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Abstract. This study investigates the North Atlantic Oscillation (NAO) simulated by 17 global
coupled ocean-atmosphere models participating in the Coupled Model Intercomparison Project
(CMIP). Robust NAO indices are defined by calculating the leading principal components of winter
time mean surface temperatures (land and sea) in the North Atlantic region (120°W-60°E, 20-80°N).
Encouragingly, 13 out of 17 of the models capture the NAO surface temperature quadrupole pattern
with centres of action over Northwest Europe, the northwest Atlantic, the southeastern USA, and the
Middle East. The northern dipole is better captured than the southern dipole which is often simulated
too far eastwards over the Atlantic Ocean. Out of the 17 models, ten models produce NAO indices that
vary similar to the observations as stationary "weakly red noise" with only small correlations between
successive winters (r < 0.3). Another five models drift monotonically towards warmer conditions, and
two models exhibit long-term stochastic trends. Several of the models significantly overestimate the
teleconnection between NAO and the tropical ENSO phenomenon.

1

Introduction
Mid-latitude surface temperature variations are strongly related to large-scale atmospheric flow
patterns such as the North Atlantic Oscillation (Wallace et al. 1996). The North Atlantic Oscillation
(NAO) consists of a north-south alternation of pressure in the subtropical Azores high and the
Iceland/polar low and represents the most dominant mode of climate variability in the northern
extratropics (see Wanner et al. 2001 for a comprehensive review of the phenomena). In this study, we
will focus on the more consistent and robust features in the Atlantic sector rather than on the currently
popular hemispheric annular mode pattern, see Ambaum et al. (2001, 2002) for a discussion of the
difficulties in interpreting the annular mode. The NAO accounts for R2 = 31% of the total variance in
wintertime mean surface temperatures averaged from 20°N to 90°N for the period 1935-94 (Hurrell 
1996). Furthermore, the increasing trend in the North Atlantic Oscillation from the mid-1960s until the
early 1990s helps account for many of the recent temperature trends over the North Atlantic region and
surrounding continents (Hurrell 1995; Wallace et al. 1996). This important source of "natural" climate
variability in the North Atlantic region urgently needs to be better understood and isolated, in order for
us to be able to discriminate any possible "unnatural" changes that might start to occur due to global
warming (Paeth et al. 1999).

Coupled models are invaluable tools for understanding and forecasting climatic variations. However,
the impossibility of having frequent global warming events prohibits posterior verification of coupled
model projections of future climate. A less "frequentist" and more "Bayesian" approach to verification
therefore needs to be adopted in which posterior uncertainty in forecasts of future events is estimated
from prior confidence in how well each model performs in simulating natural climate variations. For
example, if a particular model is not capable of simulating natural modes of variability in present-day
climate, then it is reasonable to have less confidence in its projections about future climate change.
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In contrast to the many El Nino/Southern Oscillation (ENSO) modelling studies, very few published
studies have specifically evaluated the ability of climate models to simulate the NAO.
Glowienka-Hense (1990) showed that the NAO was realistically simulated by an atmosphere-only
general circulation model confirming that NAO is primarily related to atmospheric processes. Several
studies have also shown that NAO can be captured quite realistically by coupled ocean-atmosphere
models (Pittalwala and Hameed 1991; Osborn et al. 1999). By comparing coupled simulations made
using different ocean models, Ulbrich and Christof (1999) demonstrated that the NAO in sea-level
pressure variations simulated by ECHAM4 was not sensitive to the choice of ocean model. However,
this does not preclude the possibility that the surface temperature signature in NAO can depend on the
choice of ocean model and coupling scheme. Zhou et al. (2000) found that the IAP/LASG global
coupled model was capable of simulating the main spatial patterns in sea-level pressure, surface
temperature, and precipitation associated with the NAO. Despite its importance, the recent Third
Assessment Report of the Intergovernmental Panel on Climate Change (IPCC 2001) contained only
one summary paragraph (8.7.5) on modelling of the NAO. The paragraph claims that "coupled climate
models simulate the NAO quite well, although there are some differences in amplitude". The
paragraph points out that "atmospheric models with prescribed SST also simulate the spatial pattern of
NAO variability fairly well". These claims will be investigated in more depth in this article.

As a contribution to coupled model evaluation, we proposed an NAO subproject aimed at
intercomparing the NAO simulated by the numerous global coupled ocean atmosphere models
participating in the CMIP project. This report summarises the results obtained in this exploration of
NAO in present-day coupled model simulations. Special care has been taken to use simple and reliable
statistical techniques rather than more sophisticated techniques (e.g. canonical correlation analysis,
multi-channel singular spectrum analysis, etc.) that can easily lead to erroneous interpretations. We
have identified robust chararcteristics common to all the models, and also indicate some of the
interesting exceptions. It is hoped that future studies will dig further into the model results to
understand in more depth individual model behaviour. The results of this analysis do not necessarily
reflect the "overall performance" of each of the coupled models.

The following section introduces the temperature data used in this study. Section 3 then discusses local
variance in wintertime means followed by Sect. 4 which describes the behaviour of the leading
large-scale NAO mode in surface temperature. Section 5 summarises the behaviour of the NAO
indices using a simple stochastic model. The final section contains a summary and concluding 
remarks.

2

Surface temperature definition of NAO
2.1

Motivation

Simple (and rather crude) NAO indices are often obtained by taking the difference between
standardised sea-level pressures from stations near the main "centres-of-action" of the NAO (the
Azores high and the Icelandic low). Figure 1a shows the evolution of the NAO SLP index obtained by
taking the difference between the standardised December-February mean sea-level pressures (SLP) at
Gibraltar (UK) and Stykkisholmur (Iceland) (Jones et al. 1997). In high index winters, the Icelandic
low is deeper and the Azores high is stronger than normal, associated with a stronger mean westerly jet
over the North Atlantic region. 
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Fig. 1a-c. Some observed characteristics of the North Atlantic Oscillation. a Winter-time mean
sea-level pressure index (Jones et al. 1997); b winter-time mean surface temperatures averaged over
large regions covering NW Europe (7.5°W-47°E, 52.5-72.5°N) and the NW Atlantic (22.5-77.5°W,
52.5-72.5°N); c correlation map of winter-time mean temperatures with the NAO SLP index

Unlike ENSO, the NAO is a broad-band phenomenon that has variations on both short and long time
scales (Wunsch 1999; Stephenson et al. 2000a). Although more than 70% of the NAO variance is
explained by "short-term" fluctuations having periods less than 10 years, marked decadal trends are
also clearly present and have led to much speculation (Rogers 1984; Wallace et al. 1996; Trenberth 
1990; Hurrell 1996; and references therein). Possible causes for decadal trends such as the increasing
trend since the mid-1960s include: (a) external influences such as anthopogenically-induced global
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warming or stratospheric ozone depletion, (b) long-term changes in the North Atlantic ocean, or (c)
natural stochastic variations (Wunsch 1999; Stephenson et al. 2000a).

Although NAO in recent studies is most often defined in terms of sea-level pressure, many previous
studies used the more robust signature in surface temperature to define the phenomenon. In fact, the
NAO was originally discovered in the eighteenth century due to its ’seesaw’ temperature signature
between Greenland and northwestern Europe (van Loon and Rogers 1987). Furthermore, Walker and
Bliss (1932) among others included temperature observations in their definition of NAO - for a
comprehensive historical review see Stephenson et al. (2002b). The temperature seesaw is clearly
apparent in Fig. 1c, which shows the correlation of surface temperatures with the Jones et al. (1997)
NAO SLP index. Temperature has advantages in that its centres of action are more geographically
fixed and are less noisy and trend-prone than those of sea-level pressure. These advantages plus the
non-availability of sea-level pressure data in CMIP1 have led us to use surface (land and sea)
temperatures to define NAO in this study.

2.2

Observed surface temperature data

For validation purposes, this study uses the Jones et al. (1986) 1851-1994 global land and sea monthly
mean surface temperature data set (available from http://www.cru.uea.ac.uk/). This gridded data set
was created by merging observed air temperatures at 2 m above the ground and temperatures at the sea
surface into averages over 5° latitude-longitude boxes. It has been widely used for detection of global
warming (IPCC 2001). Unlike model data, the observed temperature data contains many "missing 
values" especially over grid boxes in remote high-latitude locations. Missing values can be
problematic if improperly treated, and can give rise to misleading estimates of variability. For
example, there are very few measurements near Greenland at the beginning of the record yet more in
recent years. When all the available data are used to estimate the area-weighted average over the
northwest Atlantic region (80°W-20°W, 50-75°N), the increasing number of cold observations close to
Greenland gives the misleading impression that there has been a cooling trend of 5 °C since 1900. In
an attempt to alleviate such problems, we have adopted a simple quality control approach that only
uses data after 1900, and does not include ANY values from grid points that have less than 80 winter
means defined over the period 1900-94. Winter time means were made at each grid point whenever
one or more of the DJF months were available. Winter time anomalies were then calculated by
subtracting the climatological means from the wintertime means.

Figure 1b shows the evolution of simple regional indices constructed from area averages of winter
mean surface temperatures over Northwest Europe (NWE) (10°W-50°E, 50-75°N) and the northwest
Atlantic (NWA) (80°W-20°W, 50-75°N). A clear negative correlation (r = -0.49) can be seen in the
temperatures of the two regions. The difference between the two standardised indices is strongly
correlated with the NAO SLP index shown in Fig. 1a (r = 0.77). In addition to the northern
temperature seesaw, there is also a less well-known "southern seesaw" with centres of action in the
southeastern USA and the Middle East (Fig. 1c). For example, when winters in Europe are mild,
winters in Florida are also generally warmer and North Africa is colder than normal (Lamb 1972).
Walker and Bliss (1932) briefly discuss the southern NAO connections with temperatures at
Charleston (Virginia, USA) and Cairo (Egypt). The NAO temperature signature is a robust spatial
quadrupole pattern consisting of the well-known northern seesaw and the less well-known southern
subtropical seesaw. The temperature correlations are associated with the convergence and divergence
of air at the entrance and exit regions of the North Atlantic jet. For example, when the NAO index is
stronger than normal (i.e. strong North Atlantic westerly jet), more cold air is advected from the north
into the jet entrance region causing Greenland to become colder than normal (van Loon and Rogers 
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1978). Over most of the northern part of the Atlantic ocean, the temperatures are negatively correlated
with the NAO due primarily to wind-induced changes in latent cooling (Bjerknes 1962, 1964).

2.3

Coupled model surface temperature data

The Coupled Model Intercomparison Project (CMIP) was initiated in 1995 under the auspices of the
Working Group on Coupled Models (WGCM) of the World Meteorological Organisation CLIVAR
program (Meehl 1995). The purpose of CMIP is to examine climate variability and predictability as
simulated by global coupled ocean-atmosphere models, and to compare the model output with
observations where available. The initial stage, CMIP1, is a "Level 1" intercomparison of "control 
runs" in which external forcing terms such as carbon dioxide concentration and solar luminosity are
held constant at present-day values (Meehl 1995). The participating modelling groups provided time
series of gridded monthly mean surface temperatures produced by control runs of their coupled
ocean-atmosphere models. The total data set amounts to 43,452 months (3621 years) of global surface
temperature values (840 Mb of data) and was quality controlled, and reformatted into netCDF format
by the PCMDI group at Lawrence Livermore National Laboratory before been redistributed to
sub-project investigators. The models constitute a representive sample of global coupled ocean
atmosphere models currently used in climate research. Many of the participating models have also
been used to make "projections" of the possible climate in the next century. It is therefore of great
interest to assess the extent to which such models can simulate present-day climate and its variability.

Table 1 summarises the different CMIP1 coupled model runs that have been analysed as part of this
study, more details can be found at http://www-pcmdi.llnl.gov/modeldoc/cmip/. Our study is based on
the CMIP1 model simulations that were made before January 1997, and so are suggestive but not
necessarily indicative of the most recent model versions. Most of the model runs are labelled by the
name of the institution that performed the run and supplied the data. However, data from two quite
different runs was supplied by MPI/DKRZ: ECHAM3 and ECHAM4. ECHAM3 denotes a run made
with the ECHAM3 atmospheric model coupled to the LSG ocean model, whereas ECHAM4 denotes a
run made with the ECHAM4 atmospheric model coupled to the quite different ocean model OPYC3.
For brevity, these shortened denominations will be used throughout the rest of this work. The UKMO
data was generated using the HadCM2 version of the coupled model at the UKMO, and CERFACS
denotes data generated from the coupled ARPEGE-OPA model, with ARPEGE being the atmospheric
model from Météo-France and OPA being an ocean model from the LODYC group at the University
of Paris VI. There is a wide diversity in the various model experimental designs. For example, two of
the coupled runs are longer than 1000 years (GFDL and UKMO), whereas five of the coupled runs are
shorter than 50 years (CCSR, CERFACS, COLA, IAP/LASG, LMD/IPSL). Care should be exercised
not to over-interpret results from these shorter runs. The equivalent spatial resolution is the square root
of the average area on the sphere covered by a grid box (2 a2/p2) and provides a useful single
measure of the model horizontal resolution. It ranges from distances larger than 500 km for the lowest
resolution models such as CERFACS, COLA, ECHAM3, GFDL, IAP/LASG, NCAR (W&M) to
values less than 300 km for the highest resolution models such as ECHAM4, LMD/IPSL,
NCAR(CSM). The majority of the models represent the atmospheric fields using spherical harmonics,
except for five models which use finite differences [UKMO, MRI, GISS(Russell), GISS(Miller),
LMD/IPSL]. Flux adjustment is a pragmatic way of correcting for systematic errors in coupled model
air-sea fluxes, but it is only applied in less than half (eight out of 17) of the models participating in
CMIP1. It should be noted, however, that four out of the six runs longer than 100 years correct the heat
and freshwater fluxes in order to prevent excessive model drift. Flux adjustment may become less
necessary in the future for models having smaller systematic errors, for example, more recent UKMO
runs now no longer use any kind of flux adjustment. CMIP1 is a level-1 intercomparison not only
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because the models have different initial conditions etc. but also because the surface temperature is not
defined the same way for all the models. The majority of models define the temperature at either 1.5 m
or 2 m above the ground, yet some models even define it on model levels or at 10 m above the ground.
Fortunately, temperatures are generally well-mixed vertically in the tropospheric boundary layer over
the North Atlantic and so the different level definitions are not expected to cause major differences in
temperature behaviour. However, for stable regions over cold land or sea-ice, the choice of level could
cause noticeable differences. All but two of the models calculate sea-ice thickness and extent
prognostically, and seven out of these also try to account for the advection of sea-ice. We will avoid
discussing the sea-ice behaviour in detail since this is the focus for another CMIP sub-project. 

Table 1. Description of the CMIP1 model runs used in this study
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Model IPCC name YRS RESOLUTION FADJ TLEV ICE Reference 

UKMO HadCM2 1085 286 km
2.5°  

3.8°
HW 1.5 m F Johns et al. (1997)

GFDL GFDL_R15_a 1000 543 km R15 HW 0.990 F
Manabe and
Stouffer (1996)

NCAR(CSM) CSM1.0 300 262 km T42 - 2 m R
Boville and Gent 
(1998)

ECHAM4 ECHAM4/OPYC 240 262 km T42 HW 2 m R
Roeckner et al. 
(1996)

CCCma CGCM1 150 355 km T32 HW 2 m T Flato et al. (2000)

BMRC BMRCa 105 396 km R21 - 1.5 m T
Power et al. 
(1993)

CSIRO CSIRO Mk2 100 396 km R21 HWM 2 m R
Gordon and
O’Farrell (1997)

MRI MRI1 100 418 km
4°  

5°
HW 0 m F

Tokioka et al. 
(1996)

NCAR 
(W&M)

NCAR1 100 543 km R15 - 0.991 R
Washington and
Meehl (1996)

GISS(Russell) GISS2 98 418 km
4°  

5°
-

 
0.985

T
Russell et al. 
(1995)

GISS(Miller) GISS1 89 418 km
4°  

5°
- 10 m T

Miller and Jiang 
(1996)

COLA COLA1 50 543 km R15 - Skin T
Schneider et 
al.(1997)

ECHAM3 ECHAM3/LSG 50 524 km T21 HWM 2 m T Voss et al.(1998)

IAP/LASG GOALS 50 543 km R15 H 0.991 T
Zhang et al. 
(2000)

CCSR CCSR/NIES 40 524 km T21 HW 0.995 T
Abe-Ouchi et al. 
(1996)

CERFACS ARPEGE/OPA1 40 524 km T21 - 2 m -
Guilyardi and
Madec (1997)

LMD/IPSL IPSL/CM1 24 231 km
1.6  

3.8
- 0.979 -

Branconnot et al. 
(1997)

YRS is the total integration length in years. RESOLUTION gives the equivalent spatial resolution (see
text for details), and either the spectral truncation for spectral models or the latitude-longitude grid
spacing for non-spectral models. FADJ indicates what type of flux adjustments were applied to the
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heat (H), water (W), or horizontal momentum (M) fluxes at the air-sea interface (no flux correction is
denoted by -). TLEV gives the altitude or model  -level at which the surface temperature was
defined. ICE denotes the type of sea-ice parameterization used: thermodynamic sea-ice model (T),
thermodynamic model allowing free-drift of sea-ice (F), and thermodynamic model including sea ice
rheology (R) (- signifies that sea-ice was obtained in a simple diagnostic way from SSTs). The
reference cites the most recent comprehensive publication documenting the coupled model

3

Local variance in winter time mean temperatures
3.1

Total variation

Figure 2 shows maps of the standard deviation of the winter time mean temperatures. The largest
temperature variations occur over the interior of the North American and Eurasian continents with
typical amplitudes of 2-5 °C. Several of the models overestimate the standard deviation over the
continental regions: BMRC, CCSR, NCAR (CSM), and NCAR (W&M). BMRC and NCAR (W&M)
also exhibit excessive summer minus winter temperature differences over the continents (not shown)
which suggests that these models may be underestimating surface heat capacity over land (perhaps due
to deficiencies in soil moisture). Several of the models have local maxima in variance near the North
Atlantic sea-ice edge, for example, BMRC, ECHAM4+OPYC, GISS(Miller), GISS(Russell),
NCAR(CSM), UKMO. All these models determine sea-ice extent and thickness prognostically and
exhibit particularly strong gradients in the summer-winter temperature difference at the sea-ice edge
(Covey et al. 2000). It is possible that these models are overestimating the thickness of the sea ice,
which commonly occurs when using prognostic sea-ice models (Garric et al. 1997). It is also of
interest to note that the CCSR model has an unrealistic maximum in variance over northeast Canada
and Greenland, and the COLA model has an unrealistic maximum in variance over the Arctic region. 
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Fig. 2a-c. Standard deviation of the winter-time means of surface temperature (in °C). Note the large
values over the interior of the continents and near the sea-ice edge

3.2

Short-term interannual variations

Bjerknes (1962) made the important distinction between the passive North Atlantic upper-ocean
response resulting in "short-term 2-5 year trends" (his words) and the longer term coupled variations.
To isolate shortterm interannual variations, he and his student assistants at UCLA, made and examined
many maps of year-to-year differences ( z = zy  - zy-1) in North Atlantic SSTs and SLPs for the

period 1880 to 1915 (Bjerknes 1964). First-order differencing is widely used by statisticians and
economists to reduce long term trends in non-stationary time series (Box and Jenkins 1976).
Differencing reduces piecewise linear trends to small constant terms, and has the advantage over
removing a linear-in-time fit in that it is local in time. This is desirable since climatic time series often
contain randomly varying trends (stochastic trends), for example, the NAO SLP index had a
decreasing decadal trend from 1940-60, but then an increasing one from 1960-1990. Because ( z)/2
is simply the result of subtracting a 2-year moving average (z(y) + z(y - 1))/2 from the original series, 

 /2 can be considered to be a simple high-pass filter. It attenuates the amplitude of low-frequency
signals by a factor of sin( f  ) where f is the frequency and  is the time between samples (e.g. 1
year). Therefore, biennial signals with periods of two years suffer no attenuation whereas signals with

periods of four years have amplitudes attenuated by a factor of  . Decadal and even

lower frequency variability are attenuated to less than 10% of their original amplitudes. These features
and the fact that year-to-year differences in bulk quantities such as upper ocean heat content can be
simply interpreted in terms of integrated fluxes justify the use of this method.

Figure 3 shows the standard deviation of the short-term z  y =  z/2 contribution to winter time mean

temperatures. The spatial distribution generally resembles that of the total standard deviation shown in 
Fig. 2, yet with smaller amplitudes of 1-3 °C over the continents. An important feature that emerges in
the observations and some of the models (UKMO, ECHAM4) is a local maximum in the eastern
equatorial Pacific related to ENSO. However, many of the coupled models underestimate the ENSO
variance possibly due to insufficient latitudinal resolution at the equator in the ocean models. This is
supported by noting that only the higher resolution ECHAM4 and UKMO runs capture the maximum
in the Pacific with a realistic amplitude. It is worth noting that despite underestimating the variance of
ENSO, most of the CMIP1 runs still manage to simulate realistic amounts of variance over the
Northern Hemisphere extra-tropics. 
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Fig. 3a-c. Standard deviation of short-term variations in winter-time means of surface temperature (in
°C). Note the resemblance to the geographical distribution of the total standard deviations in Figure 2

3.3

Serial correlation

In order to quantify the fraction of variance in short-term variations, Fig. 4 shows the ratio (in %) of
the short-term standard deviation (Fig. 3) to the total standard deviation (Fig. 2). The ratio of standard
deviations is related to the 1-year lag autocorrelation coefficient, r 1, by the expression 

 %, and therefore provides a simple measure of the amount of "serial

correlation" or "redness" in the signal. Very "red" signals have a large positive autocorrelation and
small standard deviation ratios, whereas strong biennial "blue" signals have a large negative
autocorrelation and standard deviation ratios close to 100%. "White" noise is intermediate between
these two extremes with an autocorrelation of zero and a ratio of standard deviations equal to 70.7%.
Ratios in Fig. 4 are typically 60-80% over the continents and polar sea-ice (white), and 10-60% (red)
over the oceans. One reason for the increased serial correlation (redness) over the ocean is that the heat
capacity of the upper ocean mixed-layer is much larger than that of the drier continental surfaces
(Hasselmann 1976). Particularly red regions occur in the North Atlantic ocean in several models:
BMRC, GISS(Miller), GISS(Russell), NCAR(CSM) and NCAR(W&M). The North Atlantic redness
in BMRC, NCAR(W&M), and GISS(Miller) is associated with significant monotonic warming trends
(climate drift) that will be discussed in the next section. The redness over the Atlantic ocean is
underestimated in the two longest runs, UKMO and GFDL, which perhaps indicates that flux
adjustment may be over damping long-term Atlantic fluctuations in these two models. 
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Fig. 4a-c. Ratio in % of the standard deviation of the short-term variations to the total standard
deviation of the winter-time means. Small ratios indicate the presence of serial correlation caused
either by persistence or decadal/secular trends

4

Large-scale NAO temperature patterns
4.1

The leading NAO temperature mode of variability

In this study, the leading large-scale patterns and indices associated with NAO have been extracted by
performing a principal component analysis (PCA) on each of the gridded temperature datasets. To
optimally extract the NAO, the spatial domain was limited to the North Atlantic ocean and
surrounding land regions (120°W-60°E, 20-80°N). The Pacific sector and tropical Atlantic were
excluded in order to minimise any contamination from strong tropical signals such as ENSO.
Stephenson et al. (2000a) showed that if these regions are included the NAO pattern still emerges but
only as the second leading EOF. The Arctic region north of 80°N was also excluded in order to reduce
contamination that may be caused by anomalous Arctic sea-ice behaviour. Because surface
temperature anomalies over land are typically between 3-10 times larger than those over the oceans, it
is necessary to do PCA on the correlation matrix (standardised anomalies) rather than on the
covariance matrix (non-standardised anomalies). The PCA loading weights (EOFs) can therefore be
considered as "correlation maps" obtained by correlating the temperatures with the respective PCs.
Large magnitudes in the EOF patterns indicate strong correlations with other regions.

Figure 5 shows the leading spatial correlation pattern, EOF1, for the observations and for all the
models. Because of the strong correlation between PC1 and the NAO SLP index (r = 0.74), the leading
EOF spatial pattern of the observed temperatures shown in Fig. 5a closely resembles the correlation
map of temperatures with the NAO SLP index (Fig. 1c). Principal component analysis over the chosen
extratropical domain is capable of extracting a robust NAO index and associated correlation pattern.
The spatial pattern is dominated by a large-scale quadrupole pattern with nodes centered over
Northwest Europe and the northwest Atlantic (the northern seesaw), and the southeastern United States
and the Middle East (the southern seesaw). It can be noted in Fig. 5 that many of the models are able
to capture the salient features of the quadrupole pattern. The northern seesaw is simulated to varying
extents by all of the models except for BMRC, MRI, NCAR(W& M), and GISS(Miller). The southern
seesaw is captured less well by many of the models but appears quite realistic in the long runs made
with UKMO, GFDL, NCAR(CSM), and ECHAM4. In some models, the western node of the southern
seesaw is displaced too far east across the North Atlantic ocean e.g. CCCma, CSIRO, and CCSR. 
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Fig. 5a-c. Leading eigenvector of the correlation matrix of the winter-time mean surface temperature
(EOF1). Note the large-scale quadrupole pattern with nodes centered over NW Europe, NW Atlantic,
the southeastern states of North America, and the Middle East. Values have been normalised so as to
represent correlations with PC1 (in %)

Figure 6 shows the leading EOF recalculated for "detrended" year-to-year differences in the winter
time mean temperatures. For the observations and many of the models, the leading EOFs of the
detrended short-term variations closely resemble the EOF1 of the non-detrended variations shown in 
Fig. 5. This is due to the dominance of short-term variations in the NAO signal, more than 70% of the
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observed NAO SLP index variance is explained by signals having periods less than ten years
(Stephenson et al. 2000a). It is encouraging to note that an NAO-like pattern now also emerges in the
EOFs of the detrended data from the BMRC, NCAR(W&M), and GISS(Miller) models. The leading
EOF of the non-detrended data from these models was capturing the coupled model drift instead of the
desired NAO natural variability. 
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Fig. 6a-c. Same as Fig. 5 except for short-term interannual variations in wintertime mean temperatures
(obtained from year-to-year differences). Note the similar patterns to those in Fig. 5. for many of the 
models

Figure 7 shows the leading principal component time series. There is a rich diversity of behaviour with
some of the models containing obvious monotonic trends whereas other models appear to give more
stationary and stochastic variations. Primarily because of the large inertia of the deep ocean, coupled
ocean atmosphere models require a long time to reach climatic equilibrium. During the approach to
equilibrium (the "spin-up" phase), results from such models often contain strong monotonic trends
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("climate drift"). Such non-stationarity represents an unnatural form of climate variability that can
easily contaminate natural variations simulated by such models. Monotonic trends are clearly apparent
in Fig. 7 in the NAO PC1 time series from BMRC, MRI, NCAR(W&M), GISS(Miller) and
LMD/IPSL. Furthermore, surprisingly all of these trends are towards increasing NAO in time.
Monotonic trends due to model drift can be robustly quantified using the Spearman rank correlation
coefficient of PC1 with time. The Spearman rank correlation coefficient is invariant for any monotonic
function of the time series and so can be used to test for all types of monotonic trend (not necessarily
linear). Column 2 of Table 2 gives the Spearman correlation coefficients for all the PC1 time series,
statistically significant trends different from zero at the 1% level of significance are indicated by
asterisks (two-tailed Student t-test assuming no serial correlation). Five of the models have significant
increasing trends in PC1: BMRC, MRI, NCAR(W&M), GISS(Miller), and LMD/IPSL. In all the
models except GISS(Miller), the trends are towards warming in surface temperature over northwest
Europe and most of the rest of the Northern Hemisphere. BMRC, NCAR (W&M), GISS(Miller) also
exhibited a very marked redness in the North Atlantic ocean in Fig. 4. This suggests that the drift may
be related to dynamical coupled errors in the North Atlantic ocean induced by coupling (Stephenson 
2002). The remaining 12 models do not have significant monotonic trends and resemble more closely
stationary noise. It is encouraging to note that almost half of these stationary models do not use flux
adjustment. 

Table 2. Correlations between various indicies calculated from observations and model simulations
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Model
(PC1, 
year)

(NWA, 
NWE)

(NH, 
PC1)

(NWA, 
PC1)

(NWE, 
PC1)

(NINO3,
PC1) 

Observations 
1901-91

-0.02 -0.49 (*) +0.03 -0.60 (*) +0.72 (*) -0.24

UKMO +0.03 -0.38 (*) +0.08 -0.72 (*) +0.76 -0.20 (*)

GFDL -0.01 -0.37 (*) -0.18 (*) -0.85 (*) +0.61 (*) +0.00

NCAR(CSM) -0.01 -0.01 -0.71 (*) -0.91 (*) -0.03 -0.33 (*)

ECHAM4 -0.01 +0.08 +0.07 -0.71 (*) +0.45 (*) -0.36 (*)

CCCma -0.01 -0.57 (*) -0.10 -0.79 (*) +0.84 (*) -0.15

BMRC -0.62 (*) +0.46 (*) +0.97 (*) +0.90 (*) +0.70 (*) +0.57 (*)

CSIRO +0.04 -0.50 (*) +0.17 -0.70 (*) +0.70 (*) -0.01

MRI -0.59 (*) +0.05 +0.80 (*) +0.49 (*) +0.81 (*) +0.41 (*)

NCAR (W&M) -0.89 (*) +0.38 (*) +0.77 (*) +0.96 (*) +0.50 (*) -0.01

GISS(Russel) -0.09 -0.19 -0.14 -0.29 (*) +0.66 (*) -0.01

GISS(Miller) -0.92 (*) +0.33 (*) +0.96 (*) +0.91 (*) +0.54 (*) -0.04

COLA -0.02 -0.20 +0.06 -0.77 (*) +0.56 (*) -0.21

ECHAM3 -0.10 -0.47 (*) -0.11 -0.76 (*) +0.64 (*) -0.05

IAP/LASG -0.05 -0.36 (*) -0.28 -0.77 (*) +0.40 (*) -0.00

CCSR -0.01 -0.82 (*) -0.63 (*) -0.93 (*) +0.85 (*) -0.43 (*)

CERFACS +0.16 -0.26 -0.25 -0.19 -0.01 +0.27

LMD/IPSL +0.72 (*) -0.21 +0.68 (*) +0.17 +0.67 (*) +0.44

Spearman rank correlation has been used for the 2nd coloumn to robustly test the existence of
monotonic time trends in the NAO indices. Asterisks indicate strong correlations significantly
different from zero at 95% confidence (two-sided t-test)
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Fig. 7a-c. Time series of the leading principal component (PC1) of the winter-time mean surface
temperatures. All series have been standardised to have unit variance
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4.2

Northern Hemisphere NAO teleconnections

The North Atlantic Oscillation is a large-scale phenomenon that has "teleconnections" (correlations)
with climate in many widely-separated regions. To quantify such teleconnections, we have constructed
several simple climatic indices by averaging surface temperatures over the following regions: Northern
Hemisphere (NH), northwest Atlantic (NWA), Northwest Europe (NWE), eastern equatorial Pacific
(NINO3). These simpler indices are often easier to interpret than multivariate indices such as principal
components and can provide useful complimentary information. Table 3 gives the cross-correlations
between the various indices based on observations from 1901-91 both for total non-detrended
variations (above the leading diagonal) and for shortterm year-to-year differences (below the leading
diagonal). With the exception of correlations with Northern Hemisphere temperatures NH, many of
the correlations are similar for both the total and shortterm variations. PC1 has a large and significant
correlation (r = 0.74) with the NAO SLP index justifying its use as a temperature based NAO index. 

Table 3. Cross-correlations between different indices baswed on observations for the common period 
1900-91

Series NAO SLP PC1 NH NWA NWE NINO3 

NAO SLP - +0.74 (*) +0.21 -0.63 (*) +0.70 (*) +0.02

PC1 +0.68 (*) - +0.03 -0.60 (*) +0.72 (*) -0.24

NH +0.30 (*) -0.05 - +0.04 +0.32 (*) +0.25

NWA -0.60 (*) -0.62 (*) -0.22 - -0.49 (*) -0.06

NWE +0.67 (*) +0.66 (*) +0.33 (*) -0.61 (*) - -0.11

NINO3 -0.01 -0.27 +0.43 (*) +0.06 -0.09 -

Values above the leading diagonal give correlations of total variations, whereas values below the
diagonal give correlations of only short-term variations (year-to-year differences). Asterisks indicate
strong correlations that are significantly different from zero at 99% confidence (two-tailed t-test)

Table 2 includes cross-correlations between non-detrended indices calculated for the observations and
for all the models. Year-to-year differences give similar correlations for the stationary models (not
shown). Many of the models capture the northern seesaw as can be noted by the significant non-zero
(anti-)correlations between NWA and NWE temperatures (negative values marked with * in column 1
of Table 3). BMRC, NCAR(W&M) and GISS(Miller) have significant positive correlations between
NWE and NWA caused by unrealistic coupled model drift towards warmer conditions. With the
exception of NCAR(CSM) and CERFACS, all the stationary models have significant negative
correlations between PC1 and NWA and significant positive correlations between PC1 and NWE as
seen in the observations. NCAR(CSM) has an unrealistic poor correlation between PC1 and NWE
because of a marked eastward shift in the position of the "northern seesaw" (Fig. 5d). CERFACS has
an unrealistic poor correlation between PC1 and NWE caused by its ’northern seesaw’ being smaller
longitudinally than the dipole in the observations (Fig. 5q).
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Hurrell (1996) demonstrated that the NAO can account for 31% of the variance of the Northern
Hemisphere mean temperature north of 20°N. However, from Table 2 it can be seen that the NAO SLP
index accounts for less than 3% (0.212  100%) of the total variance and 9% (0.302  100%) of the

short-term variance in the observed Northern Hemisphere average temperature over the period
1901-91. The temperature based NAO index, PC1, is even less correlated with NH mean temperatures 
(r = 0.03). With the exception of the models that have trends in PC1, only three other models have
significant correlations between PC1 and NH mean temperatures [GFDL, NCAR(CSM), CCSR] and
all these correlations are negative. The negative correlation between the observed NAO index and
surface warming between the equator and 20°N (especially over Africa) cancels much of the postive
correlation with warming over northern Eurasia. The stationary coupled models confirm that NAO
does not have a significant positive correlation with the mean surface temperatures averaged over the 
whole of the Northern Hemisphere.

4.3

Correlation of NAO and ENSO

Previous studies have shown that the association between ENSO and the NAO SLP index is weak and
difficult to detect in short observational records (Rogers 1984, Fraedrich 1994). Table 2 shows that the
NAO SLP index has almost no correlation (r = 0.02) with NINO3 temperatures in the tropical Pacific.
However, the temperature-based NAO index, PC1, does have a small negative correlation with NINO3 
(r = -0.24). Many of the coupled model simulations also exhibit an anticorrelation between PC1 and
NINO3 (Table 2). Four of the stationary models have significant negative correlations with NINO3:
UKMO, NCAR(CSM), ECHAM4, CCSR. The overly strong link between the NAO and the tropical
Pacific in the UKMO model has also been briefly mentioned in Osborn et al. (1999).

The correlation maps in Fig. 8 show that ENSO is anticorrelated with an NAO-like quadrupole pattern
in many of the models. This is particularly marked in the ECHAM4 and CCSR models suggesting that
perhaps these models have an overly strong teleconnection between the tropics and the extra-tropics.
The negative correlation between PC1 and NINO3 may also partly explain the negative correlation
between PC1 and NH temperatures in several of the models [e.g. NCAR(CSM) and CCSR]. It is
interesting that a similar quadrupole pattern in surface temperatures is excited by both NAO and
ENSO despite ENSO having only weak correlations with mean sea-level pressure in the North Atlantic
region. This teleconnection is perhaps mediated via the Pacific North American pattern, which is
known to have an impact on the North Atlantic storm tracks (Ambaum et al. 2001). 
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Fig. 8a-c. Correlation maps of surface temperature with the NINO3 index for each model showing the
surface temperature teleconnections with ENSO. Contour interval 0.2 with negative correlations 
shaded

4.4

Brief summary

The results presented in this section show that 13 out of the 17 models have a leading temperature
EOF that captures the main features of the NAO temperature pattern. Five of the models exhibit
monotonic drift in the leading PC time series, but encouragingly four of these models are able to
recapture the NAO spatial pattern once detrended. A weakness of many models is that the NAO index
is too strongly negatively correlated with ENSO. There is little evidence from either the observations
or the models for a correlation between the NAO indices and NH mean temperature.

5
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Stochastic modelling of NAO variations
Stochastic modelling provides a useful way of characterising the time-evolution of noisy phenomenon
such as the NAO (Wunsch 1999; Stephenson et al. 2000a). In this section, a two parameter
(parsimonious) time series model will be used to provide a concise summary of the behaviour of the
NAO time series from the models. The estimated model parameters are used to quantify both the
short-memory and long-memory behaviour of NAO simulated by the different models.

5.1

Power spectra

Figure 9 shows the estimated power spectra of PC1 for the observations and all the models. The
spectral power density of PC1 for the observed temperature data (Fig. 9a) is uniform with no
significant spectral peaks. This agrees with studies of the NAO SLP index which also show a broad
band spectrum close to that of white noise having no statistically significant peaks due to dominant
periodicities (Wunsch 1999; Stephenson et al. 2000). Interestingly, the NAO surface temperature
index has less power at low frequencies than does the NAO SLP index there are fewer longterm trends
in the temperature data than in the SLP data. With the exception of NCAR(CSM) and GISS(Russell)
models, 10 of the 12 stationary models without monotonic trends also have almost flat power spectra
with no significant peaks. GFDL is curious in that its power spectra slopes up slightly at high
frequency (blue noise). The models with monotonic trends and NCAR(CSM) and GISS(Russell) show
spectra with increasing power at low frequency caused by the presence of long-term trends. In the case
of NCAR(CSM) and GISS(Russell) this is caused by the long-term trending clearly visible in the time
series Fig. 7d and 7k. 
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Fig. 9a-c. Estimated power spectra of PC1 for all the models on logarithmic scales. The 95%
confidence interval is shown as a small vertical line

5.2

The simple AR(1) red noise model

Surface temperature anomalies in mid-latitudes may be considered to be serially correlated noise that
results from low-pass filtering of heat fluxes associated with random weather events (Davis 1976;
Hasselmann 1976). The finite thermal capacity of the surface layer generates serial correlations in the
surface temperature anomalies. This continuous time stochastic model is not directly applicable to
discrete time series such as winter time means, yet a suitable analogue having the same low frequency
limit is provided by the first order AR(1) autoregressive model

z(y) = r1z(y − 1) + a(y) (1)
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where z(y) is the winter time anomaly for year y, r 1 is the lag-1 year autocorrelation, and a(y) is a

Gaussian distributed shock/innovation (Box and Jenkins 1976). This simple "red noise" time series
model is widely used to model serially correlated discrete time series, and has proved to be useful in
understanding and forecasting model generated SST variability (Saravanan and McWilliams 1997;
Griffies and Bryan 1997).

5.3

Modelling short- and long-range dependence

Stephenson et al. (2000a) showed that the simple AR(1) model was too restrictive to describe all the
features of the observed NAO SLP index. In particular, because of its exponentially decaying
autocorrelation function, the AR(1) model predicts that the variance of means of length n should scale
as n-1  for sufficiently long means (Beran 1994). This inverse scaling relationship leads to the

well-known expression  for the standard error of the mean of n independent variables.

However, Stephenson et al. (2000a) showed that the variance of means of the NAO SLP index actually
decays more slowly as n-0.72. For instance, decadal means of the NAO SLP index from 1864-1998
have almost twice (10-0.72/10-1) the variance expected for an AR(1) process. The NAO SLP index has
more trending on long time scales than is to be expected for a simple AR(1) process. This increased
amount of natural variability needs to be considered when testing for climate change trends in the 
NAO.

Similar long-term persistence or "long memory" has been found to exist in many other naturally
occurring time series, for example, river flow rates (Hurst 1951), global mean temperatures
(Bloomfield 1992), and wind power variations (Haslett and Raftery 1989). Time series with long
memory are noisy yet appear to meander for long times away from the longterm mean as can be seen
in PC1 of NCAR(CSM) in Fig. 7d. Unlike short memory processes such as AR(1), which flatten off at
low frequency, long memory processes have increasing amounts of variance at low frequencies
(spectral peak at zero frequency). Long memory processes forget only slowly their past behaviour, the
autocorrelation function shows slow power law decay in lag rather than fast exponential decay which
occurs for "short-memory" processes such as red noise and other ARMA processes (Beran 1994). The
amount of long memory is characterised by the dimensionless scaling exponent H first discovered by
Hurst (1951) in his comprehensive study of river flows.

The simplest time series model that can capture both short-range and long-range dependence is a
fractionally differenced autoregressive order 1, FAR(1) model:

(1−B)d(1− r1B)z(y) = a(y) (2)

where B is the backward shift operator Bz(y) = z(y-1) and r 1 and d = H - 0.5 are model parameters

summarising short and long memory, respectively. For the special case H = 0.5, one obtains the
short-memory AR(1) model that gives variances of means that scale as n-1  where n is the length of the
means. For larger values of the Hurst exponent, the variance of means falls off less quickly as n2H - 2

due to the presence of more long-term stochastic trends. For Hurst exponents greater than unity the
process becomes non-stationary with unbounded variance.
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Table 4 gives maximum likelihood estimates of r 1 and H obtained by fitting the PC1 time series to the

FAR(1) model. For the 12 models that do not have significant monotonic trends, the estimated lag-1
autocorrelation coefficient is generally small with values ranging from -0.05 to 0.39. This evidence
provides a coupled model confirmation that the NAO spectrum is only "weakly red" (i.e. "pink
noise"). With the exception of GFDL which is slightly blue, all the models have positive lag-1
autocorrelations, suggesting that the NAO temperature index may have some slight serial correlation
between winters. This ("redness") can be exploited to give some skill in statistically forecasting the
NAO one year ahead. However, such forecasts will at most be able to explain only a very small
fraction (r 1

2) of the total NAO variance (Box and Jenkins 1976; Wunsch 1999). 

Table 4. Some estimated characteristics of the observed and simulated PC1 time series of length 
NYRS

Model NYRS Lag-1 r 1 Hurst H 

Obs. 1900-94 95 +0.17 ± 0.10 +0.52

UKMO 1085 +0.09 ± 0.03 +0.51

GFDL 1000 -0.05 ± 0.03 +0.45

NCAR(CSM) 300 +0.51 ± 0.05 +0.85

ECHAM4 240 +0.05 ± 0.06 +0.51

CCCma 150 +0.12 ± 0.08 +0.56

BMRC 105 +0.95 ± 0.03 +0.94

CSIRO 100 +0.17 ± 0.10 +0.44

MRI 100 +0.50 ± 0.09 +0.77

NCAR(W&M) 100 +0.87 ± 0.05 +0.92

GISS(Russell) 98 +0.39 ± 0.09 +0.72

GISS(Miller) 89 +0.90 ± 0.05 +0.95

COLA 50 +0.15 ± 0.14 +0.47

ECHAM3 50 +0.03 ± 0.14 +0.45

IAP/LASG 50 +0.07 ± 0.14 +0.51

CCSR 40 +0.25 ± 0.16 +0.64

CERFACS 40 +0.07 ± 0.16 +0.58

LMD/IPSL 24 +0.34 ± 0.20 +0.59

The lag-1 autocorrelation coefficient r 1 and its standard error  1 are obtined by maximum likelihood

fits of the time series to the AR(1) red noise model. The Hurst exponent, H, measures the amount of
"long-memory" in the time series and has been estimated using log-log fits to aggregated variance (see
text for details)
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5.4

Brief summary

Figure 10 uses the estimated parameters of the FAR(1) model to summarise the short and long
memory behaviour of the PC1 time series. With the exception of the models that drift, most of the
models are clustered close to the point (0.0, 0.5) confirming that interannual variability in the NAO
has a broad band spectrum which closely resembles white noise. However, it can be seen that all but
one of the stationary models are to the right of the line r 1 = 0 implying some serial correlation

between successive winters (shortterm memory). All of the models apart from NCAR(CSM),
NCAR(W&M), GISS(Russell), and GISS(Miller) have Hurst exponents close to 0.5 signifying that
they have no long-memory in temperature-based NAO indices. For example, the variance of means of
these time series all scale as n-1  (not shown). The long-memory in GISS(Miller) and NCAR(W&M) is
due to the presence of significant monotonic trends caused by coupled model drift. However,
NCAR(CSM) and GISS(Russell) do not have significant monotonic trends yet still exhibit significant
amounts of long-memory behaviour. This is caused by the presence of long-term stochastic trends that
can be seen in the time series shown in Fig. 10. This intriguing non AR(1) behaviour merits further
attention in these particular model simulations. 
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Fig. 10a-c. Scatter plot of long versus short memory summarising the behaviour of PC1 for all the
models. The abscissa is the estimated lag-1 autocorrelation r 1 and the ordinate is the dimensionless

Hurst exponent H. Short memory processes lie close to the line H = 0.5. Note that many of the models
are close to the point r 1 = 0 and H = 0.5, which represents completely uncorrelated white noise

6

Concluding remarks
This preliminary coupled model intercomparison study has found that:

1.  There is a wide diversity of model behaviour in simulating total and short-term interannual
variance. Patterns resemble one another but a few models are much "redder" over the central
North Atlantic ocean.

2.  Encouragingly 13 out of 17 models appear to have a leading EOF that captures the main features
of the observed NAO quadrupole pattern such as the "northern dipole"

3.  The southern dipole is less well simulated and is often displaced too far east over the Atlantic 
ocean.

4.  Five of the 17 models have monotonic trends in surface temperature caused by coupled model
drift towards warmer surface conditions.

5.  The 12 other "stationary" models give NAO indices that are only slightly serially correlated
("weakly red") in agreement with what is found for the observations.
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6.  Two of the stationary models have significantly more longterm variability (trends) in the NAO
index than can be expected from a short memory process.

7.  There is little evidence of a significant correlation between the NAO index and Northern
Hemisphere average temperatures in either the observations or in the results from the non-drifting 
models.

8.  There is weak anti-correlation between the NAO temperature index and the NINO3 index in the
observations and in several of the model results. Some models overestimate this weak teleconnection.

Paragraph 8.7.5 in IPCC (2001) claimed that "coupled climate models simulate the NAO quite well,
although there are some differences in amplitude". However, our findings show that the NAO time
series in many of the coupled models are unrealistic due mainly to monotonic trends and/or overly
strong correlations with ENSO:

1.  Category 1 models with monotonic trends, namely the five models BMRC, MRI, NCAR(W&M),
GISS(Miller), and LMD/IPSL;

2.  Category 2 models with overly strong correlations with ENSO, namely the six models BMRC,
MRI, UKMO, NCAR(CSM), ECHAM4, and CCSR;

3.  Category 3 models, namely the eight other models that do not have monotonic trends or overly
strong ENSO teleconnections: GFDL, CCCma, CSIRO, GISS(Russell), ECHAM3, IAP/LASG,
and CERFACS/IPSL.

Apart from the MRI model, all of the other category 1 models are not flux-adjusted. Categories 2 and 3
have slightly more flux-adjusted models than non-adjusted models, but the difference is not striking.
The CCCma, GISS(Russell), and GFDL models are all in category 3, thereby supporting the IPCC 
(2001) claim that "a realistic AO is simulated in CCCma, GISS, and GFDL models".

As a continuation of this project, we are now assessing the behaviour of the NAO in both control
coupled runs and also in climate change coupled runs having doubled carbon dioxide. Data for this is
provided by the second phase, CMIP2, which includes control simulations and also transient
simulations having 1% per year increase in atmospheric carbon dioxide concentration. CMIP2
provides monthly means of not only surface temperature but also sea-level pressure and precipitation,
which allows us to investigate more thoroughly the NAO and its teleconnections simulated by the
coupled models.
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