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Abstract. Robust statistical tools have been used to investigate non-normality and nonlinea
the El Nifio Southern Oscillation (ENSO) in observations and coupled model simulations. T
analysis confirms previous suggestions that the observed Nifio-3 sea surface temperature |
anomalies are positively skewed. The non-linearity is estimated using a simple nonlinear st
model, which relates the sea surface temperature anomalies to the observed thermocline d
anomalies in the Niflo-3 region. There is evidence that saturation of SST only occurs when
thermocline is deep. The nonlinearity has also been estimated for the Nifio-3 SST indices fi
twenty four different coupled models participating in the El Nifio Simulation Intercomparisor
Project (ENSIP). Large differences are found between models and observations. In particul
majority of the coupled models underestimate the nonlinearity seen in the observed Nifio-3
surface temperature index. More than half of the models have Nifio-3 SST indices that are
distributed at 99% confidence level. Only a few models exhibit significant nonlinearity yet tr
tends to be rather different in character from the nonlinearity seen in the observations. Furt
no significant association is found between the means and the spread nor between the spr:
the skewness for the different coupled model Nifio-3 SST indices.

1

Introduction

El Nifio Southern Oscillation (ENSO), the largest climate phenomenon on the planet, is prir
coupled ocean-atmosphere phenomenon in the tropical Pacific (Phil&80grit can be
considered to be a coupled nonlinear oscillator forced by stochastic weather events such a
wind bursts (Philandet990; Kindle and Phoebuk295; Burgers1999). It has a large impact on
atmospheric circulation through teleconnection from the tropics, which influences the large
redistribution of vorticity (Bjerkne$969, 1972; Horel and Wallac4981; Hoskins and Karoly
1981; Trenberth et all998 and references therein). For example, the El Nifio event of 1982-¢
so strong that the sufficiently strong winds generated through a remarkable atmospheric re
slowed down the earth resulting in an increase in the length of the day by about 1/5 of a mi



(Salstein and Rosel984). The effect of ENSO on the northern hemispheric circulation is obt:
through air-sea interaction, and involves nonlinear processes of thermodynamical control o
convection by which the midlatitude is likely to respond nonlinearly (Hoerling 8@, Zhang
and Wallacel996; Sardeshmukh et £2000; Hannachi2001).

A major feature of ENSO is the clear asymmetry between the positive phase, El Nifio, and "
negative phase, La Nifia of the "oscillation" (see Hoerling 40ar; Sardeshmukh et &€2000).
Tablel shows the events corresponding to the ten largest magnitude Nifio-3 SST anomalie
December over periods of three consecutive years over the last three decades of the recor
1971 to 2000. Both the non-detrended and detrended Nifio-3 SST anomaly time series are
Tablel. The detrended time series is obtained by removing a linear trend.ITdiwevs that El
Nifio events have generally larger magnitudes than La Nifia’s and that this observation is n
affected by the (weak) trend. Note the strong 1997/98 El Nifio event, which has been hailec
El Nifio of the century (Wolter and Timlit98). Table2 shows the number of Nifio-3 SST evel
classified into 0.5 °C wide bins again for both the non-detrended and detrended Nifio-3 SS’
anomalies. Tabl2 clearly shows the asymmetry between the number of positive and negati\
anomaly events again irrespective of the trend. The number of positive SST events are larg
their negative counter-parts.

Table 1.The ten largest magnitude Nifio-3 SST anomalies (°C) in December over periods ¢
consecutive years from 1971 to 2000. The anomalies are computed with respect to the anr
The three major El Nifio events during this period are in bold. The detrended time series is
by removing a linear trend from the Nifio-3 SST anomalies

Year 1972/1975/ 19791982/ 1984| 1988|1991/ 1994 19971999
SST (°C) 2.48|-1.64/0.46[3.34]-1.3g-1.891.39]1.01]3.77]-1.48
Detrended SST (°¢2.50|-1.64(0.43]3.29]-1.45-1.991.27]0.86|3.60|-1.66

Table 2.Number of Niflo-3 SST anomaly events classified into 0.5 °C wide bins for both the
non-detrended and detrended Nifio-3 index. For example, in the interval - <%3T < -1 °C,

there are respectively 43 and 42 events in the non-detrended and detrended Nifio-3 index i
entire record between 1950 and 2000

Limits (°C) -3(-2.5-2(-1.5)-1 |-0.5|/0 |0.5(1 (1.5(2 |2.5/3(3.5[4
Nifio-3 index 0 (1117 |43132|157|115|61|50(17|7 (4|6 |2
Detrended Niflo-3 index [0 |0 (17 |42(131)|159(111]|65(|5117|8 (5[4

A natural question arises as to how best can we understand and diagnose such asymmetri
behaviour? To answer this question it is necessary to understand the nature of the nonline:
present in the system. Investigating nonlinearity for a given system is best approached usir
probabilistic frame work. The probability distribution function (p.d.f.) of a time series can prc
useful information regarding its normal (Gaussian) versus non-normal behaviour. Penland :
Sardeshmukhl1095a) analysed the 41-year (1950-1990) monthly mean Nifio-3 SST anomali
normality in order to validate their linear system driven by Gaussian white noise. They sugc
SST anomalies deviate equally from Gaussian behaviour during both extreme warm and cc
(see their Figllg), but skewness was not discussed nor any formal statistical test was carrie
Also, in his review on the meaning of the term "El Nifio", Trenbeét®7) computed histograms
of two ENSO indices for the period Jan 1950-Mar 1997, and pointed out in particular that tr



Nifio-3 index is "strongly" positively skewed (see his Rigalthough no formal statistical test w
carried out. Burgers and Stephensit®®9) showed that the observed Nifio-3 SST index was
significantly positively skewed. They used moment measures of skewness and kurtosis to ¢
non-normal behaviour of various Nifio indices. However, these measures are non-resistant
robust (Lazantd996) and can be sensitive to outliers (Hoski®§0). This study has used more
robust and resistant techniques based on quantiles and L-moments (H9SRinmp analyse the
observed Nifio-3 time series. In addition, these results have been interpreted physically by
developing a simple stochastic model that has a nonlinear transfer function.

Because of the importance of the phenomenon, it is important that climate models can corr
simulate ENSO variability. Compared to early climate models, whose simulations of the
interannual tropical Pacific SST variability were typically about 50% the observed amplitude
(Sperber et all987; Lau et al1992; Tett1995), the recent generation of global coupled model.
made significant improvement. While some models simulate realistic amounts of Nifio-3 SS
variance, many models either under or over estimate variance in the western Pacific, and tl
cycle of tropical Pacific SST is often poorly simulated (Latif e@02). A major shortcoming is
the underestimate of the windstress variance in the western/central tropical Pacific, which i
related to the Niflo-3 SST variance (Davey ef@01). Additionally, coupled climate models oft
incorrectly simulate other aspects of ENSO variability, such as the periods of events, and a
related to nonlinearity. For example, different global coupled models often give shorter ENS
periods of 3-4 years as pointed out by Timmermann e1@89), AchutaRao et al2002) and
Meehl et al. 2001). Burgers and Stephensd®99) also showed that several coupled models v
unable to reproduce the observed skewness and kurtosis, and therefore fail to capture corr
nonlinear aspects of ENSO. In the present study, we have extended this approach by apply
robust techniques to estimate the nonlinearity in the Nifio-3 SST time series from 24 couple
models participating in the El Nifio Simulation Intercomparison Project (ENSIP, Latif280a).
The comparison between the observations and model simulations using robust tools provid
needed validations of the models.

The manuscript is organised as follows. In Sect. 2, we briefly review different paradigms
underlying ENSO variability, and then introduce a simple nonlinear stochastic model for the
SST time series. In Sect. 3, the robust statistical techniques are presented and applied to tl
observed Nifio-3 SST index. An interpretation is presented based on the simple model usin
observed Nifio-3 SST and thermocline depth time series. Estimation of nonlinearity in the
model-simulated data is presented in Sect. 4. Conclusions and summary are given in the le
section.

2

Conceptual models for ENSO

2.1

Linearity of ENSO

It has been argued that ENSO can be understood as a linear oscillator driven by Gaussian
noise (Graham and Whit®88; Penland and Magoriak993; Penland and Sardeshmul®95a, b;
Wunsch1999; Burgers1999; Thompson and Battis®i000; and references therein). For example
Penland and Sardeshmuli®995a) argued that ENSO may be described as a stable linear
dynamical system driven by spatially coherent Gaussian white noise. If this were true ENS(
indices should be normally distributed with a similar number of positive (El Nifio) and negat



Nifia) events. However, the observed asymmetry between these number of eventd (Zables
show that this is not the case, see also TrenbE3®T) for the positive skewness of Nifio-3 SST
anomalies. Various Nifio-SST indices have been shown by Burgers and Steph8&3pio (be
significantly skewed. Thompson and Batti2d@1) conducted various experiments with an
intermediate coupled model to simulate ENSO. When nonlinearity was included in their exg
they found that the skewness of their ENSO index became positive leading to more frequet
events than cold events. They concluded that nonlinearity is an important factor particularly
cold tongue region of the eastern Pacific where it serves to modify the amplitude of ENSO «
via horizontal advection and upwelling.

Irregularity in ENSO can arise from either stochastic forcing (weather events) or inherent

nonlinearity. Conceptual models for ENSO include the linear stochastic oscillator discussec
previous paragraph, stochastic nonlinear oscillators (Cane and 28B&®kuarez and Schopf

1988; Munnich et al1991; Neelin et al1998 and references therein), or even more exotic fully
chaotic systems (Jin et 4094, Stone et al1998). There is still an ongoing debate on whether
ENSO should be considered to be a stochastic oscillator or a stable attractor sustained by |
(Neelin1990). It is therefore crucial to assess and quantify how much nonlinearity there is in
ENSO. This can be achieved by developing nonlinear models to account for the observed ¢

ENSO is often considered to be dominated by a single oscillating mode that can be explain
delayed oscillator mechanism (Suarez and Scheg8; Battisti and Hirst1989; Kleeman1993;
Burgers1999). A positive SST anomaly in the eastern Pacific can generate westerly wind
anomalies in the central equatorial Pacific. These excite eastward propagating Kelvin wave
equatorial wave guide that deepen the thermocline in the east and enhance eastward trans
warm water from the western warm pool increasing therefore the SST in the eastern Pacific
also generate westward propagating Rossby waves, which reflect back on the western bou
delayed Kelvin waves that decrease the SST in the eastern Pacific. Instead of using one S
variable at two time levels, two variables at one level may be taken (Ba8$9)s A good choice
for second variable is the thermocline depth {397; Li 1997). In this study, a similar approact
has been adopted in order to develop a simple stochastic nonlinear model, based on Nifio-
thermocline depth anomalies.

2.2

A simple nonlinear stochastic model

A simple nonlinear model for Nifio-3 SST can be written as:
t=g(X) (1)

whereY, is the Nifio-3 SST anomaly aid is the thermocline depth anomaly in the Nifio-3 reg

andg() is a monotonic "transfer function". The transfer functiOnis most likely monotonic
because of the lack of inversions in the vertical profile of large scale monthly mean temper:
addition, since the deeper the thermocline the larger the SST anomaly, the transfer ginistior
expected to be monotonically increasing. The thermocline depth varies stochastically as no
distributed random variable (see Sect. 3.5). Given the inherent nondeterministic nature of N
SST, a probabilistic approach is required to address the questions such as nonlinearity. EN
intrinsically related to the depth of the thermocline; when the thermocline is shallow any
perturbation (due to wind bursts for example) has a strong effect on SSTs. On the other ha
substantial change of the thermocline depth is required to affect the SST when the thermoc



deep.

When the transfer function is linea(X,) = « X, the resulting time serie§ will also be normally
distributed. Deviations from normality ¥} can be used to infer the amount of nonlinearity in t
transfer function. Note however that normality¥gfdoes not necessarily imply that the transfer

function is linear. In the following section, we will present a method for estimgfinging a
probabilistic approach.

3

Nonlinearity in the observations

3.1

Observed time series

The Nifio-3 SST index is the most widely used measure of ENSO variability (Treb®@rh
although other measures such as the multivariate ENSO index (Wolter and IB@8)jrare also
used. The observed ENSO Nifio-3 index used in this study is from the National Center for
Environmental Prediction (NCEP) Reanalyses. It is obtained by averaging the sea surface
temperature (SST) over the Nifio-3 region in the east tropical Pacific between 5°S-5°N and
90°W-150°W (sedttp://ftp.ncep.noaa.gov/pub/cpc/wd52dg/data/indices/sstoi.inditles period
from 1982 onwards uses the optimal interpolation dataset of Reynolds and 29djh Prior to
1982, the Global Sea-Ice and sea surface temperature (GISST) data were used (Ray966)t
The sample consists of 612 monthly means from January 1950 to December 2000. We chc
focus on monthly data for two basic reasons: (1) sampling, and (2) importance of the annue
in ENSO variability. Figurd shows the Nifio-3 time series from January 1950 through to
December 2000. The apparent regular oscillations inlFsgnply reflect the strong annual cycle
that will be discussed in Sect. 3.2.

10 | e

|~ |
| |
i':-.| E | ||‘ FI]”| .|II"E:||I?||] |
] L : i |_I ALY B
| I' . ||.|I."". '|'|' W '-r' r||.|:"|
:1 Ilil l||'11| II Illi- ,|I || || r Ml | !r'!.

Mino-3 S5T (deg C)
26

24

1950 1960 1970 1980 1990 2000
Year
Fig. 1. Time series of the observed Nifio-3 SST (°C) from January 1950 to December 2000

obtained by averaging the monthly SST over the Nifio-3 region in the tropical east Pacific b
5°N-5°S and 90°W-150°W. Thuotted line shows the time mean, 25.8 °C




To relate the SST variability in the Nifio-3 region to subsurface oceanic characteristics we t
created a monthly mean time series of the thermocline depth. The time series of the 20 °C
depth in the Nifio-3 region is usually taken as a proxy for the thermocline depth (MeeB0@é1,a
and references therein.) The thermocline depth data we have used come from moored oce
measurements and are available from the Pacific Marine Environment Laboratory for the Ti
Atmosphere Ocean Project (McPhaden e1298). Meehl et al. 2001) used the depth of the 20 °
isotherm at 155°W on the equator to diagnose the thermocline depth. However, the data cc
many missing values particularly around the beginning of the record during the 1980s to tht
1990s. In this study, we prefer to use the station at (0°N, 140°W) which is the nearest one t
155°W, but has the longest record. Other stations also have been used for comparison but
shown here. Monthly mean values are formed by averaging the daily data of the thermoclin
Figure2 shows the time series of the monthly mean depth of the 20 °C isotherm at (0°N, 14
from April 1983 to December 2000.
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Fig. 2. Monthly time series of the observed 20 °C isotherm depth (m) at (0°N, 140°W) from .
1983 to December 2000

3.2

Empirical distribution function

The cumulative distribution function (c.d.f.) of a random variabie defined as:
u
Fu) = Pr(v <u) = [ f(uw)da @
— o0

wherePr() is the "probability of" and () is the probability density function (p.d.f.) ¥f To obtain
an "empirical”" estimate of the cumulative distribution function from an observed time series
simply useF(y;) = (rank(y;) - 1)/(n - 1) whererank(y,) is the position of;, once all they; are
arranged in ascending order. Various ways exist for smoothing the c.d.f. estimate but these
addressed here (see e.g. Silveri2o4). The valueyp =F1(p) corresponding to a specified

probability value (< p < 1 is known as th@'th "quantile"; for example, the median is the



quantiley, = F(0.5).

Quantiles are robust ways of summarizing distributions. A widely used powerful graphical
technique for summarizing data is the "boxplot”. It is a graphical representation showing the
the spread and the skewness of a distribution along with a display of unusually deviant dat:
or outliers. Boxplots (McGill et all978; Tukey1990) have proven to be a good exploratory toc
particularly when several boxplots are plotted side by side for comparison between distribu
different datasets. Figushows the boxplots corresponding to the different months in the
observed Nifio-3 SST time series. The central line in the box shows the yedidine top and

bottom of the box show the upper and lower quartyigss andy,, ,, respectively. The height of

the box represents the inter-quartile range (IQR) defined as the difference between the thir
first quartiles, IQR ¥, 75- Y o5 The IQR is a robust scale parameter that measures the spre

the data (Lazant#96). The whiskers are drawn to the nearest value not beyond a standard
(1.5 x IQR) from the quartiles and they extend to the min x .BQR, extreme values). The poir

beyond the whiskers, or outliers, are drawn individually (BigNote that for a normal distributic
with variances? the IQR is 1.34¢x ¢ and that the whiskers contain 99.3% of the data.
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Fig. 3.Boxplots for each month of the observed Nifio-3 SST time seriehéeidi¢ of thegrey
boxes indicate the IQR whereas thae inside each box shows the median. Wheskers extend to
min(1.5 x IQR, extreme valuesPoints beyond the the whiskers, outliers, are drawn individue

Several outstanding features can be inferred from the boxplots i8. Hige annual cycle of the
median is clearly visible. Other common features can also be noted; for example, the intere
spread is strongest during November and December and weakest during March and April (
Latif et al.2002). Note also that February, March, June and July show less pronounced ske\
compared to the remaining months. All months except May and June exhibit outlier values
particularly in winter/spring.

The observed Nifio-3 SST time series can be deseasonalised by removing the annual cycle
median (Fig3). The deseasonalised Nifio-3 index is shown in4a&nd has been used in all the
following analyses. The histogram and a smooth kernel estimate (Silvé8@rof the
probability density of all the months of the Nifio-3 index are shown inbFithe dotted line in
Fig. 5 shows the normal distribution with the same mean and variance as the observed inde



be seen that the distribution of the deseasonalised Nifio-3 index is positively skewed as nof
Trenberth {997) and Burgers and Stephens@f99). The asymmetry between the frequency o
positive (El Nifio) and negative (La Nifia), as shown in Tablkasd?2, is visible in Fig5

=+

o - | |

. | Wty | A
o IEL ﬂ'llll a\‘l Jordkopod .Ellq.ﬁq ) :‘I rf‘lil'ln'lr

_ ll J’" n i f| -f| b I'Il | i

\
| ' [

Ninp-3 SST index (deg C)

1950 1960 1970 1980 1930 2000

Year

Fig. 4. Deseasonalised Nifio-3 SST time series, the Nifio-3 index (°C), obtained by removin
annual cycle (median for each month) from the observed time series
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Fig. 5. The histogramiars) and the probability distribution functioso{id line) of the observed
Niflo-3 index. Thedotted line shows the normal distribution with the same mean and variance
the observed index

3.3

Estimating the transfer function

In the case of monthly mean temperatures, where there are unlikely to be any temperature
inversions, the monotonic transfer functgih can be estimated by comparing the quantiles of
SSTs with those of the thermocline depth. For a monotonically increasing transfer fyrettor),
the probabilityp of an SSTY being less than or equal to a vayﬂ,e= g(xp) is equal to the



probability of the thermocline dep¥ibeing less than or equal to a vakrge
PrY <up=g(zp)) =Pr(X < zp)=p 3)

wherex = Fy (p) andy,, = F,1(p) are the quantiles of the thermocline depth and the SST,
respectively. Therefore,

Fy'(p) = 9(F5'(p)) (4)

and so the transfer function can easily be found by plotting the quanteshaf SST) versus the
guantiles ofX (the thermocline depth), that is the quantile-quantile (qq) plot. When only SST
is available, the quantiles of the thermocline deqatban be obtained by making an assumptior

about the probability distribution of thermocline depth. The most reasonable assumption jus
by the short record of observed data is that the thermocline depth is normally distributed (s
3.5). ThereforeF () = ®(), where®() is the area under the standard normal curve, that is the

of the standard normal distribution, and the quanid}!]ersf the standardised thermocline depth a
simply the quantiles of the standard normal distribution, for examplg,:= 1.96.

Figure6 shows the quantile-quantile plot between the observed Nifio-3 index and the stand.
normal, indicated by a solid curve. If the Nifio-3 index were normally distributed the curve w
be identical to the diagonal lie= x. Deviations from this line indicate the presence of
non-normality, and therefore nonlinearity in the transfer function. Fgsh®ws clear deviations
from normality which are assessed in Sect. 3.4 using robust L-moments. Possible physical
explanations are given in Sect. 3.5. Figdiie similar to Figllaof Penland and Sardeshmukh
(1995a) except that their figure represents a c.d.f. plot in a Gaussian stretched coordinates .
guantiles.
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Fig. 6. The quantiles of the standardised observed Nifio-3 index versus the quantiles of the
normal pold curve). The first diagonal represents the curve expected from the standard norr
distribution. The departure of the righeff) end of the curve above tligst diagonal line indicates
positive skewness or fatter (thinner) tail than the normal.dbtied curve is obtained when the
quantiles are derived from Ed®)(




Whereas skewness can often be difficult to see in histogram®$)Figs clearly visible in
guantile-quantile plots (Fid). Positive skewness is reflected by the presence of a deviation
right side of the curve above the diagonal line. To see this consider any prolpadvility
corresponding quantil% andxID from the c.d.f."& and® of the data (SST here) and the stanc

normal distribution respectively (see Eg<l). Because the p.d.f. dfis positively skewed one
expects that for large ®(2) > F(2). Therefore, sinc'iI’(xp) =F(yp) (= p), the quantiles satisfy,

=dYp) < Yp= F-1(p). The left side of the curve in Fif.is also above the diagonal line but

indicates this time a thinner tail than the normal distribution. Positive skewness leads to cor
gg-plot curves. A negatively skewed distribution produces a concave qg-plot curve.

3.4

Robust measures of moments

Various quantitative measures can be used to quantify departures from normality @dadlia
The most commonly used measures are the moment estimates of skbyyreesbkurtosib,:

3/2
b1 = mgl,.’rmz"

(5)

2
by = m4|,’rm2

wherem, is ther'th sample moment about the me E((Y — ¥')"). Note that for the normal

distributionb; = 0 andb, = 3. The skewness parameter gives a measure of the asymmetry o

probability distribution about the mean whereas the kurtosis parameter gives a measure of
flattening. A negative (positive) skewness gives a p.d.f that is skewed to the left (right)by¥h

3 the p.d.f. is tall and slim at the centre (leptokurtic), and vehen3 it is platykurtic. Moment

measures of skewness and kurtosis, however, are "non-resistant” statistics that are overly ¢
to outliers. Furthermore, it is often difficult to assess exactly what information about the sha
distribution is conveyed by its third and higher order moments particularly when the sample
small (Hoskingl990). For example, when the sample is small convergence problems of the :
moments towards the population moments may arise. Furthermore, when the sample conte
outliers, the higher order moments will be controlled by these outliers. More robust and resi
approaches, such as L-moments, have been developed based on order statistics1®90skath
references therein, see also von Storch and Z4@9&for a brief description).

The quantileyp = F1(p) can be expanded as a series of shifted Legendre polynomials as

o0

vp=» (2r—1)A P! (p) - (6)

r=1

The expansion coefficientd,, are known as "L-moments” and are defined as

1
s = 0Pl ™)
0



whereP, *() is ther’th shifted Legendre polynomial. Refer to the Appendix for details and for

definition of these polynomials. Any distribution is uniquely specified by its L-moments ever
some of its conventional moments do not exist (see Hodk@@for details). The lowest order
L-moment,A ,, is simply the mean of the random variable. The second order mcAgeidt,a

robust measure of the spread which uses information from all the quantiles (unlike the IQR’
L-moments ratios can be obtained by standardising the L-moments by the scale parameter

Tr = A A2, T=3,4,... (8)

The ratiost 5 andr , can be regarded as measure of skewness and kurtosis respectively. Nc
for the normal distributio.r 5 = 0, anct, = 0.1226.

Figure7 shows the cumulative distribution functid?(yp) for the Nifio-3 index (solid line)

calculated using the expansion Eg). Keeping the first 18 terms. The dotted line is the cumula
distribution function expected for the normal distribution with the same mean and variance .
Nifio-3 index. Note that the maximum slope of the cumulative distribution gives a measure
spread. The difference between the two slopes of the cumulative distribution functions at th
(Fig. 7) is due to skewness in the observed index. The qg-plot of the Nifio-3 index using the
truncated expansion is shown as a dotted line in the qg-plot @.Rigte how the thinner (than
the normal) tail is even more clearly pronounced with the L-moment approach. The (positiv
skewness is made slightly larger with the L-moment quantiles. The dotted curve is also slig
smoother than the solid line.
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Fig. 7. The cumulative distribution function of the Nifio-3 index obtained by using the quanti
from Eq. 6) and keeping the first 18 ternsl{d line) and the normal with the same mean and
variance (otted line)

3.5

Stochastic model validation

Section 3.4 outlined the use of the gg-plot as a simple graphical way to see the relationshig
two variables. Here we use this tool to diagnose the non-linear transfer fug{xtdrieq. ()



between the Nifio-3 SST and the thermocline depth. As a first step in validating the stochas
model, presented in Sect. 2.2, Bghows quantiles of the thermocline depth in the Nifio-3 ret
versus quantiles of the standard normal distribution. It indicates that, unlike sea surface ten
anomalies, Niflo-3 thermocline depth anomalies do not depart significantly from normality.
Kolmogorov-Smirnov (K-S) test indicates that the time series is normally distributed at more
95% confidence level. The annual cycle was removed prior to computing the qq-pl8).(Ag.
found that the seasonality is not a strong modulator of the evolution of the thermocline dept
of 2°N in the east tropical Pacific. However, for the stations on the 5°N latitude in the same
we found a strong seasonal component in the evolution of the thermocline depth. These
observations are in agreement with the general feature of a stronger ITCZ north of the equi
where the ITCZ annual cycle is well marked in the 5-10°N latitudinal band in the eastern eg
Pacific (Xie and Arkin 1995; Meehl et &001).
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Fig. 8. The quantiles of the standardised 20 °C isotherm depth at (0°N, 140°W) versus the ¢
of the standard normal

The quantiles of the Nifio-3 SST versus the quantiles of the thermocline depth time series i
as a thick solid line in Fig. The thin line shows the quantiles of the Nifio-3 SST versus the
guantiles of the normal distribution with the same mean and standard deviation as the Nific
thermocline depth (similar to the solid line in F&. Note that the Nifio-3 SST used in Fgs
obtained by adding the Nifio-3 SST climatology to the Nifio-3 index. Note the good agreem
between both the nonlinear curves. Another feature of this nonlinearity can be noted from tl
levelling off of the (solid) curve in the top right corner of the panel. This corresponds to a de
thermocline where a large change in thermocline depth induces only small changes in the ¢
saturation starts when the (absolute) thermocline is approximately around 140 m deep, whe
SST becomes nearly independent of the thermocline as it deepens. When the thermocline
stratification acts as a barrier between the surface and the thermocline and the link betwee
becomes very weak.
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Fig. 9. The quantiles of the Nifio-3 SST index (°C) versus the quantiles of the Nifio-3 thermc
depth (m) thick line) and the quantiles of the Nifilo-3 SST index versus those of the normal
distribution with the same mean and standard deviation as the Nifio-3 thermoclinetde pitte).
Thedotted line shows a smooth fitting to the quantile-quantile curve between the SST and

thermocline depth time series. Thest diagonal is shown for comparison. Note that the Nifio-Z
time series has been trimmed so that both time series correspond to the same period

It is also interesting to note that the SST changes are most sensitive for thermocline depths
120 and 140 m with a rate of change around 1 °C per 8 m. For depths less than 120 m, the
around 1 °C per 25 m and the lower part of the curve does not saturate at least as sharply
upper part. Although the 20 °C isotherm does not reach the surfacé)(Figemains in constant
contact with the mixed layer when the thermocline is shallow. In this case a slight change ir
thermocline depth will not change the SST substantially. This makes the SST-thermocline ¢
sensitivity fairly linear because of the active mixing processes in the mixed layer and the ak
any barrier such as stratification when the thermocline is shallow (less than a 120 m deep).
explains the observed weaker rate of change of 1 °C per 25 m as opposed to the higher rat
observed for depths between 120 m and 140 m. The dotted line thdfigws a smooth piecewi:
fit to the SST-thermocline depth curve (thick line) obtained by fitting a tangent hyperbolic fu
to the upper half and a straight line fitted to the lower half. Both Zebiak and Cane (1987) ar
Battisti (1988) used a tangent hyperbolic fit over the whole range to parametrise the subsurf
temperature anomaly. The tangent hyperbolic parametrisation is unable to capture the beh:
the transfer function over the whole range. It saturates at both deep and shallow thermoclir
whereas the observations show no evidence of saturation at shallow depths.

4

Nonlinearity in the coupled model simulations

4.1

Model data

Twenty four coupled ocean-atmosphere models from ENSIP have been studied in this inve

A brief summary of the models is presented in T&blEhe models span a wide-range of paran
space, having been developed for widely varying applications. Many of the global models h



been developed to investigate the anthropogenic climate change, while the Pacific basin m
which tend to employ higher meridional resolution in the ocean, are more directed at proce:
studies related to ENSO. The model data are taken from control integrations (e.g. no anthrt
forcing). More detailed description of the different models and references can be found in L
al. (2002) and Davey et al2001). Some of the models also participated in the coupled model
intercomparison project (sétp://www-pcmdi.linl.gov/modeldoc/cmi@MIP, Meehl et al2000).
Figure10 shows the Nifio-3 SST time series from each model. The time mean of the observ
Niflo-3 SST time series is also indicated by a dotted line for comparison. Some summary si
for the different Nifio-3 time series are given in Tabl&he difference between the observed a
simulated time means varies considerably. The largest difference is 3.5 °C and is obtained
DKRZ-LSG model (Figl10f) whereas the smallest difference is of the order of 0.05 °C and is
obtained with the NCEP climate model (Flg). Much of the variability in model simulations
(Fig. 10) is due to the annual cycle which is briefly analysed in the following section.

Table 3.Some characteristics of the different ENSIP models. In the last coRsmmefers to mee
flux correction for fresh water

Atmospheric Ocean . .
Model resolution resolution Coupling Flux adjustment
lat, lon % vert lat = lon x vert
BMRC R21, L9 0.5-5.9, 2, L25 ||Global None
CCC T32, L10 1.8,1.8,L29 |Global HeatP-E
CCSR T21, L20 0.5-2, 2.5, L20 (Global SST relax 55N-90N
0.33-1.5, 0.75, || Tropical
CERFACS T42, L31 L8 Pacific None
COLA T30, L18 1-3, 3,L20 Global None
DKRZ-LSG T21, L19 4 4, 111 Global HeatP-E/momentum
DKRZ T42, L19 0.5-2.8, 2.8, L11Global HeatP-E
GFDL-R15 R15, L9 45,3.7,L12 |[Global HeatP-E
GFDL-R30 R30, L14 2.24,1.88, L18|Global HeatP-E
Tropical .
HAWAII 1,2, L2 1,2, L2 Pacific Prescribed cloud
JMA T42, L21 0.5-2, 2.5, L20 ||Global None
LAMONT 2 5625, 1 mode |05, 2, L2 Tropical Anomaly coupling
Pacific
50 pointsx 5.6, 10.33-1.5, 0.75, | Tropical
LMD L11 L20 Pacific None
72 pointsx 3.75,
LMD-GLOBAL 15 0.5-1.5, 2, L31 ||Global None
50 points % 5.625, ; i
LMD-TOGA P 0.33-1.5, 0.75, | Tropical None
L11 L28 Pacific




MPI T42. 119 0.5-2.8, 2.8, L20GIlobal None
MRI 4,5, L15 0.5-2, 2.5, L21 |Global HeatP-E
NCAR-CSM |T42, L18 1.2, 2.4, L45 |Global None
NCAR-WM  |R15, L9 1,1, L20 Global None
Tropical .
NCEP T42,L18 0.33-1, 1.5, L29 Paccific 1-way/anomaly couplin
NRL T39, L12 052, 2 L25 |Tropical None
Paccific
50 pointsx 5.6,
SACLAY 1-13, 4, L31 |Global None
L11
UCLA 4,5, L15 0.33-3, 1, L27 |lropical None
Pacific
UKMO 3.75, 2.5, L19 1.25, 1.25, L20| Global None
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Fig. 10.Time series of the Nifio-3 indices (°C) taken from a control run of 24 different couple
models from ENSIP. Theotted line in each panel indicates the time mean of the observed in
(Fig. 1). The abscissa is time in years

Table 4.A summary of the observed and coupled models statistics of the Nifio-3 time serie



Shown are the climatology, standard deviation (S), inter-quartile range (IQR), skelypess (
kurtosis 0, - 3), and the L-moment ratiirs; andt 4. TheP-values when using a

Kolmogorov-Smirnov test are also shown. Some of the most non-normal models at 99% cao
are marked by stars

Srmeneions |t6 |3l [remesei][ |ra |7 [Paalu
BMRC 249 |0.46 |0.64 |0.23 0.25 0.02(0.14/>0.1
CCC 25.3 0.22 [0.29 [0.05 0.14 0 0.13>0.1
CCSR* 25.2 0.81 |0.95 |[-0.47 1.05 -0.05(0.170.003
CERFACS* 253 |1.07 |0.95 |1.68 3.49 0.26 (|0.26/0.000
COLA 26.8 |0.72 |0.83 |0.13 1.13 0.05 0.17/0.033
DKRZ-LSG* 22.2 |0.22 |0.30 |0.49 -0.27 0.10{0.12/0.004
DKRZ* 25.6 [0.82 |1.10 |0.59 0.04 0.130.110.006
GFDL-R15 25.3 |0.37 |0.50 [0.24 0.05 0.04 0.12/0.009
GFDL-R30 253 |0.40 |0.59 |0.09 -0.16 0.02(0.124>0.1
HAWAII 26.7 [0.99 |1.02 |0.26 0.65 0.06 [|0.21]0.000
JMA 25.0 0.36 0.46 |0.06 -0.01 0 0.141>0.1
LAMONT* 26.0 |1.41 |2.03 |0.60 -0.32 0.14 |0.09/0.000
LMD 28.2 |0.52 |0.64 |-0.45 -0.22 -0.11)0.13/0.000
LMD-GLOBAL 24.8 [0.40 |0.54 |-0.28 0.02 -0.03(0.13>0.1
LMD-TOGA 26.1 |0.31 |0.45 |-0.05 -0.55 -0.020.09>0.1
MPI 24.8 0.80 |1.06 |-0.27 -0.25 -0.050.12/>0.1
MRI 259 0.40 |0.52 |-0.01 -0.21 0 [0.13>0.1
NCAR-CSM 25.0 [0.48 |0.71 |0.06 -0.14 0.01(0.12§>0.1
NCAR-WM 26.8 |0.50 |0.69 |-0.15 -0.23 -0.03(0.13>0.1
NCEP 25.8 |0.44 |0.65 |-0.19 -0.48 -0.05(0.10{0.000
NRL* 25.4  |0.34 |0.37 |0.31 0.98 0.04 0.20{0.008
SACLAY 23.2 0.27 (0.40 |0.32 -0.53 0.08(0.08/0.033
UCLA* 27.4 |0.57 |0.70 |0.43 -0.08 0.12 (0.14{0.000
UKMO 25.6 |1.14 |1.54 |0.27 -0.33 0.05(0.11§>0.1
Observations* 25.8 |0.93 |1.05 |1.01 1.77 0.16 |0.17/0.000
4.2

Annual cycle

Figurell shows boxplots of the monthly means for each calendar month for all the different
models. There are clear discrepancies between the different coupled models in simulating f



annual cycle. For example, the annual cycle has a very small amplitude in some models su
LMD (Fig. 11m, n, 9 and SACLAY (Fig.11v), and it is also underestimated in BMRC (Higa),
DKRZ-LSG (Fig.11f), IMA (Fig.11k), NCAR-WM (Fig.119, and UCLA (Fig.11w). Some
models do not simulate correctly the phase of the annual cycle such as, IMIALKrigMD

(Fig. 11m, ), SACLAY (Fig.11rn, NCAR-WM (Fig.119, MPI (Fig.11p. For example, Figl1m,
n, r, sindicate a strong semi-annual-like cycle. The LAMONT and UKMO models {Eigx)
simulate reasonably well the phase and amplitude of the annual cycle. However, the sprea
overly uniform throughout the year compared to that in &Figome models, such as CCSR
(Fig. 119, COLA (Fig.119, and MPI (Fig11p), have negative skewness with negative outlier
values that are not seen in the observed SST3Fig.
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Fig. 11.Boxplots of Nifio-3 indices (°C) for each month from the different ENSIP coupled-m
(see Fig3)

It is well known that several climate models tend to produce semi-annual cycles of the SST
eastern tropical Pacific (Mechoso et2195). Latif et al. 002) find that even flux-corrected
models have difficulties simulating a realistic annual cycle.



4.3
Is there nonlinearity in simulated Nifio-3 anomalies?

In order to evaluate the interannual variability, the model time series have been deseasona
removing the monthly medians. The resulting Nifio-3 indices are plotted ihZi§everal model:
underestimate the variance (e.g. CCC ERh DKRZ-LSG Fig.12f, IMA Fig.12k, LMD
Fig.12m, n, 9 MRI Fig. 12g SACLAY Fig. 12v), whereas other models overestimate the vari
(e.g. CERFACS Figl2d HAWAII Fig. 12j, LAMONT Fig. 12I, UKMO Fig. 12X). The variances
of the different Nifio-3 indices are shown in column 3 of TdblEhe HAWAII and LAMONT
models show smoother than observed variability with less high frequency contribution.
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Fig. 12.The deseasonalised Nifio-3 indices (°C) from the coupled models. The abscissa is 1
years

Figurel3 shows the histograms and the kernel estimates of the probability density functions
lines) of the models Niflo-3 SST indices. Because of the wide range of variance in the diffel
series it was not useful to have the same scale on the vertical axes and so each plot has it



vertical scale. The normal distribution with the same mean and variance for each index is a
shown by dotted line. Note in particular the wide range of spreads for the different models.
example, models like CCC (Fi§j3b), DKRZ-LSG (Fig.13f), GFDL (Fig.13h, ), IMA (Fig.13K),
LMD(Fig. 13m, n, 9, MRI (Fig. 139, NRL (Fig.13n), SACLAY (Fig. 13r), have a smaller spree
compared to the observations (F3y. The remaining models, particularly LAMONT (Fitg3l),
HAWAII (Fig. 13j), and UKMO (Fig.13x) have realistic spread although LAMONT (Figl) has
a tendency towards bimodality. Many of the distributions are close to the normal distributior
(dashed line) with the exception of a few models.
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Fig. 13.Histogramslgars) and probability distribution functions of the different Nifio-3 indices
(solid). The normal distributions having the same means and variances as the correspondir
series are also showdofted). Note that because of the wide range of variance in the differen
indices, the scales of the vertical axes are not identical. The abscissa is the Nifio-3 index (°

Figure14 shows the plot of the quantiles of the different Nifio-3 indices versus the quantiles
standard Normal. The same plot for the observed Nifio-3 index is also shown for comparisc
Unlike the observations, many models are normally distributed with a linear transfer functio
curves in Fig14 show significant differences compared to the observations. Some models a
positively skewed (Figl4d, g, j, O in agreement with the observations whereas few others sr
negative skewness (Fifj4c, e, m, h Using the Kolmogorov-Smirnov statistic to test the null
hypothesis of normality, i.e. linearity, versus non-normality, we find that at 99% confidence
13 models out of 24 are normal. In the remaining 11 models, seven are clearly nonlindac(F
d, f, g, |, u, w whereas the other four do not show obvious nonlinearity {Big, j, m, }, see the
last column of Tabld for theP-values. Moments and robust measures of skewness and kurt
the different Nifio-3 indices are also shown in Tab{eolumns 4 to 8).
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Fig. 14.The quantiles of the standardised Nifio-3 indices versus the quantiles of the standa
normal pold). Thedotted line is for the observed Nifio-3 index. The curve expected from the
standard normal distribution is shown by fivest diagonal

Furthermore, the nonlinearity in the most non-normal models is not entirely comparable to 1
in the observations. For example, the non-normal behaviour in the LAMONT model4Fis.
primarily due to a thinner (than the normal) negative tail rather than a fatter positive tail as f



the observations (Fid.2l). A careful examination of Fid.2l reveals that this is due to the overl
long persistence of the negative anomalies. On the other hand the skewness in the CERFA
model (Fig.14d) is mainly due to the presence of large positive anomalies at the beginning ¢
record. It is also more leptokurtic than the observations. Moreover, CCSR4EBjigior example,
shows negative skewness, unlike the observations, whereas DKRZ-LS®Afrand LAMONT
(Fig. 14l) are more platykurtic than observations (Tah)le

4.4

Relation between moments

Neelin 1991), and Li (1997) have suggested that El Nifio variance strongly depends on the
background mean state of the atmosphere and the ocean and particularly on the zonal mes
thermocline depth in the equatorial Pacific. Meehl et2@0X) found that the vertical mixing
(background vertical diffusivity parameter) is an important factor in contributing to the therrr
intensity (defined as the depth range between the 16 °C and 22 °C isotherms at 155°W) an
acting on the variability of El Nifio.

We have addressed this question by looking at the relationship between the means and the
the different Nifio-3 SST time series. Figdfashows a plot of the first L-momert,, versus the

second L-moment,, for all Nifio-3 indices. The observed value is shown as open circle. The
dotted line (Fig15g shows the linear regression fit betwegrandL , L, = 0.044L, - 0.796. The

F-statistic of this model is 2.365 with 1 and 22 degrees of freedomRwvalae of 0.138 (withR2

= 0.097). The regression model shows that the slope of the regression line is not significan
different from zero and, therefore, unlike Mechoso etl8P%), no evidence exists for a significe
association between ENSO variance and the background mean state. The few outer mode
contribute to the regression are shown in Ega This study suggests, unlike Neeli®91) and Li
(1997), that El Nifio variance does not particularly depend on the background mean state. V
also investigated the relationship between the spread of the Nifio-3 indjrasd the L-moment

ratio measure of skewne«rJf in the different models. No evidence for such a relationship is

found. TheP-value for the regression fit is 0.058. Furthermore, the top five most positively s
models (CERFACS, LAMONT, DKRZ, UCLA, DKRZ-LSG) do not correspond to the models
having the five highest spreads (LAMONT, UKMO, HAWAII, CERFACS, DKRZ).
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Fig. 15.a Scatter plot of the different models Nifio-3 SST meagp\ersus the L-moment
estimate of the spreall). Thedotted line shows a linear regression fit. Models outside the m:

cluster are identified. The observed values are shown as an operbc8chter plot between the
L-moment ratio measures of skewner g)(@nd kurtosis 7 ;). Thedotted line shows the

relationship for the gamma distribution. The crossing betil@eigurve and thevertical line
corresponds to the values for the normal distribution. The observed values are also shown
open circle. The most non-normal models at 99% confidence are also shown

Figure1l5bshows a plot of the L-moment ratio measure of skewi73gs/ersus the L-moment
ratio measure of kurtosir ). The corresponding values for the observations are shown as o

circle while the dotted curve indicates the relationship for the gamma distribution. The cros:
between this curve and the vertical line (zero-skewness) indicates the values for the norma
distribution. Note that most models tend to cluster around the normal distribution. The mosit
non-normal models at the 99% confidence are also shownl@hy.

5

Conclusions

Novel and robust techniques have been introduced and used to estimate the nonlinear tran
function for Nifio-3 sea surface temperature. These techniques are based on probability an



cumulative distribution functions, quantile-quantile plots, boxplots, and L-moments. A simpl
nonlinear stochastic model is developed for the Nifio-3 sea surface temperature time series
model is based on the observed nonlinear transfer function between the quantiles of the Ni
index and the quantiles of the thermocline depth anomalies, which explains the resulting cf
SST as a response to changes in thermocline depth.

The robust techniques confirm that observed Nifio-3 sea surface temperature anomalies ar
significantly non-normal due to the presence of positive skewness. The estimated transfer 1
shows that observed Nifio-3 SSTs saturate only at deep thermocline depths. When the the
is shallow, the SST is linearly related to the depth anomalies of the thermocline in the Nifio-
region due to active mixing processes. These results contradict the saturation at shallow

thermocline depth assumed by Zebiak and Cane (1987) and Ba##8).(The observed annual
cycle shows inhomogeneities across the months of the year with most interannual spread i
November and December. Positive skewness is most evident in the autumn/winter months.

The majority of the 24 coupled models in ENSIP underestimate the nonlinearity noted in the
transfer function of the observed Nifio-3 index. Thirteen out of the 24 models gave Nifio-3 il
that were normally distributed at 99% confidence. Of the remaining non-normal models onl'
models capture the observed skewness noted in the observation for large SST anomalies.
non-normal models did not correctly simulate the interannual spread although the phase of
annual cycle was reasonably well simulated. The influence of the background mean state c
interannual spread of Niflo-3 sea surface temperature has also been investigated using rok
techniques. There is little evidence of a significant relationship between the mean state anc
interannual spread of the Nifio-3 SST anomalies from different models.

In summary, this study confirms the nonlinearity and the significant departure from normalit
found in observed Nifio-3 SST anomalies (Burgers and Steph&@@@rSardeshmukh et al.
2000). However, coupled models fail to capture correctly this nonlinearity. There are severa
possible explanations for this discrepancy. The thermocline depth in the coupled models is
either deeper or shallower than in reality. Alternatively, the background vertical diffusivity m
play an important role in ENSO SST variability (Meehl e2ad1). Meehl et al. Z001) showed
that the smaller values of the vertical diffusivity parameter gave larger ENSO variance due
existence of a sharper thermocline. It would be interesting also to see how this parameter i
nonlinearity in sea surface temperatures.
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Appendix 1

L-moments of a random variable



Techniques based on standard moment estimates have long been used. These estimates 1
however, to be robust only for normally distributed data. When the data are not normal thos
estimates tend to be unsatisfactory and can be sometime biased. For instance if the data ¢
outliers then higher order moments will be heavily weighted by those few observations. An
alternative approach is the L-moments. These are badaweancombination of order statistics

hence the name L-statistics.

For a real finite-mean random variaMevith c.d.f.F(y) and quantile functioyp =F1(p) let Yin
< Yy, - < Y., b€ the order statistics of a random sample ofrsti@wn from the distributiok

of Y. The L-moments A, of Y are defined as linear combinations of the expected order statis

r—1

1 ) r—1
A =—§ —1)" EY,_,. =1,2,...
r r ( J ( Fh ) r—lkrs 7 y Ly (9)

k=0

where the notatioEYj:r stands for the expectation of the order stat}sjt_i,q which is given by:

r!

EY., = - -
TG =1 =)

/y(F(y])j_lil — F(y)) 7dF(y) - (10)

Combining and using simple algeb A3, can be expressed in terms of the quantile fun@%ms
follows,

1 1

s= [FRrwPR @ = [wPmd an
0 I
whereP* is ther’th shifted Legendre polynomiaP* (u) =P, (2u - 1), which is given by

P =3 () (TER ) 12)

k=0
For example the first four L-moments are given by

)\ = EY,
1
1 . \
Az = 55(13:2 —Yi2)= fyp(EP— 1)dp,
0

1
1. ) . x (13)
Az = 55(13:3 —2¥53+ Yi3) = f!ﬁ;-(ﬁjﬂz —6p + 1)dp,
0

1
| - . - :
Ay = IE( 14— 3Ya, + 3o, Yy = fyp(:ZUPS —30p® +12p— 1)dp
0



and they represent respectively the mean, and measures of spread, skewness, and kurtosi
distribution with finite mean is uniquely specified by its L-moments even if some of its
conventional moments do not exist (see Hosk®®p for details). The L-moments can be
standardised b, to yield the L-moment raticz, (Eq.8). The sample estimate Al can be

obtained by linear combination of the ordered data values usinglEyan@ (2) (see Hosking
1990 for details). Note that because the shifted Legendre polynomials are orthogonal on the
(0, 1), Eq. 12) can be "inverted" to yield the expansion of the quantile function in terms of th
L-moments (EQ6).
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