore fail to capture correctly the
nonlinear aspects of ENSO. In the present study, we have extended this approach by applying more
robust techniques to estimate the nonlinearity in the Niño-3 SST time series from 24 coupled
models participating in the El Niño Simulation Intercomparison Project (ENSIP, Latif et al. 2002).
The comparison between the observations and model simulations using robust tools provides much
needed validations of the models.

The manuscript is organised as follows. In Sect. 2, we briefly review different paradigms
underlying ENSO variability, and then introduce a simple nonlinear stochastic model for the Niño-3
SST time series. In Sect. 3, the robust statistical techniques are presented and applied to the
observed Niño-3 SST index. An interpretation is presented based on the simple model using
observed Niño-3 SST and thermocline depth time series. Estimation of nonlinearity in the
model-simulated data is presented in Sect. 4. Conclusions and summary are given in the last
section.

2

Conceptual models for ENSO

2.1

Linearity of ENSO

It has been argued that ENSO can be understood as a linear oscillator driven by Gaussian white
noise (Graham and White 1988; Penland and Magorian 1993; Penland and Sardeshmukh 1995a, b;
Wunsch 1999; Burgers 1999; Thompson and Battisti 2000; and references therein). For example,
Penland and Sardeshmukh (1995a) argued that ENSO may be described as a stable linear
dynamical system driven by spatially coherent Gaussian white noise. If this were true ENSO
indices should be normally distributed with a similar number of positive (El Niño) and negative (La



Niña) events. However, the observed asymmetry between these number of events (Tables 1, 2)
show that this is not the case, see also Trenberth (1997) for the positive skewness of Niño-3 SST
anomalies. Various Niño-SST indices have been shown by Burgers and Stephenson (1999) to be
significantly skewed. Thompson and Battisti (2001) conducted various experiments with an
intermediate coupled model to simulate ENSO. When nonlinearity was included in their experiment
they found that the skewness of their ENSO index became positive leading to more frequent warm
events than cold events. They concluded that nonlinearity is an important factor particularly in the
cold tongue region of the eastern Pacific where it serves to modify the amplitude of ENSO events
via horizontal advection and upwelling.

Irregularity in ENSO can arise from either stochastic forcing (weather events) or inherent
nonlinearity. Conceptual models for ENSO include the linear stochastic oscillator discussed in the
previous paragraph, stochastic nonlinear oscillators (Cane and Zebiak 1985; Suarez and Schopf
1988; Munnich et al. 1991; Neelin et al. 1998 and references therein), or even more exotic fully
chaotic systems (Jin et al. 1994; Stone et al. 1998). There is still an ongoing debate on whether
ENSO should be considered to be a stochastic oscillator or a stable attractor sustained by noise
(Neelin 1990). It is therefore crucial to assess and quantify how much nonlinearity there is in
ENSO. This can be achieved by developing nonlinear models to account for the observed skewness.

ENSO is often considered to be dominated by a single oscillating mode that can be explained by the
delayed oscillator mechanism (Suarez and Schopf 1988; Battisti and Hirst 1989; Kleeman 1993;
Burgers 1999). A positive SST anomaly in the eastern Pacific can generate westerly wind
anomalies in the central equatorial Pacific. These excite eastward propagating Kelvin waves in the
equatorial wave guide that deepen the thermocline in the east and enhance eastward transport of
warm water from the western warm pool increasing therefore the SST in the eastern Pacific. They
also generate westward propagating Rossby waves, which reflect back on the western boundary as
delayed Kelvin waves that decrease the SST in the eastern Pacific. Instead of using one SST
variable at two time levels, two variables at one level may be taken (Burgers 1999). A good choice
for second variable is the thermocline depth (Jin 1997; Li 1997). In this study, a similar approach
has been adopted in order to develop a simple stochastic nonlinear model, based on Niño-3 SST and
thermocline depth anomalies.

2.2

A simple nonlinear stochastic model

A simple nonlinear model for Niño-3 SST can be written as: 

(1)

where Yt is the Niño-3 SST anomaly and Xt is the thermocline depth anomaly in the Niño-3 region

and g() is a monotonic "transfer function". The transfer function g() is most likely monotonic
because of the lack of inversions in the vertical profile of large scale monthly mean temperatures. In
addition, since the deeper the thermocline the larger the SST anomaly, the transfer function g() is
expected to be monotonically increasing. The thermocline depth varies stochastically as normally
distributed random variable (see Sect. 3.5). Given the inherent nondeterministic nature of Niño-3
SST, a probabilistic approach is required to address the questions such as nonlinearity. ENSO is
intrinsically related to the depth of the thermocline; when the thermocline is shallow any
perturbation (due to wind bursts for example) has a strong effect on SSTs. On the other hand a
substantial change of the thermocline depth is required to affect the SST when the thermocline is



deep.

When the transfer function is linear, g(Xt) = Xt, the resulting time series Yt will also be normally

distributed. Deviations from normality in Yt can be used to infer the amount of nonlinearity in the

transfer function. Note however that normality of Yt does not necessarily imply that the transfer

function is linear. In the following section, we will present a method for estimating g() using a
probabilistic approach.

3

Nonlinearity in the observations

3.1

Observed time series

The Niño-3 SST index is the most widely used measure of ENSO variability (Trenberth 1997),
although other measures such as the multivariate ENSO index (Wolter and Timlin 1998) are also
used. The observed ENSO Niño-3 index used in this study is from the National Center for
Environmental Prediction (NCEP) Reanalyses. It is obtained by averaging the sea surface
temperature (SST) over the Niño-3 region in the east tropical Pacific between 5°S-5°N and
90°W-150°W (see http://ftp.ncep.noaa.gov/pub/cpc/wd52dg/data/indices/sstoi.indices). The period
from 1982 onwards uses the optimal interpolation dataset of Reynolds and Smith (1994). Prior to
1982, the Global Sea-Ice and sea surface temperature (GISST) data were used (Rayner et al. 1996).
The sample consists of 612 monthly means from January 1950 to December 2000. We choose to
focus on monthly data for two basic reasons: (1) sampling, and (2) importance of the annual cycle
in ENSO variability. Figure 1 shows the Niño-3 time series from January 1950 through to
December 2000. The apparent regular oscillations in Fig. 1 simply reflect the strong annual cycle
that will be discussed in Sect. 3.2. 

Fig. 1. Time series of the observed Niño-3 SST (°C) from January 1950 to December 2000
obtained by averaging the monthly SST over the Niño-3 region in the tropical east Pacific between
5°N-5°S and 90°W-150°W. The dotted line shows the time mean, 25.8 °C



To relate the SST variability in the Niño-3 region to subsurface oceanic characteristics we have
created a monthly mean time series of the thermocline depth. The time series of the 20 °C isotherm
depth in the Niño-3 region is usually taken as a proxy for the thermocline depth (Meehl et al. 2001,
and references therein.) The thermocline depth data we have used come from moored ocean buoys
measurements and are available from the Pacific Marine Environment Laboratory for the Tropical
Atmosphere Ocean Project (McPhaden et al. 1998). Meehl et al. (2001) used the depth of the 20 °C
isotherm at 155°W on the equator to diagnose the thermocline depth. However, the data contain
many missing values particularly around the beginning of the record during the 1980s to the early
1990s. In this study, we prefer to use the station at (0°N, 140°W) which is the nearest one to
155°W, but has the longest record. Other stations also have been used for comparison but are not
shown here. Monthly mean values are formed by averaging the daily data of the thermocline depth.
Figure 2 shows the time series of the monthly mean depth of the 20 °C isotherm at (0°N, 140°W)
from April 1983 to December 2000. 

Fig. 2. Monthly time series of the observed 20 °C isotherm depth (m) at (0°N, 140°W) from April
1983 to December 2000

3.2

Empirical distribution function

The cumulative distribution function (c.d.f.) of a random variable Y is defined as: 

(2)

where Pr() is the "probability of" and f () is the probability density function (p.d.f.) of Y. To obtain
an "empirical" estimate of the cumulative distribution function from an observed time series we
simply use F(yi) = (rank(yi) - 1)/(n - 1) where rank(yi) is the position of yi once all the yi are

arranged in ascending order. Various ways exist for smoothing the c.d.f. estimate but these are not
addressed here (see e.g. Silverman 1994). The value yp = F-1(p) corresponding to a specified

probability value 0  p  1 is known as the p’th "quantile"; for example, the median is the



quantile y0.5 = F-1(0.5).

Quantiles are robust ways of summarizing distributions. A widely used powerful graphical
technique for summarizing data is the "boxplot". It is a graphical representation showing the centre,
the spread and the skewness of a distribution along with a display of unusually deviant data points
or outliers. Boxplots (McGill et al. 1978; Tukey 1990) have proven to be a good exploratory tool,
particularly when several boxplots are plotted side by side for comparison between distributions of
different datasets. Figure 3 shows the boxplots corresponding to the different months in the
observed Niño-3 SST time series. The central line in the box shows the median y0.5. The top and

bottom of the box show the upper and lower quartiles, y0.75 and y0.25, respectively. The height of

the box represents the inter-quartile range (IQR) defined as the difference between the third and
first quartiles, IQR = y0.75 - y0.25. The IQR is a robust scale parameter that measures the spread of

the data (Lazante 1996). The whiskers are drawn to the nearest value not beyond a standard span
(1.5  IQR) from the quartiles and they extend to the min(1.5  IQR, extreme values). The points

beyond the whiskers, or outliers, are drawn individually (Fig. 3). Note that for a normal distribution
with variance 2 the IQR is 1.349   and that the whiskers contain 99.3% of the data. 

Fig. 3. Boxplots for each month of the observed Niño-3 SST time series. The height of the grey
boxes indicate the IQR whereas the line inside each box shows the median. The whiskers extend to
min(1.5  IQR, extreme values). Points beyond the the whiskers, outliers, are drawn individually

Several outstanding features can be inferred from the boxplots in Fig. 3. The annual cycle of the
median is clearly visible. Other common features can also be noted; for example, the interannual
spread is strongest during November and December and weakest during March and April (see also
Latif et al. 2002). Note also that February, March, June and July show less pronounced skewness
compared to the remaining months. All months except May and June exhibit outlier values
particularly in winter/spring.

The observed Niño-3 SST time series can be deseasonalised by removing the annual cycle of the
median (Fig. 3). The deseasonalised Niño-3 index is shown in Fig. 4 and has been used in all the
following analyses. The histogram and a smooth kernel estimate (Silverman 1994) of the
probability density of all the months of the Niño-3 index are shown in Fig. 5. The dotted line in
Fig. 5 shows the normal distribution with the same mean and variance as the observed index. It can



be seen that the distribution of the deseasonalised Niño-3 index is positively skewed as noted in
Trenberth (1997) and Burgers and Stephenson (1999). The asymmetry between the frequency of
positive (El Niño) and negative (La Niña), as shown in Tables 1 and 2, is visible in Fig. 5 

Fig. 4. Deseasonalised Niño-3 SST time series, the Niño-3 index (°C), obtained by removing the
annual cycle (median for each month) from the observed time series

Fig. 5. The histogram (bars) and the probability distribution function (solid line) of the observed
Niño-3 index. The dotted line shows the normal distribution with the same mean and variance as
the observed index

3.3

Estimating the transfer function

In the case of monthly mean temperatures, where there are unlikely to be any temperature
inversions, the monotonic transfer function g() can be estimated by comparing the quantiles of the
SSTs with those of the thermocline depth. For a monotonically increasing transfer function y = g(x),
the probability p of an SST Y being less than or equal to a value yp = g(xp) is equal to the



probability of the thermocline depth X being less than or equal to a value xp: 

(3)

where xp = FX
-1(p) and yp = FY

-1(p) are the quantiles of the thermocline depth and the SST,

respectively. Therefore, 

(4)

and so the transfer function can easily be found by plotting the quantiles of Y (the SST) versus the
quantiles of X (the thermocline depth), that is the quantile-quantile (qq) plot. When only SST data
is available, the quantiles of the thermocline depth xp can be obtained by making an assumption

about the probability distribution of thermocline depth. The most reasonable assumption justified
by the short record of observed data is that the thermocline depth is normally distributed (see Sect.
3.5). Therefore, FX() = (), where () is the area under the standard normal curve, that is the c.d.f.

of the standard normal distribution, and the quantiles xp of the standardised thermocline depth are

simply the quantiles of the standard normal distribution, for example, x0.975 = 1.96.

Figure 6 shows the quantile-quantile plot between the observed Niño-3 index and the standard
normal, indicated by a solid curve. If the Niño-3 index were normally distributed the curve would
be identical to the diagonal line y = x. Deviations from this line indicate the presence of
non-normality, and therefore nonlinearity in the transfer function. Figure 6 shows clear deviations
from normality which are assessed in Sect. 3.4 using robust L-moments. Possible physical
explanations are given in Sect. 3.5. Figure 6 is similar to Fig. 11a of Penland and Sardeshmukh
(1995a) except that their figure represents a c.d.f. plot in a Gaussian stretched coordinates and not
quantiles. 

Fig. 6. The quantiles of the standardised observed Niño-3 index versus the quantiles of the standard
normal (bold curve). The first diagonal represents the curve expected from the standard normal
distribution. The departure of the right (left) end of the curve above the first diagonal line indicates
positive skewness or fatter (thinner) tail than the normal. The dotted curve is obtained when the
quantiles are derived from Eq. (6)



Whereas skewness can often be difficult to see in histograms (Fig. 5), it is clearly visible in
quantile-quantile plots (Fig. 6). Positive skewness is reflected by the presence of a deviation of the
right side of the curve above the diagonal line. To see this consider any probability p with
corresponding quantiles yp and xp from the c.d.f.’s F and  of the data (SST here) and the standard

normal distribution respectively (see Eqs. 3-4). Because the p.d.f. of Y is positively skewed one
expects that for large z, (z)  F(z). Therefore, since (xp) = F(yp) (= p), the quantiles satisfy xp

= -1(p)  yp = F-1(p). The left side of the curve in Fig. 6 is also above the diagonal line but

indicates this time a thinner tail than the normal distribution. Positive skewness leads to convex
qq-plot curves. A negatively skewed distribution produces a concave qq-plot curve.

3.4

Robust measures of moments

Various quantitative measures can be used to quantify departures from normality (Mardia 1980).
The most commonly used measures are the moment estimates of skewness, b1, and kurtosis b2: 

(5)

where mr is the r’th sample moment about the mean, . Note that for the normal

distribution b1 = 0 and b2 = 3. The skewness parameter gives a measure of the asymmetry of the

probability distribution about the mean whereas the kurtosis parameter gives a measure of the
flattening. A negative (positive) skewness gives a p.d.f that is skewed to the left (right). When b2 >

3 the p.d.f. is tall and slim at the centre (leptokurtic), and when b2 < 3 it is platykurtic. Moment

measures of skewness and kurtosis, however, are "non-resistant" statistics that are overly sensitive
to outliers. Furthermore, it is often difficult to assess exactly what information about the shape of a
distribution is conveyed by its third and higher order moments particularly when the sample is
small (Hosking 1990). For example, when the sample is small convergence problems of the sample
moments towards the population moments may arise. Furthermore, when the sample contain few
outliers, the higher order moments will be controlled by these outliers. More robust and resistant
approaches, such as L-moments, have been developed based on order statistics (Hosking 1990 and
references therein, see also von Storch and Zwiers 1999 for a brief description).

The quantile yp = F-1(p) can be expanded as a series of shifted Legendre polynomials as 

(6)

The expansion coefficients, r, are known as "L-moments" and are defined as 

(7)



where Pr*() is the r’th shifted Legendre polynomial. Refer to the Appendix for details and for the

definition of these polynomials. Any distribution is uniquely specified by its L-moments even if
some of its conventional moments do not exist (see Hosking 1990 for details). The lowest order
L-moment, 1, is simply the mean of the random variable. The second order moment, 2, is a

robust measure of the spread which uses information from all the quantiles (unlike the IQR).
L-moments ratios can be obtained by standardising the L-moments by the scale parameter: 

(8)

The ratios 3 and 4 can be regarded as measure of skewness and kurtosis respectively. Note that

for the normal distribution 3 = 0, and 4 = 0.1226.

Figure 7 shows the cumulative distribution function, F(yp) for the Niño-3 index (solid line)

calculated using the expansion Eq. (6) keeping the first 18 terms. The dotted line is the cumulative
distribution function expected for the normal distribution with the same mean and variance as the
Niño-3 index. Note that the maximum slope of the cumulative distribution gives a measure of the
spread. The difference between the two slopes of the cumulative distribution functions at the origin
(Fig. 7) is due to skewness in the observed index. The qq-plot of the Niño-3 index using the
truncated expansion is shown as a dotted line in the qq-plot of Fig. 6. Note how the thinner (than
the normal) tail is even more clearly pronounced with the L-moment approach. The (positive)
skewness is made slightly larger with the L-moment quantiles. The dotted curve is also slightly
smoother than the solid line. 

Fig. 7. The cumulative distribution function of the Niño-3 index obtained by using the quantiles
from Eq. (6) and keeping the first 18 terms (solid line) and the normal with the same mean and
variance (dotted line)

3.5

Stochastic model validation

Section 3.4 outlined the use of the qq-plot as a simple graphical way to see the relationship between
two variables. Here we use this tool to diagnose the non-linear transfer function g() of Eq. (1)



between the Niño-3 SST and the thermocline depth. As a first step in validating the stochastic
model, presented in Sect. 2.2, Fig. 8 shows quantiles of the thermocline depth in the Niño-3 region
versus quantiles of the standard normal distribution. It indicates that, unlike sea surface temperature
anomalies, Niño-3 thermocline depth anomalies do not depart significantly from normality. A
Kolmogorov-Smirnov (K-S) test indicates that the time series is normally distributed at more than
95% confidence level. The annual cycle was removed prior to computing the qq-plot (Fig. 8). We
found that the seasonality is not a strong modulator of the evolution of the thermocline depth south
of 2°N in the east tropical Pacific. However, for the stations on the 5°N latitude in the same region
we found a strong seasonal component in the evolution of the thermocline depth. These
observations are in agreement with the general feature of a stronger ITCZ north of the equator
where the ITCZ annual cycle is well marked in the 5-10°N latitudinal band in the eastern equatorial
Pacific (Xie and Arkin 1995; Meehl et al. 2001). 

Fig. 8. The quantiles of the standardised 20 °C isotherm depth at (0°N, 140°W) versus the quantiles
of the standard normal

The quantiles of the Niño-3 SST versus the quantiles of the thermocline depth time series is shown
as a thick solid line in Fig. 9. The thin line shows the quantiles of the Niño-3 SST versus the
quantiles of the normal distribution with the same mean and standard deviation as the Niño-3
thermocline depth (similar to the solid line in Fig. 6). Note that the Niño-3 SST used in Fig. 9 is
obtained by adding the Niño-3 SST climatology to the Niño-3 index. Note the good agreement
between both the nonlinear curves. Another feature of this nonlinearity can be noted from the
levelling off of the (solid) curve in the top right corner of the panel. This corresponds to a deep
thermocline where a large change in thermocline depth induces only small changes in the SST. This
saturation starts when the (absolute) thermocline is approximately around 140 m deep, where the
SST becomes nearly independent of the thermocline as it deepens. When the thermocline is deep,
stratification acts as a barrier between the surface and the thermocline and the link between them
becomes very weak. 



Fig. 9. The quantiles of the Niño-3 SST index (°C) versus the quantiles of the Niño-3 thermocline
depth (m) (thick line) and the quantiles of the Niño-3 SST index versus those of the normal
distribution with the same mean and standard deviation as the Niño-3 thermocline depth (thin line).
The dotted line shows a smooth fitting to the quantile-quantile curve between the SST and
thermocline depth time series. The first diagonal is shown for comparison. Note that the Niño-3
time series has been trimmed so that both time series correspond to the same period

It is also interesting to note that the SST changes are most sensitive for thermocline depths between
120 and 140 m with a rate of change around 1 °C per 8 m. For depths less than 120 m, the rate is
around 1 °C per 25 m and the lower part of the curve does not saturate at least as sharply as the
upper part. Although the 20 °C isotherm does not reach the surface (Fig. 1), it remains in constant
contact with the mixed layer when the thermocline is shallow. In this case a slight change in the
thermocline depth will not change the SST substantially. This makes the SST-thermocline depth
sensitivity fairly linear because of the active mixing processes in the mixed layer and the absence of
any barrier such as stratification when the thermocline is shallow (less than a 120 m deep). This
explains the observed weaker rate of change of 1 °C per 25 m as opposed to the higher rate
observed for depths between 120 m and 140 m. The dotted line in Fig. 9 shows a smooth piecewise
fit to the SST-thermocline depth curve (thick line) obtained by fitting a tangent hyperbolic function
to the upper half and a straight line fitted to the lower half. Both Zebiak and Cane (1987) and
Battisti (1988) used a tangent hyperbolic fit over the whole range to parametrise the subsurface
temperature anomaly. The tangent hyperbolic parametrisation is unable to capture the behaviour of
the transfer function over the whole range. It saturates at both deep and shallow thermocline depths
whereas the observations show no evidence of saturation at shallow depths.

4

Nonlinearity in the coupled model simulations

4.1

Model data

Twenty four coupled ocean-atmosphere models from ENSIP have been studied in this investigation.
A brief summary of the models is presented in Table 3. The models span a wide-range of parameter
space, having been developed for widely varying applications. Many of the global models have



been developed to investigate the anthropogenic climate change, while the Pacific basin models,
which tend to employ higher meridional resolution in the ocean, are more directed at process
studies related to ENSO. The model data are taken from control integrations (e.g. no anthropogenic
forcing). More detailed description of the different models and references can be found in Latif et
al. (2002) and Davey et al. (2001). Some of the models also participated in the coupled model
intercomparison project (see http://www-pcmdi.llnl.gov/modeldoc/cmip CMIP, Meehl et al. 2000).
Figure 10 shows the Niño-3 SST time series from each model. The time mean of the observed
Niño-3 SST time series is also indicated by a dotted line for comparison. Some summary statistics
for the different Niño-3 time series are given in Table 4. The difference between the observed and
simulated time means varies considerably. The largest difference is 3.5 °C and is obtained with the
DKRZ-LSG model (Fig. 10f) whereas the smallest difference is of the order of 0.05 °C and is
obtained with the NCEP climate model (Fig. 10t). Much of the variability in model simulations
(Fig. 10) is due to the annual cycle which is briefly analysed in the following section. 

Table 3. Some characteristics of the different ENSIP models. In the last column, P-E refers to mean
flux correction for fresh water

Model Atmospheric
resolution

Ocean
resolution

Coupling Flux adjustment

lat, lon  vert lat  lon  vert

BMRC R21, L9 0.5-5.9, 2, L25 Global None

CCC T32, L10 1.8, 1.8, L29 Global Heat/P-E

CCSR T21, L20 0.5-2, 2.5, L20 Global SST relax 55N-90N

CERFACS T42, L31 0.33-1.5, 0.75,
L28

Tropical
Pacific

None

COLA T30, L18 1-3, 3, L20 Global None

DKRZ-LSG T21, L19 4, 4, L11 Global Heat/P-E/momentum

DKRZ T42, L19 0.5-2.8, 2.8, L11Global Heat/P-E

GFDL-R15 R15, L9 4.5, 3.7, L12 Global Heat/P-E

GFDL-R30 R30, L14 2.24, 1.88, L18 Global Heat/P-E

HAWAII 1, 2, L2 1, 2, L2 Tropical
Pacific

Prescribed cloud

JMA T42, L21 0.5-2, 2.5, L20 Global None

LAMONT 2, 5.625, 1 mode 0.5, 2, L2 Tropical
Pacific

Anomaly coupling

LMD
50 points  5.6,

L11

0.33-1.5, 0.75,
L20

Tropical
Pacific

None

LMD-GLOBAL
72 points  3.75,

L15
0.5-1.5, 2, L31 Global None

LMD-TOGA
50 points  5.625,

L11

0.33-1.5, 0.75,
L28

Tropical
Pacific

None



MPI T42, L19 0.5-2.8, 2.8, L20Global None

MRI 4, 5, L15 0.5-2, 2.5, L21 Global Heat/P-E

NCAR-CSM T42, L18 1.2, 2.4, L45 Global None

NCAR-WM R15, L9 1, 1, L20 Global None

NCEP T42, L18 0.33-1, 1.5, L28 Tropical
Paccific

1-way/anomaly coupling

NRL T39, L12 0.5-2, 2, L25 Tropical
Paccific

None

SACLAY
50 points  5.6,

L11
1-13, 4, L31 Global None

UCLA 4, 5, L15 0.33-3, 1, L27 Tropical
Pacific

None

UKMO 3.75, 2.5, L19 1.25, 1.25, L20 Global None



Fig. 10. Time series of the Niño-3 indices (°C) taken from a control run of 24 different coupled
models from ENSIP. The dotted line in each panel indicates the time mean of the observed index
(Fig. 1). The abscissa is time in years

Table 4. A summary of the observed and coupled models statistics of the Niño-3 time series.



Shown are the climatology, standard deviation (S), inter-quartile range (IQR), skewness (b1),

kurtosis (b2 - 3), and the L-moment ratios 3 and 4. The P-values when using a

Kolmogorov-Smirnov test are also shown. Some of the most non-normal models at 99% confidence
are marked by stars

Models and
observations

Mean
(°C) S (°C)

IQR
(°C)

Skewness b1
Kurtosis b2
- 3 3 4 P-value

BMRC 24.9 0.46 0.64 0.23 0.25 0.02 0.14 >0.1

CCC 25.3 0.22 0.29 0.05 0.14 0 0.13 >0.1

CCSR* 25.2 0.81 0.95 -0.47 1.05 -0.05 0.17 0.003

CERFACS* 25.3 1.07 0.95 1.68 3.49 0.26 0.26 0.000

COLA 26.8 0.72 0.83 0.13 1.13 0.05 0.17 0.033

DKRZ-LSG* 22.2 0.22 0.30 0.49 -0.27 0.10 0.11 0.004

DKRZ* 25.6 0.82 1.10 0.59 0.04 0.13 0.11 0.006

GFDL-R15 25.3 0.37 0.50 0.24 0.05 0.04 0.12 0.009

GFDL-R30 25.3 0.40 0.59 0.09 -0.16 0.02 0.11 >0.1

HAWAII 26.7 0.99 1.02 0.26 0.65 0.06 0.21 0.000

JMA 25.0 0.36 0.46 0.06 -0.01 0 0.14 >0.1

LAMONT* 26.0 1.41 2.03 0.60 -0.32 0.14 0.09 0.000

LMD 28.2 0.52 0.64 -0.45 -0.22 -0.11 0.13 0.000

LMD-GLOBAL 24.8 0.40 0.54 -0.28 0.02 -0.03 0.13 >0.1

LMD-TOGA 26.1 0.31 0.45 -0.05 -0.55 -0.01 0.09 >0.1

MPI 24.8 0.80 1.06 -0.27 -0.25 -0.05 0.12 >0.1

MRI 25.9 0.40 0.52 -0.01 -0.21 0 0.13 >0.1

NCAR-CSM 25.0 0.48 0.71 0.06 -0.14 0.01 0.11 >0.1

NCAR-WM 26.8 0.50 0.69 -0.15 -0.23 -0.03 0.13 >0.1

NCEP 25.8 0.44 0.65 -0.19 -0.48 -0.05 0.10 0.000

NRL* 25.4 0.34 0.37 0.31 0.98 0.04 0.20 0.008

SACLAY 23.2 0.27 0.40 0.32 -0.53 0.08 0.08 0.033

UCLA* 27.4 0.57 0.70 0.43 -0.08 0.12 0.14 0.000

UKMO 25.6 1.14 1.54 0.27 -0.33 0.05 0.11 >0.1

Observations* 25.8 0.93 1.05 1.01 1.77 0.16 0.17 0.000

4.2

Annual cycle

Figure 11 shows boxplots of the monthly means for each calendar month for all the different
models. There are clear discrepancies between the different coupled models in simulating the



annual cycle. For example, the annual cycle has a very small amplitude in some models such as
LMD (Fig. 11m, n, o) and SACLAY (Fig. 11v), and it is also underestimated in BMRC (Fig. 11a),
DKRZ-LSG (Fig. 11f), JMA (Fig. 11k), NCAR-WM (Fig. 11s), and UCLA (Fig. 11w). Some
models do not simulate correctly the phase of the annual cycle such as, JMA (Fig. 11k), LMD
(Fig. 11m, n), SACLAY (Fig. 11r), NCAR-WM (Fig. 11s), MPI (Fig. 11p). For example, Fig. 11m,
n, r, s indicate a strong semi-annual-like cycle. The LAMONT and UKMO models (Fig. 11l, x)
simulate reasonably well the phase and amplitude of the annual cycle. However, the spread is
overly uniform throughout the year compared to that in Fig. 3. Some models, such as CCSR
(Fig. 11c), COLA (Fig. 11e), and MPI (Fig. 11p), have negative skewness with negative outlier
values that are not seen in the observed SST (Fig. 3). 



Fig. 11. Boxplots of Niño-3 indices (°C) for each month from the different ENSIP coupled-models.
(see Fig. 3)

It is well known that several climate models tend to produce semi-annual cycles of the SST in the
eastern tropical Pacific (Mechoso et al. 1995). Latif et al. (2002) find that even flux-corrected
models have difficulties simulating a realistic annual cycle.



4.3

Is there nonlinearity in simulated Niño-3 anomalies?

In order to evaluate the interannual variability, the model time series have been deseasonalised by
removing the monthly medians. The resulting Niño-3 indices are plotted in Fig. 12. Several models
underestimate the variance (e.g. CCC Fig. 12b, DKRZ-LSG Fig. 12f, JMA Fig. 12k, LMD
Fig. 12m, n, o, MRI Fig. 12q, SACLAY Fig. 12v), whereas other models overestimate the variance
(e.g. CERFACS Fig. 12d, HAWAII Fig. 12j, LAMONT Fig. 12l, UKMO Fig. 12x). The variances
of the different Niño-3 indices are shown in column 3 of Table 4. The HAWAII and LAMONT
models show smoother than observed variability with less high frequency contribution. 



Fig. 12. The deseasonalised Niño-3 indices (°C) from the coupled models. The abscissa is time in
years

Figure 13 shows the histograms and the kernel estimates of the probability density functions (solid
lines) of the models Niño-3 SST indices. Because of the wide range of variance in the different time
series it was not useful to have the same scale on the vertical axes and so each plot has its own



vertical scale. The normal distribution with the same mean and variance for each index is also
shown by dotted line. Note in particular the wide range of spreads for the different models. For
example, models like CCC (Fig. 13b), DKRZ-LSG (Fig. 13f), GFDL (Fig. 13h, i), JMA (Fig. 13k),
LMD(Fig. 13m, n, o), MRI (Fig. 13q), NRL (Fig. 13n), SACLAY (Fig. 13r), have a smaller spread
compared to the observations (Fig. 5). The remaining models, particularly LAMONT (Fig. 13l),
HAWAII (Fig. 13j), and UKMO (Fig. 13x) have realistic spread although LAMONT (Fig. 13l) has
a tendency towards bimodality. Many of the distributions are close to the normal distribution
(dashed line) with the exception of a few models. 



Fig. 13. Histograms (bars) and probability distribution functions of the different Niño-3 indices
(solid). The normal distributions having the same means and variances as the corresponding times
series are also shown (dotted). Note that because of the wide range of variance in the different
indices, the scales of the vertical axes are not identical. The abscissa is the Niño-3 index (°C)

Figure 14 shows the plot of the quantiles of the different Niño-3 indices versus the quantiles of the
standard Normal. The same plot for the observed Niño-3 index is also shown for comparison.
Unlike the observations, many models are normally distributed with a linear transfer function. The
curves in Fig. 14 show significant differences compared to the observations. Some models are
positively skewed (Fig. 14d, g, j, u) in agreement with the observations whereas few others show
negative skewness (Fig. 14c, e, m, n). Using the Kolmogorov-Smirnov statistic to test the null
hypothesis of normality, i.e. linearity, versus non-normality, we find that at 99% confidence level
13 models out of 24 are normal. In the remaining 11 models, seven are clearly nonlinear (Fig. 14c,
d, f, g, l, u, w) whereas the other four do not show obvious nonlinearity (Fig. 14h, j, m, t), see the
last column of Table 4 for the P-values. Moments and robust measures of skewness and kurtosis of
the different Niño-3 indices are also shown in Table 4 (columns 4 to 8). 



Fig. 14. The quantiles of the standardised Niño-3 indices versus the quantiles of the standard
normal (bold). The dotted line is for the observed Niño-3 index. The curve expected from the
standard normal distribution is shown by the first diagonal

Furthermore, the nonlinearity in the most non-normal models is not entirely comparable to that seen
in the observations. For example, the non-normal behaviour in the LAMONT model (Fig. 14l) is
primarily due to a thinner (than the normal) negative tail rather than a fatter positive tail as found in



the observations (Fig. 12l). A careful examination of Fig. 12l reveals that this is due to the overly
long persistence of the negative anomalies. On the other hand the skewness in the CERFACS
model (Fig. 14d) is mainly due to the presence of large positive anomalies at the beginning of the
record. It is also more leptokurtic than the observations. Moreover, CCSR (Fig. 14c), for example,
shows negative skewness, unlike the observations, whereas DKRZ-LSG (Fig. 14f) and LAMONT
(Fig. 14l) are more platykurtic than observations (Table 4).

4.4

Relation between moments

Neelin (1991), and Li (1997) have suggested that El Niño variance strongly depends on the
background mean state of the atmosphere and the ocean and particularly on the zonal mean
thermocline depth in the equatorial Pacific. Meehl et al. (2001) found that the vertical mixing
(background vertical diffusivity parameter) is an important factor in contributing to the thermocline
intensity (defined as the depth range between the 16 °C and 22 °C isotherms at 155°W) and hence
acting on the variability of El Niño.

We have addressed this question by looking at the relationship between the means and the spread of
the different Niño-3 SST time series. Figure 15a shows a plot of the first L-moment, L1, versus the

second L-moment, L2 for all Niño-3 indices. The observed value is shown as open circle. The

dotted line (Fig. 15a) shows the linear regression fit between L2 and L1, L2 = 0.044 L1 - 0.796. The

F-statistic of this model is 2.365 with 1 and 22 degrees of freedom and a P-value of 0.138 (with R2

= 0.097). The regression model shows that the slope of the regression line is not significantly
different from zero and, therefore, unlike Mechoso et al. (1995), no evidence exists for a significant
association between ENSO variance and the background mean state. The few outer models that
contribute to the regression are shown in Fig. 15a. This study suggests, unlike Neelin (1991) and Li
(1997), that El Niño variance does not particularly depend on the background mean state. We have
also investigated the relationship between the spread of the Niño-3 indices (L2) and the L-moment

ratio measure of skewness (3) in the different models. No evidence for such a relationship is

found. The P-value for the regression fit is 0.058. Furthermore, the top five most positively skewed
models (CERFACS, LAMONT, DKRZ, UCLA, DKRZ-LSG) do not correspond to the models
having the five highest spreads (LAMONT, UKMO, HAWAII, CERFACS, DKRZ). 



Fig. 15. a Scatter plot of the different models Niño-3 SST means (L1) versus the L-moment

estimate of the spread (L2). The dotted line shows a linear regression fit. Models outside the main

cluster are identified. The observed values are shown as an open circle. b Scatter plot between the
L-moment ratio measures of skewness (3) and kurtosis (4). The dotted line shows the

relationship for the gamma distribution. The crossing between this curve and the vertical line
corresponds to the values for the normal distribution. The observed values are also shown as an
open circle. The most non-normal models at 99% confidence are also shown

Figure 15b shows a plot of the L-moment ratio measure of skewness (3) versus the L-moment

ratio measure of kurtosis (4). The corresponding values for the observations are shown as open

circle while the dotted curve indicates the relationship for the gamma distribution. The crossing
between this curve and the vertical line (zero-skewness) indicates the values for the normal
distribution. Note that most models tend to cluster around the normal distribution. The most
non-normal models at the 99% confidence are also shown (Fig. 15b).

5

Conclusions

Novel and robust techniques have been introduced and used to estimate the nonlinear transfer
function for Niño-3 sea surface temperature. These techniques are based on probability and



cumulative distribution functions, quantile-quantile plots, boxplots, and L-moments. A simple
nonlinear stochastic model is developed for the Niño-3 sea surface temperature time series. The
model is based on the observed nonlinear transfer function between the quantiles of the Niño-3
index and the quantiles of the thermocline depth anomalies, which explains the resulting changes in
SST as a response to changes in thermocline depth.

The robust techniques confirm that observed Niño-3 sea surface temperature anomalies are
significantly non-normal due to the presence of positive skewness. The estimated transfer function
shows that observed Niño-3 SSTs saturate only at deep thermocline depths. When the thermocline
is shallow, the SST is linearly related to the depth anomalies of the thermocline in the Niño-3
region due to active mixing processes. These results contradict the saturation at shallow
thermocline depth assumed by Zebiak and Cane (1987) and Battisti (1988). The observed annual
cycle shows inhomogeneities across the months of the year with most interannual spread in
November and December. Positive skewness is most evident in the autumn/winter months.

The majority of the 24 coupled models in ENSIP underestimate the nonlinearity noted in the
transfer function of the observed Niño-3 index. Thirteen out of the 24 models gave Niño-3 indices
that were normally distributed at 99% confidence. Of the remaining non-normal models only 2
models capture the observed skewness noted in the observation for large SST anomalies. The most
non-normal models did not correctly simulate the interannual spread although the phase of the
annual cycle was reasonably well simulated. The influence of the background mean state on the
interannual spread of Niño-3 sea surface temperature has also been investigated using robust
techniques. There is little evidence of a significant relationship between the mean state and the
interannual spread of the Niño-3 SST anomalies from different models.

In summary, this study confirms the nonlinearity and the significant departure from normality
found in observed Niño-3 SST anomalies (Burgers and Stephenson 1999; Sardeshmukh et al.
2000). However, coupled models fail to capture correctly this nonlinearity. There are several
possible explanations for this discrepancy. The thermocline depth in the coupled models is perhaps
either deeper or shallower than in reality. Alternatively, the background vertical diffusivity may
play an important role in ENSO SST variability (Meehl et al. 2001). Meehl et al. (2001) showed
that the smaller values of the vertical diffusivity parameter gave larger ENSO variance due to the
existence of a sharper thermocline. It would be interesting also to see how this parameter influences
nonlinearity in sea surface temperatures.
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Appendix 1

L-moments of a random variable



Techniques based on standard moment estimates have long been used. These estimates tend,
however, to be robust only for normally distributed data. When the data are not normal those
estimates tend to be unsatisfactory and can be sometime biased. For instance if the data contain few
outliers then higher order moments will be heavily weighted by those few observations. An
alternative approach is the L-moments. These are based on linear combination of order statistics
hence the name L-statistics.

For a real finite-mean random variable Y with c.d.f. F(y) and quantile function yp = F-1(p) let Y1:n 

 Y2:n ...  Yn:n be the order statistics of a random sample of size n drawn from the distribution F

of Y. The L-moments, r, of Y are defined as linear combinations of the expected order statistics: 

(9)

where the notation EY j:r stands for the expectation of the order statistic Y j:r, which is given by: 

(10)

Combining and using simple algebra, r can be expressed in terms of the quantile function yp as

follows, 

(11)

where P* r is the r’th shifted Legendre polynomial, P* r(u) = Pr(2u - 1), which is given by 

(12)

For example the first four L-moments are given by 

(13)



and they represent respectively the mean, and measures of spread, skewness, and kurtosis. Any
distribution with finite mean is uniquely specified by its L-moments even if some of its
conventional moments do not exist (see Hosking 1990 for details). The L-moments can be
standardised by 2 to yield the L-moment ratios r (Eq. 8). The sample estimate of r can be

obtained by linear combination of the ordered data values using Eqs. (11) and (12) (see Hosking
1990 for details). Note that because the shifted Legendre polynomials are orthogonal on the interval
(0, 1), Eq. (11) can be "inverted" to yield the expansion of the quantile function in terms of the
L-moments (Eq. 6).
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