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Abstract The skill assessment of a set of wintertime
North Atlantic Oscillation (NAO) seasonal predictions
in a multi-model ensemble framework has been carried
out. The multi-model approach consists in merging the
ensemble hindcasts of four atmospheric general circu-
lation models forced with observed sea surface temper-
atures to create a multi-model ensemble. Deterministic
(ensemble-mean based) and probabilistic (categorical)
NAO hindcasts have been considered. Two different sets
of NAO indices have been used to create the hindcasts.
A first set is defined as the projection of model anomalies
onto the NAO spatial pattern obtained from atmo-
spheric analyses. The second set obtains the NAO
indices by standardizing the leading principal compo-
nent of each single-model ensemble. Positive skill is
found with both sets of indices, especially in the case of
the multi-model ensemble. In addition, the NAO defi-
nition based upon the single-model leading principal
component shows a higher skill than the hindcasts
obtained using the projection method. Using the former
definition, the multi-model ensemble shows statistically
significant (at 5% level) positive skill in a variety of
probabilistic scoring measures. This is interpreted as a
consequence of the projection method being less suitable
because of the presence of errors in the spatial NAO
patterns of the models. The positive skill of the seasonal
NAO found here seems to be due not to the persistence
of the long-term (decadal) variability specified in the
initial conditions, but rather to a good simulation of the
year-to-year variability. Nevertheless, most of the NAO
seasonal predictability seems to be due to the correct

prediction of particular cases such as the winter of 1989.
The higher skill of the multi-model has been explained
on the basis of a more reliable description of large-scale
tropospheric wave features by the multi-model ensem-
ble, illustrating the potential of multi-model experiments
to better identify mechanisms that explain seasonal
variability in the atmosphere.

1 Introduction

Early last century, meteorologists noticed that year-to-
year fluctuations in wintertime air temperatures in
Western Greenland and Northern Europe were often
out of phase with one another (Walker 1924; Loewe
1937; van Loon and Rogers 1978; Stephenson et al.
2003). When temperatures are below normal over
Greenland, they tend to be above normal in Scandina-
via, and vice versa. This climate phenomenon inspired
the concept of what was later called the North Atlantic
Oscillation (NAO). The NAO is associated with signifi-
cant changes in the intensity of the westerlies across the
North Atlantic onto Europe, and so with a meridional
oscillation in atmospheric mass with centers of action
near the Icelandic low and the Azores high (e.g., van
Loon and Rogers 1978). During the positive phase the
mean westerly flow over the North Atlantic and Western
Europe is stronger than usual. The Icelandic Low and
the Azores High, also known as the Atlantic dipole
(Hastenrath 2002) are then more intense than normal
and tend to be located slightly further north and east
(Glowienka-Hensa 1985; Serreze et al. 1997). This
anomalous flow increases the advection of warm and
humid air over Northwest Europe. The negative phase
of the NAO presents a weakened Atlantic dipole, with
weakened westerly flow and increased advection of
warm air over Greenland. The NAO is a mode that is
robustly present in every month of the year (Barnston
and Livezey 1987). It accounts on a month-by-month
basis for the largest amount of interannual variability in
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monthly North Atlantic sea level pressure in all but four
months of the year (Rogers 1990). However, the NAO is
most pronounced in amplitude and areal coverage dur-
ing winter (December to February) when it accounts for
more than one third of the total variance in sea-level
pressure (Wallace and Gutzler 1981; Barnston and Liv-
ezey 1987; Cayan 1992; Stephenson and Pavan 2003).

The NAO is linked to a wide range of climatic im-
pacts. The changes in the mean circulation patterns over
the North Atlantic are accompanied by pronounced
shifts in the storm track (Rogers 1990; Hurrell 1995b)
and associated synoptic eddy activity. This affects the
transport of atmospheric temperature and moisture and
produces changes in regional precipitation (Lamb and
Peppler 1987; Cayan 1992; Hurrell 1995a). Hurrell
(1995a) has shown that drier conditions occur over
much of Eastern and Southern Europe and the Medi-
terranean during high NAO index winters, while wetter-
than-normal conditions occur from Iceland through
Scandinavia. Winter snow depth and snow coverage
duration over the Alps in the early 1990s, when the
NAO was persistently positive, have been among the
lowest recorded this century (Beniston and Rebetez
1996), causing economic hardship on those industries
dependent on winter snowfall. Other phenomena asso-
ciated with the NAO include significant wave height
(Bacon and Carter 1993), changes in the Labrador
Current transport (Marsh 2000), in the Arctic sea-ice
extent (Fang and Wallace 1994), in the Davis Strait ice
volume (Deser and Blackmon 1993), in the total ozone
column variability over the Northern Hemisphere
(Orsolini and Doblas-Reyes 2003) and in dust transport
from Africa across the Mediterranean and the subtrop-
ical Atlantic (Moulin et al. 1997).

Atmospheric general circulation models (GCM),
forced with both observed temporally varying (Rodwell
et al. 1999) and constant (Barnett 1985; Glowienka-
Hensa 1985; Marshall and Molteni 1993) sea surface
temperature (SST), are able to display NAO-like fluc-
tuations. From those simulations, it would seem that the
fundamental mechanisms in the interannual time scale
of the NAO arise mostly from atmospheric processes
(Hurrell 1995a). In contrast, its decadal variations might
be slightly influenced by the local ocean (Marshall et al.
2001). Bretherton and Battisti (2000) have pointed out
the consequences of forcing atmospheric models with
prescribed SSTs in order to study the NAO predict-
ability. Notably, they found an out-of-phase relation-
ship between local surface fluxes and ocean heat content
(measured through SST anomalies) at decadal time
scales over the North Atlantic that would damp the SST
anomalies. Using a coupled atmosphere–ocean simpli-
fied model, they detect a robust correlation of 0.4 for the
seasonal average NAO, so that in this ideal experiment
the seasonal predictability limit is set to less than six
months.

A different process wherein atmospheric processes
alone might produce strong interannual and perhaps
longer-term variations in the intensity of the NAO

relies upon the connection between the strength of the
stratospheric cyclonic winter vortex and the tropo-
spheric circulation over the North Atlantic (Perlwitz
and Graf 1995; Kodera et al. 1996; Ambaum and
Hoskins 2002). The strong link between the North
Pacific basin and the North Atlantic through the
Aleutian–Icelandic lows seesaw (Martineu et al. 1999;
Honda et al. 2001) might be another source of poten-
tial NAO variability. The NAO on interannual time
scales appears to be a preferred mode of the atmo-
sphere that can be excited in a number of different
ways. For instance, the NAO interannual variability
seems to be linked to the large-scale atmospheric cir-
culation (Shabbar et al. 2001) and, to some extent, to
tropical (Czaja and Frankignoul 1999; Hoerling et al.
2001) and extratropical SST (Drévillon et al. 2001)
through the modulation of the storm track activity
(Peng and Whitaker 1999; Drévillon et al. 2003).

The nature of climate variability implies that, even if
the global SST could be exactly prescribed, the associ-
ated NAO evolution would not be uniquely determined
in a model given the diversity of strong interactions
taking place. The chaotic nature of atmospheric
dynamics would amplify any initial uncertainty blurring
the NAO predictability. If links between SST anomalies
and NAO variability exist, previous studies indicate that
they are likely to be weak. Hence, the overall change of
the atmospheric state with regard to climatology over
the North Atlantic region associated with specified SST
anomalies may not be large. Therefore, the amount of
predictable signal associated with the boundary condi-
tions will be small compared with the climatological
variance (Palmer and Sun 1985). In practice, an estimate
of the atmospheric probability density function (PDF)
can be determined from a set of integrations of a model
(Epstein 1969a; Leith 1974; Brankovic and Palmer
1997). This led to the concept of ensemble forecasting,
whose basic idea is to run not just one deterministic
model but to run a model many times with slightly dif-
ferent initial conditions. The set of initial conditions is
obtained by introducing perturbations that sample the
system uncertainty in the phase space. To tackle uncer-
tainty in the generation of an initial state, multi-analysis
forecasts have also been considered in medium-range
weather forecasting (Richardson 2001). Examples of
seasonal ensemble integrations have been discussed in
Brankovic et al. 1994, Palmer and Anderson (1994),
Stern and Miyakoda (1995), Barnett (1995) and Palmer
and Shukla (2000).

Initial conditions are not the only source of uncer-
tainty in seasonal forecasting. There are many contri-
butions to the error in a numerical forecast: truncation
error, simplification in the model parametrizations, etc.
A basic way of dealing with this kind of uncertainty is to
use a multi-model approach (Tracton and Kalnay 1993;
Vislocky and Fritsch 1995; Fritsch et al. 2000; Palmer
et al. 2000; Krishnamurti et al. 1999, 2000; Kharin and
Zwiers 2002; Stefanova and Krishnamurti 2002). The
multi-model approach consists of merging forecasts
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from different models, either with the same initial con-
ditions or not, to develop a wider range of possible
outcomes that will allow for a better estimate of the
atmospheric PDF. Model combination has already been
applied in the development of better standards of ref-
erence (Murphy 1992) or the forecast improvement by
independent forecast combination (Thompson 1977).
Using several models in an ensemble is a way of taking
into account our uncertainty about the atmospheric
laws, since different models make different assumptions
showing different performance in their variability simu-
lation. Each model can as well produce an ensemble of
simulations. This may be considered as yet another form
of ensemble and is referred to as multi-model ensemble
(Harrison et al. 1995; Atger 1999; Doblas-Reyes et al.
2000; Evans et al. 2000; Pavan and Doblas-Reyes 2000).
By merging several single model ensembles into a unique
multi-model ensemble, the effect of perturbations in
both initial state and model formulation can be in-
cluded, sampling in this way part of both sources of
error. Long-range forecasting is probably one area of
fruitful application for model merging, as forecasts from
many different models are already available.

Given that large-scale climate features are more pre-
dictable than smaller scale anomalies, this study inves-
tigates the skill of seasonal NAO hindcasts, as a proxy to
deliver seasonal forecasts over the Euro-Atlantic region,
in a multi-model framework. In Sect. 2 we introduce the
experiment. Section 3 describes the hindcast accuracy
over the European region. The verification of different
sets of NAO hindcasts is made in Sect. 4, and, finally, a
discussion of the most important results is drawn along
with the main conclusions in Sect. 5.

2 Experimental design

2.1 Data

The 500-hPa geopotential height (Z500) analyses were obtained
from the 53-year (1948–2000) NCEP-NCAR reanalyses (Kalnay
et al. 1996) as 2.5� horizontal resolution and twice per day data.
The calculations were also repeated with the 1979–93 European
Centre for Medium-Range Weather Forecasts (ECMWF) reanal-
yses (Gibson et al. 1997) to check the validity of the results.

2.2 Model experiment

The multi-model seasonal ensemble hindcasts which have been
analysed here, were run as part of the European project PROVOST
(PRediction Of climate Variations On Seasonal to interannual
Time scales) by four different institutions: the European Centre for
Medium-Range Weather Forecasts (ECMWF), the Met Office
(MetO), Météo-France (MetFr), and Electricité de France (EDF).
The different models and the experiment are fully described in
Palmer et al. (2000), Doblas-Reyes et al. (2000), and Pavan and
Doblas-Reyes (2000).

The atmospheric models were run for 120 days with nine-
member ensembles for the period 1979 to 1993. The only difference
between the EDF and MetFr runs is the horizontal resolution (T63
instead of T42). Initialization was the same for all models. The
atmosphere and soil variables were initialized on nine subsequent

days from 12 GMT ERA (ECMWF Re-Analyses) analyses (Gib-
son et al. 1997), starting from the tenth day preceding the first
month of the season covered (December, January, February, and
March). This method is known as the lagged average forecast
method (Hoffman and Kalnay 1983; Molteni et al. 1988). All
hindcasts end on the last day of the fourth month of integration, so
that the first integration was 128-day long, while the last one was
120-day long. Daily observed SST and sea-ice extent were pre-
scribed using either ERA-15 or GISST data, so that there was no
interactive ocean model in this experiment, SST being updated
daily in the integrations. It is likely that the model skill for the
forced experiment can be regarded as an upper bound for the skill
of current coupled ocean–atmosphere models (Latif and Barnett
1996), at least as far as the hypothesis of a negligible feedback from
the ocean at the seasonal time scale is accepted. However, Sutton
and Mathieu (2002) suggest that ocean heat content anomalies may
provide a better representation of the impact of the extratropical
ocean on the atmosphere than SSTs.

The model bias, computed as the difference between the long-
term climatology of the model and the verification, is shown to be
of the order of the anomaly being predicted. Some hindcast biases
are described in Doblas-Reyes et al. (2000), Brankovic and Palmer
(2000), Pavan and Doblas-Reyes (2000), and Pavan et al. (2000). In
short, over the Euro-Atlantic region ECMWF, MetFr, and EDF
runs present a too strong meridional gradient of Z500 in midlati-
tudes, producing a strong zonality. MetO shows a more realistic
circulation, with a zonal flow weaker than normal over North
America and the Western Atlantic. There is also an overall excess
of eastward penetration of the Atlantic storm track and a general
underestimation of the intraseasonal variability, in particular
blocking frequency.

Due to the model biases described, the raw value of a forecast in
long-range forecasting is in principle not useful (Déqué 1991), so
that anomalies have to be computed. Anomalies are expressed as
departures from the corresponding long-term climatology. Given
the short length of the time series available (14 years), calculation
of both model and observed anomalies as well as the forecast
verification has been carried out in cross-validation mode (Wilks
1995). This implies eliminating from the computation the target
year. Hindcasts have been verified using seasonal averages for the
periods extending from months 1 to 3 (December to February,
DJF) and 2 to 4 (January to March, JFM), though for brevity the
study has been focused on the second period, less affected by the
initial conditions (Pavan and Doblas-Reyes 2000).

2.3 Forecast quality

Forecast verification is an important component of the forecast
formulation process (Jolliffe and Stephenson 2003). It consists of
summarizing and assessing the overall forecast quality as a statis-
tical description of how well the forecasts match the verification
data. Forecast quality has been evaluated by assessing hindcast
skill, including measures of reliability and accuracy. The ensemble
mean has been considered as the deterministic hindcast of a con-
tinuous variable and time correlation has been used to evaluate its
skill. The evaluation of probabilistic forecasts is a more complex
task. Three sources of uncertainty in common scoring metrics of
probabilistic forecasts are: improper estimates of probabilities from
small-sized ensembles, insufficient number of forecast cases, and
imperfect reference values due to observation uncertainties. A way
to alleviate this problem consists of using several scoring measures.
Forecast quality is a multidimensional concept described by several
different scalar attributes, which provide useful information about
the performance of a forecasting system. Thus, no single measure is
sufficient for judging and comparing forecast quality. Conse-
quently, a whole suite of verification measures to assess the prob-
abilistic hindcasts quality has been used here: ranked probability
skill score (RPSS), receiver operating characteristic (ROC) area
under the curve, Peirce skill score (PSS), and odds ratio skill score
(ORSS). All the skill measures used are briefly described in the
Appendix.
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3 Model skill over Europe

Given our interest in the Euro-Atlantic region, the skill
of the experiment has been assessed over a region
extending from 35�N to 87.5�N and from 60�W to
42.5�E. Skill over the area is generally smaller than for
the whole Northern Hemisphere, but the wintertime
multi-model ensemble results are slightly better than or
of the same order of the best single model, as shown by
Pavan and Doblas-Reyes (2000). The geographical dis-
tribution of the ensemble-mean skill over this area has
an uneven distribution. Figure 1 shows the JFM Z500
grid-point correlation for the four single-model ensem-
ble mean hindcasts and the multi-model ensemble mean.
In general, two maxima are present over the southwest
Atlantic, Northern Africa and Northern Europe, while
the lowest skill is found over Western Europe. The
multi-model ensemble mean presents in general the best
results. To better illustrate the multi-model ensemble
improvement, Fig. 2a shows the PDF of the Z500 grid-
point correlation over the Euro-Atlantic region. All the
models present a PDF biased towards positive values
(mean value of 0.28, 0.29, 0.26, 0.26 and 0.33 for EC-
MWF, MetO, MetFr, EDF and the multi-model
ensemble, respectively), though this bias is stronger for
the multi-model ensemble.

The probabilistic hindcast skill has been assessed
using the RPSS for three equiprobable categories. The

categories are defined by the terciles of either the hind-
cast or verification anomalies. Tercile boundaries have
been computed in cross-validation mode using two dif-
ferent methods. A simple way of estimating the quantiles
of a sample consists in ranking the values and finding the
boundaries that create equally populated bins. We will
refer to this method as ‘‘counting’’. A more sophisti-
cated method relies upon a Gaussian-kernel estimator of
the population PDF (Silverman 1986) that allows for a
high-resolution estimate. In this case, once the PDF has
been estimated, the tercile boundaries are computed as
the two values distributing the variable in three equi-
probable sections. As mentioned, there is an inherent
uncertainty in these estimates that translates into an
increased uncertainty in the skill assessment process.
However, no RPSS differences have been found in the
results obtained for each method. The geographical
distribution of the RPSS displays essentially the same
pattern as the ensemble mean skill, with larger areas of
negative skill (not shown). However, the improvement
provided by the multi-model ensemble is more evident
than in the ensemble-mean results. Figure 2b shows the
PDF of grid-point RPSS over the region for the multi-
model and the single-model ensembles. The mean RPSS
is –10.0, –4.2, –5.8, –8.3 and 3.4 for ECMWF, MetO,
MetFr, EDF and the multi-model ensemble, respec-
tively. The main RPSS improvement for the multi-
model ensemble consists of a reduction of the very
negative values and an important increase of the

Fig. 1 The 500-hPa
geopotential height correlation
coefficient for a the multi-
model, b ECMWF, c MetO,
d MetFr and e EDF over the
Euro-Atlantic region for the
2–4 month ensemble mean
hindcasts. Contour interval is
0.2 and the zero line has been
omitted. Negative values are
dashed
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probability in the range of positive RPSS, which ex-
plains the increase of the potential value of the multi-
model ensemble hindcasts (Palmer et al. 2000). No clear
improvement appears in the high RPSS range. The low
scores of the single models in the probabilistic case may
be due to the difficulty in obtaining good estimates of the
PDF with a nine-member ensemble. Thus, part of the
multi-model ensemble improvement with the probabi-
listic hindcasts may well be due to the increase in
ensemble size.

The poor skill found over the European region on a
grid-point basis may strongly reduce the value of the
hindcasts. Pavan and Doblas-Reyes (2000) have sug-
gested that an alternative way of extracting information
with significant skill might consist in using large-scale
patterns as predictors. This hypothesis is checked in the
next section in the case of the NAO. It is nevertheless
important to bear in mind that other modes as the
Eastern Atlantic or the Scandinavian patterns also have
a strong impact on European climate (Qian et al. 2000;
Massacand and Davies 2001; Castro-Dı́ez et al. 2002)
and their predictability should also be assessed in future
studies.

4 NAO hindcast skill

4.1 Tropospheric anomalies associated with the NAO

Simple indices of the NAO have been defined as the
difference between the normalized monthly sea level
pressure at subtropical and subpolar locations (Hurrell
1995a; Hurrell and van Loon 1997; Luterbacher et al.
1999). An example of this kind of index is the one de-
fined by Jones (Jones et al. 1997; these data are available
at http://www.cru.uea.ac.uk/cru/datanao.htm), com-
puted as the difference in sea level pressure at Gibraltar
and Stykkisholmur in Iceland. Positive (negative) values
of the index are linked to the positive (negative) phase of
the NAO. An example of the corresponding NAO sig-
nature for the geopotential height field is shown in
Fig. 3. These plots have been constructed by averaging
Z500 anomalies from the NCEP reanalyses for the three
winters (JFM) with the highest (lowest) NAO value in
the period of the experiment based upon Jones’ (Jones
et al. 1997) index. The positive (negative) index years are
1983, 1984, and 1989 (1985, 1987, and 1988). The posi-
tive phase pattern presents a negative anomaly over
Iceland, eastern Greenland and the Arctic, and a posi-
tive one over the central subtropical Atlantic and Wes-
tern Europe. This is the kind of pattern that we expect
the models to simulate. It is associated with a cold
anomaly over Greenland and North Africa and a warm
anomaly over the extratropical North Atlantic and
Europe (not shown). The negative phase shows a similar
pattern with reversed sign. As for the precipitation sig-
nature (not shown), the NAO positive phase shows a
positive anomaly over Iceland and Scandinavia and a

Fig. 2 Probability distribution function of grid-point a ensemble-
mean correlation, and b RPSS for tercile categories of the 500-hPa
geopotential height over the Euro-Atlantic region. Skill has been
computed separately for each single grid point in the region before
estimating the distribution. The thick line corresponds to the multi-
model and the thin lines to the single-model ensembles. Tercile
boundaries have been computed using a kernel-based method (see
text for details)

Fig. 3 The 500-hPa
geopotential height signature
for the a positive and b negative
phase of the NAO. Contour
interval is 0.2 and the zero line
has been omitted. Negative
values are dashed. See text for
details
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negative one over the Iberian Peninsula and Western
Mediterranean, eastern Greenland and eastern sub-
tropical Atlantic (Hurrell 1995a; Hurrell and van Loon
1997). This corresponds to an increase of storm track
activity (not shown) over northern Europe (Serreze et al.
1997; Rodwell et al. 1999). The negative phase shows an
increase of cyclone activity over the central North
Atlantic leading towards the Bay of Biscay.

4.2 NAO indices: reference and hindcasts

A simple NAO index for the hindcasts is defined here in
a similar way to Pavan and Doblas-Reyes (2000). An
empirical orthogonal function (EOF) analysis has been
carried out using the December to March monthly Z500
NCEP reanalysis data from 1948 to 2000 over the region
87.5�N–20�N and 90�W–60�E. The seasonal cycle and
the long-term mean have been previously removed to
create monthly anomalies, which have been weighted by
the cosine of the latitude. The first EOF, shown in
Fig. 4, explains 28.6% of the variance. Ambaum et al.
(2001) have discussed the physical consistency of defin-
ing the NAO based on regional EOF analysis and rec-
ommended this regional approach. The principal
component of the leading EOF (PC1 henceforth) has
been used as a surrogate for the NAO index, along with
Jones’ index. The correlation of PC1 with Jones’ index
for JFM is 0.93 (0.91 for DJF). The slope of the linear

regression of PC1 against Jones’ index is close to 1 (0.94
and 0.97 for DJF and JFM, respectively). This indicates
that the results presented hereafter may depend on the
verification index used, though not strongly.

A first example of hindcast NAO index consists of the
projection of the monthly grid point anomalies for each
model and ensemble member onto the NCEP leading
EOF described already. This method is referred to as
Pobs in the following. The resulting covariances are then
seasonally averaged. The set of ensemble hindcasts are
displayed using open dots in Fig. 5a. Each dot corre-
sponds to the JFM hindcast of a member of a single-
model ensemble for a given year. Since the interannual
variance of single-model anomalies is generally under-
estimated, single-model hindcasts have been standard-
ized in cross-validation mode using a separate estimate
of the standard deviation for each model. The verifica-
tion time series have also been standardized. The multi-
model ensemble hindcast is built up as the ensemble of
all the single-model ensemble hindcasts. The 2–4 month
multi-model ensemble mean (solid dots) has a correla-
tion with PC1 of 0.46, and 0.33 with Jones’ index, both
not statistically significant with 95% confidence based
on 14 degrees of freedom (correlation would be statis-
tically significant at the 5% level if larger than 0.50).
Single-model ensemble-mean skill is similar to or lower
than that for the multi-model ensemble (not shown).
Pavan and Doblas-Reyes (2000) have shown that an
increase in correlation up to statistically significant

Fig. 4 Leading empirical
orthogonal function of the
500-hPa geopotential height
winter (DJFM) monthly mean
anomalies for a NCEP
reanalyses, b ECMWF, cMetO,
d MetFr, and e EDF. Negative
values are dashed. Contour
interval is 0.5 units and the zero
line has been omitted
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values (0.55) may be obtained if a linear combination of
each model ensemble mean is taken instead of pooling
the ensemble-mean hindcasts using equal weights.

A different set of NAO ensemble hindcast indices has
been defined using the first principal component of an
EOF analysis performed on each model. This method
will be referred to as Pmod henceforth. The corre-
sponding spatial patterns obtained in the EOF analysis
are shown in Fig. 4. The first EOF explains 25.5%,
24.3%, 29.3%, and 30.4% of the total variance for
ECMWF, MetO, MetFr and EDF, respectively. They

present a spatial distribution similar to the NCEP NAO
pattern, the pattern for MetO being the most realistic,
though some spatial shifting can noticed. The spatial
correlation of the single-model leading EOF with the
corresponding NCEP EOF is 0.87, 0.99, 0.86 and 0.78
for ECMWF, MetO, MetFr and EDF, respectively. The
use of single-model principal components as NAO
hindcasts has the advantage of taking into account the
spatial biases in the NAO patterns in the different
models. The spatial error, illustrated in Fig. 4, can re-
duce the NAO signal estimated when using projections
of model anomalies. The NAO hindcasts were stan-
dardized as described and the multi-model constructed
in the same way. This approach corresponds to using a
Mahalanobis metric, which has some good invariance
properties (Stephenson 1997), to assess the model ability
to simulate the NAO. The corresponding multi-model
ensemble-mean hindcasts turn out to be very similar to
the ones obtained by projecting the model anomalies
(Fig. 5b). However, correlation with the verification
time series is now higher (the same result applies for the
seasonal hindcasts for 1–3 month hindcasts) rising up to
0.57 (PC1) and 0.49 (Jones). These values are already
statistically significant at 95% confidence. Other mea-
sures of error, such as the root mean square error or the
mean absolute deviation, are also reduced. This implies
an improvement in NAO skill with regard to that
obtained with the Pobs method. Additionally, the multi-
model ensemble spread does not change when consid-
ering either anomaly projections or single-model
principal components (not shown).

Two additional NAO hindcast indices have been
tested. The corresponding results will be discussed very
briefly. In the first one, the geopotential anomalies of the
verification and the individual ensemble members have
been averaged over pre-defined regions and their dif-
ferences computed, following Stephenson et al. (2000).
The boundaries of the two areas are (90�W–22�E, 55�N–
33�N) and (90�W–22�E, 80�N–58�N) for the southern
and northern boxes, respectively. These boundaries have
been chosen on the basis of the correlation between the
DJFM-mean Jones’ index and the Z500 NCEP reanal-
yses from 1959 to 1998. (These correlations are available
at http://www.cdc.noaa.gov/Correlation/). An areal
average was chosen instead of a simple difference be-
tween two grid points because it avoids some of the
subjectivity inherent to the selection of the reference grid
points. The results are quite similar to those discussed.
The multi-model ensemble-mean skill is 0.37 using PC1
as verification. Secondly, an NAO temperature index
has been defined based on the temperature seesaw over
Europe and Greenland (Loewe 1937; van Loon and
Rogers 1978; Stephenson et al. 2000). When winters in
Europe are unusually cold and those in west Greenland
are mild (Greenland above mode), the Icelandic Low is
generally weak and located around the southern tip of
Greenland. In the opposite mode, when Europe is mild
and west Greenland is cold (Greenland below mode), the
Atlantic westerlies are strong, the Icelandic Low is deep,

Fig. 5 a Winter NAO hindcast (JFM seasonal average) index
defined as the projection of 500-hPa geopotential height ensemble
anomalies from individual ensemble members onto the first EOF of
the NCEP reanalyses (Pobs method). Solid triangles and squares
represent the two verifications: NCEP PC1 and Jones’ indices,
respectively. The dots correspond to the multi-model ensemble-
mean hindcasts, while the small open dots represent the individual
ensemble members. b Same as a, but for the NAO hindcasts
obtained from the single-model leading principal component
(Pmod method). All NAO index values have been standardized
to correct the underestimation of each single-model interannual
variance using cross-validation
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and a strong maritime flow extends into Europe (Hurrell
and van Loon 1997; Serreze et al. 1997). The areas se-
lected are (90�W–0�, 72�N–50�N) and (0�–90�E, 72�N–
50�N). As expected, a strong anticorrelation between
this temperature and the geopotential indices described
above is found. A higher correlation of the multi-model
ensemble-mean hindcasts (0.47) is obtained with
the temperature index, but this might be just due to
the prescription of observed SSTs in the experiment. The
skill of the two areal-average indices confirms that
the positive multi-model ensemble-mean correlation is a
robust feature. In the rest of this work only results from
the more successful Pobs and Pmod methods will be
discussed.

Some statistical properties of the NAO ensemble
hindcasts have also been analyzed. Skewness is a mea-
sure of the asymmetry of a distribution about its mean.
Distributions with positive and negative skewness rep-
resent asymmetric distributions with a larger tail to the
right or left respectively. Positive kurtosis indicates a
relatively peaked distribution with long tails (leptokur-
tic). Negative kurtosis indicates a relatively flat distri-
bution with short tails (platykurtic). Measures of
skewness for the 2–4 month NAO hindcasts are negative
for both the multi-model ensemble and some of the
single models. This is because more negative than posi-
tive NAO hindcasts are found in the ensemble. Never-
theless, this is not the case for the 1–3 month hindcasts.
Instead, the hindcast time series present a negative
kurtosis at both lead times and for all the models. This
platykurtic behavior indicates that the tails of the
hindcast distribution present a low probability. Finally,
Fig. 5 gives hints of the ensemble distribution being
skewed to values with the same sign as the observed
anomaly when the multi-model ensemble mean is far
from zero. This can be interpreted as an indication of
predictive skill, especially for the years 1988 and 1989,
although longer samples are needed to extract more
definite conclusions.

4.3 Probabilistic NAO hindcasts

Deterministic predictions based on only the ensemble
mean do not include all the information provided by the

individual members within the ensemble. Instead, it is
more useful to provide hindcasts for given categories in
terms of probability forecasts. The skill scores described
in the Appendix have been used to assess the skill of
these hindcasts. Table 1 summarizes the results for the
hindcasts obtained from the single-model principal
components with Jones’ index as verification. Similar
results have been found for the different sets of hindcasts
and verification data available.

Three events have been considered here: anomalies
above the upper tercile, above the mean, and below
the lower tercile. The hindcast probability bias was in the
range [0.8, 1.2] for the three categories, which for
the short length of the sample corresponds to low-biased
hindcasts. This indicates that a simple bias correction by
standardizing the time serie provides quite reliable
hindcasts. Nevertheless, a longer time series would allow
for a systematic correction of the conditional biases.

RPSS is an appropriate measure of the quality of
multiple category forecasts as it takes into account the
way the probability distribution shifts toward the ex-
tremes within a particular category. The RPSS for NAO
hindcasts is very low, as shown in Table 1. This should
be expected for an event with a low signal-to-noise ratio
(Kumar et al. 2001), as in the case of the seasonal NAO.
However, the values tend to be positive, indicating that
the ensemble hindcasts provide slightly better estimates
of the tercile probabilities than climatology. The multi-
model ensemble shows the highest skill score. More
interestingly, the RPSS is generally not significantly
different from zero for the single models, but it turns out
to be statistically significant at 5% level for the multi-
model ensemble, regardless of the verification data used
(not shown).

An assessment of hindcast quality for binary events
has also been undertaken. Several events had to be
considered because the measures of accuracy of binary
events do not take into account the severity of errors
across categories (Jolliffe and Stephenson 2003). For
instance, if category one were observed, calculations of
the false alarm rate would not discriminate if either
tercile two or three were forecast, the second case being
less desirable. In addition, the estimation of the scores
for various events allows for an evaluation of the
robustness of hindcast quality. The values of the ROC

Table 1 Ranked probability skill score (RPSS), area under the
ROC curve (ROC), Peirce skill score (PSS), odds ratio (OR), and
odds ratio skill score (ORSS) for the JFM NAO probabilistic
hindcasts. 95% statistically significant values appear in bold (see

the text for information about the tests applied). The three events
considered are: hindcasts above the upper tercile (1), above the
mean (2), and below the lower tercile (3)

RPSS ECMWF MetO MetFr EDF S–E

–18.2 9.3 4.0 3.8 13.1

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

ROC 0.63 0.56 0.46 0.57 0.50 0.74 0.53 0.52 0.70 0.80 0.63 0.59 0.66 0.60 0.66
PSS 0.12 0.06 –0.03 0.11 0.03 0.13 0.04 0.06 0.19 0.23 0.12 0.05 0.13 0.07 0.09
OR 1.68 1.28 0.88 1.63 1.12 1.76 1.12 1.28 2.32 2.86 1.63 1.25 1.83 1.31 1.52
ORSS 0.25 0.12 –0.06 0.24 0.06 0.28 0.08 0.12 0.40 0.48 0.24 0.11 0.29 0.13 0.21
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area under the curve are in most of the cases above the
no-skill value of 0.5. The multi-model ensemble does not
always have the highest score, single models showing a
higher value for some events. However, the multi-model
skill is similar for the different events taken into account,
which is not the case for the single models. The homo-
geneous ROC area values for the multi-model ensemble
might partly be a consequence of the ROC score being
almost invariant with the set of probability thresholds
(Stephenson 2000). Thus, the ROC area shows that, as in
the case of the ensemble-mean correlation, there is a
consistent positive skill in the NAO multi-model hind-
casts, though it does not tend to be statistically signifi-
cant at the 5% level (it appears to be the case only for
the upper tercile event). Similar conclusions are drawn
for the other skill measures. Table 1 also shows the re-
sults for PSS, OR, and ORSS. The multi-model
ensemble again displays the best results. Although the
PSS is a measure that could be affected by the hindcast
bias, it shows statistically significant skill in the same
cases as the other measures do, proving that the NAO
hindcasts are not only accurate, but also reliable. The
similarity between ROC area and OR values can be ex-
plained through the parameterization of the ROC curve
described in Stephenson (2000). As a general rule, ORSS
seems to be the most stringent skill score. ORSS is
independent of the marginal distributions, so that it is
able to strongly discriminate the cases with and without
association between hindcasts and observations. It is
important to note that the skill for the event ‘‘above the
mean’’ seems to be always quite low. This might be due
to the lack of robustness of the estimated mean as a
consequence of the short sample used (Kharin and
Zwiers 2002).

5 Concluding remarks

Given the low seasonal hindcast skill at grid-point scale
over the Euro-Atlantic region, a means of extracting
greater predictability by reference to larger scale features
should prove to be useful. This study suggests that
predictions of the NAO may provide an alternative to
relying on GCM direct output. A comprehensive
assessment of the NAO seasonal hindcast skill has been
carried out. This approach to the assessment of predic-
tive skill presents advantages over the analysis of the
predictability of a few case studies (Dong et al. 2000;
Elliott et al. 2001), although the analysis of specific cases
allows for the identification of sources of predictability.
The skill evaluation has been done using a multi-model
framework. The multi-model approach used here con-
sisted of merging a set of ensemble hindcasts from four
atmospheric models.

Both deterministic (ensemble mean) and probabilistic
(categorical) hindcasts have been considered and evidence
of themulti-model ensemble skill being superior to that of
the singlemodel ensembles has been presented. It has been
shown that the NAO multi-model ensemble-mean

hindcasts may have significant skill (at the 5% level) when
the NAO indices are defined as the standardized leading
principal component of the single-model ensembles
(Pmod method). The skill for probabilistic hindcasts of
the NAO indices falling in the outer tercile categories and
also for the ‘‘above-the-mean’’ event has been computed.
Because different verification scores measure different
aspects of the forecasting system, a set of probabilistic
skill measures has been used to estimate probabilistic
forecast quality in this paper. A consistent positive skill to
forecasting probabilistically NAO terciles has been
found. A strong agreement has been observed in the re-
sults obtained using two independent verification sets: the
sea level pressure NAO index defined by Jones (Jones
et al. 1997) and the principal component of the 500-hPa
geopotential height leading EOF computed with NCEP
monthly-mean data for the period 1948–2000. In addi-
tion, the two methods described above to compute the
tercile boundaries (counting and Gaussian-kernel PDF
estimate) also presented similar results (not shown). As
for the ensemble mean, an overall degradation of the
probabilistic forecast quality has been observed for the
NAO hindcasts computed as projections of monthly
anomalies of the individual ensemble members onto the
leading EOF of the 500-hPa geopotential height monthly
mean NCEP analyses (Pobs method) when compared to
those of the Pmod method. This may be due to the model
anomaly projection method being less suitable because of
the model systematic error leading to spatial shifts of the
simulated NAO patterns, which would generate different
values of the index for a similar type of signal in each
model.

Given the short time scale of the sample, some of
the skill might be due to decadal variability in the
initial conditions or from the strong predictability of
particular winters. A simple way of removing artificial
skill due to long-term trends is to verify year-to-year
differences in the time series. Differences remove the
low-frequency variability from the time series, so that
the skill in year-to-year changes can be assessed
(Stephenson et al. 2000). The correlation of the back-
ward differences for the ensemble-mean hindcast based
on the standardized first principal component is 0.19,
0.62, –0.01, 0.33 and 0.35 for ECMWF, MetO, MetFr,
EDF and the multi-model ensemble, respectively.
Correlations are much higher for the 1–3 month
hindcasts. Thus, despite these low correlations, the
NAO skill in these experiments is partly due to the
correct simulation of year-to-year variations.

The contribution to the positive skill from specific
years is an important issue because of the small sample
used in this study. The case of JFM 1989 is particularly
interesting. The multi-model ensemble shows an
extraordinarily good forecast for this winter. When this
year is removed from the time series, the skill is sub-
stantially reduced (the multi-model ensemble-mean
correlation drops to 0.12 from values close to 0.5 and
similar reductions in correlation are found for the single
models). The probabilistic score measures seem to be less
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affected though. For instance, RPSS takes the value 7.1
(compared with 13.1 in Table 1) and is marginally sig-
nificant at the 5% level, whilst the odds ratio takes
values around 1.4, which are not significant. Scores are
quite insensitive to the removal of other years. For in-
stance, the correlation is 0.46 when the year 1985 is not
taken into account. Thus, a substantial part of the skill
presented here comes from the correct simulation of the
atmospheric circulation over the North Atlantic in JFM
1989. It is then important to try to understand the rea-
sons why some years are so well forecast while others are
not.

One of the possible dynamical reasons for 1989
anomalies being correctly predicted may be depicted
using an estimate of the barotropic refraction index for
the 1985 and 1989 JFM hindcasts as done in Pavan et al.
(2000). These two years have an opposite sign NAO
(Fig. 5), which is mainly due to the presence of positive
(negative) geopotential anomalies (not shown) over the
subtropical Atlantic in 1989 (1985). The multi-model
ensemble mean displays the right pattern north of 45�N
in both cases. Nevertheless, anomalies are misplaced in
1985 over the region south of 45�N, which is not the case
in 1989 (not shown). This explains the bad NAO pre-
diction for the former year (Fig. 5), with the multi-
model ensemble evenly distributed around zero, and the
highly satisfactory 1989 hindcasts, with a positively
skewed multi-model ensemble. Figure 6 shows the
barotropic refraction index for the verification and the
multi-model ensemble for both years. This index, which
gives an indication of the propagation of large-scale
waves in the extratropics, corresponds to the critical
wave number separating the meridionally confined
waves from those with a propagating structure profile.
That is, the minima of the function give an indication of
possible meridional confinement of the waves. The
refraction index for the verification (solid line) has a very
similar behavior north of 45�N in both years. This fea-
ture agrees well with the strong resemblance of the
anomaly patterns over that sector. However, a clear
confinement of the waves with wave number greater
than 3 in the latitudinal range 35�N–45�N is evidenced
in the analyses for 1989, though not for 1985. This im-
plies that all sort of large-scale waves can propagate into
the subtropical Atlantic in 1985, the confinement of
waves with wave number greater than 2 being found just
north of 60�N. Figure 6b presents evidence of a sub-
stantial number of members of the multi-model-ensem-
ble correctly showing some sort of confinement south of
45�N in 1989 (31 out of 36 members have a local mini-
mum in this region; they are depicted using dashed
lines). Nevertheless, an important latitudinal spread of
the minima is found, so that the ensemble mean of the
index may give the misleading impression of confine-
ment not taking place. In the other hand, a substantial
number of ensemble members (26 out of 36, depicted
using dashed lines) seem to unrealistically confine large-
scale waves in a wide range of latitudes south of 45�N
in 1985 (Fig. 6a). This emphasizes the importance of

correctly simulating the structure of large-scale waves, in
order to produce skilful NAO hindcasts. In addition,
this diagnostic only makes sense if an ensemble is used;
in other words, a single-member simulation or the use of
the ensemble mean would not have led to the same
conclusions. Furthermore, the use of a multi-model
ensemble also takes partly into account the different
systematic errors of the single models when simulating
the processes dynamically related to the NAO. As a
consequence, the probabilistic formulation of multi-
model seasonal NAO hindcasts may be able to make a
better use of all this information than a deterministic
formulation based on a single model.

Although there is some evidence of NAO skill in the
hindcasts presented here, the skill is quite low. More
research should be carried out to better understand the
physical reasons for the positive skill found. The high
agreement among the different accuracy and skill mea-
sures for the multi-model seems to be encouraging and
deserves further investigation with improved models and
larger samples. The results presented strengthen
the prospects and expected utility of the present-day

Fig. 6 Refraction index as a function of the latitude for a JFM
1985 and b JFM 1989. The solid line corresponds to the verification,
the dashed lines to the ensemble members having a local minimum
between 30�N and 45�N and the dotted lines to the rest of the
ensemble members
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state-of-the-art seasonal forecast systems. It is also
interesting to emphasize that the methodology described
here may provide even better results when applied to
other large-scale phenomena, either over the North
Atlantic region (given the limited amount of variability
explained by the NAO) or elsewhere. At present, the
method is being used to assess the skill of the multi-
model ensemble hindcasts carried out in the framework
of the DEMETER project (Palmer et al. submitted to
Bull Am Meteorol Soc 2003) and in the operational
seasonal forecasts at ECMWF. DEMETER is a EU-
Funded project intending to assess the hindcast skill and
potential value of a multi-model ensemble-based system
for seasonal-to-interannual prediction, including inno-
vative examples of the application of multi-model sea-
sonal ensemble information in malaria incidence and
crop yield forecasting. Full information about the pro-
ject can be found at http://www.ecmwf.int/research/
demeter).
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Appendix 1: scoring rules

A tool commonly used to evaluate the association between ensemble-
mean hindcasts and verification is the time correlation coefficient.
This measure is independent of the mean and variance of both
variables. As in the rest of the study, different climatologies for
hindcasts and verification were computed using the cross-validation
technique, making the correlation estimator unbiased (Déqué 1997).

A set of verification measures has been used to assess the quality
of the probabilistic hindcasts: the ranked probability skill score
(RPSS), the receiver operating characteristic (ROC) area under the
curve, the Peirce skill score (PSS), and the odds ratio skill score
(ORSS). Most of them, along with estimates of the associated er-
ror, are described in Stephenson (2000), Zhang and Casey (2000),
and Thornes and Stephenson (2001), where the reader is referred to
for more specific definitions and properties.

The accuracy measure for RPSS is the ranked probability score
(RPS). RPS was first proposed by Epstein (1969b) and simplified
by Murphy (1971). This score for categorical probabilistic forecasts
is a generalization of the Brier score for ranked categories. For J
ranked categories, the RPS can be written:

RPSðr; dÞ ¼ 1

J � 1

XJ

i¼1

Xi

k¼1
rk �

Xi

k¼1
dk

 !2

ð1Þ

where the vector r ¼ ðr1; . . . ; rJ Þð
PJ

k¼1 rk ¼ 1Þrepresents an esti-
mate of the forecast PDF and d = (d1, …, dJ) corresponds to the
verification PDF where dk is a delta function which equals to 1 if
category k occurs and 0 otherwise. By using cumulative probabil-
ities, it takes into account the ordering of the categories, though for

finite ensemble sizes, the estimated probabilities for the event to be
in different categories strongly depend on the estimate of the cat-
egory thresholds. RPS can be accumulated for several time steps or
grid points over a region, or both. The RPSS expresses the relative
improvement of the forecast against a reference score. The refer-
ence score used here has been the climatological probability hind-
cast, which, under the assumption of a Gaussian distribution of the
observations, is the forecast without any skill that minimises the
RPS (Déqué et al. 1994). The RPSS is defined as:

RPSS ¼ 100 1� RPSforecast
RPSclimatol

� �
ð2Þ

Such skill score is 100 for a perfect forecast, 0 for a probabilistic
forecast which is no more accurate than a trivial forecast using
long-term climatology, and negative for even worse forecasts, as
random or biased values. To provide an estimate of the skill
score significance, the calculations were repeated 100 times for a
given time series (either a grid point or the NAO index). Each
time, the order of the individual hindcasts was scrambled (this
preserves the PDF of the variable), then computing the skill
score, and finally taking the 5% upper threshold of the resulting
skill distribution.

RPSS can be a too stringent measure of skill by requiring a
correct estimate of a simplified PDF. Then, a set of simple accuracy
measures for binary events is made based upon the hit rate H, or
the relative number of times an event was forecast when it oc-
curred, and the false alarm rate F, or the relative number of times
the event was forecast when it did not occur (Jolliffe and Ste-
phenson 2003). They are based on the likelihood-base rate factor-
ization of the joint probability distribution of forecasts and
verifications (Murphy and Winkler 1987). To derive them, a con-
tingency table is computed, wherein the cells are occupied by the
number of hits (a, number of cases when an event is forecast and is
also observed), false alarms (b, number of cases the event is not
observed but is forecast), misses (c, number of cases the event is
observed but not forecast), and correct rejections (d, number of no-
events correctly forecast) for every ensemble member. Then, the hit
rate and the false alarm rate take the form:

H ¼ a
aþ c

F ¼ b
bþ d

ð3Þ

The previous scheme allows for the definition of a reliability
measure, the bias B. Reliability is another attribute of forecast
quality and corresponds to the ability of the forecast system to
average probabilities equal to the frequency of the observed event.
The bias indicates whether the forecasts of an event are being issued
at a higher rate than the frequency of observed events. It reads:

B ¼ aþ b
aþ c

ð4Þ

A bias greater than 1 indicates over-forecasting, i.e., the model
forecasts the event more often than it is observed. Consequently, a
bias lower than 1 indicates under-forecasting.

The Peirce skill score (PSS) is a simple measure of skill that
equals to the difference between the hit rate and the false alarm
rate:

PSS ¼ H � F ð5Þ

When the score is greater than zero, the hit rate exceeds the false
alarm rate so that the closer the value of PSS to 1, the better. The
standard error formula for this score assumes independence of hit
and false alarm rates and, for large enough samples, it is computed
as:

rPSS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Hð1� HÞ

aþ c

r
þ F ð1� F Þ

bþ d
ð6Þ

The odds ratio (OR) is an accuracy measure that compares the
odds of making a good forecast (a hit) to the odds of making a bad
forecast (a false alarm):
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OR ¼ H
1� H

1� F
F

ð7Þ

The ratio is greater than one when the hit rate exceeds the false
alarm rate, and is unity when forecast and reference values are
independent. It presents the advantage of being independent of the
forecast bias. Furthermore, it has the property that the natural
logarithm of the odds ratio is asymptotically normally distributed
with a standard error of 1/(nh)

1/2 where

1

nh
¼ 1

a
þ 1

b
þ 1

c
þ 1

d
ð8Þ

To test whether there is any skill, one can test against the null
hypothesis that the forecasts and verifications are independent with
log odds of zero. A simple skill score, the odds ratio skill score
(ORSS), ranging from –1 to +1, where a score of zero represents
no skill, may be obtained from the odds ratio through the
expression:

ORRS ¼ OR� 1

ORþ 1
¼ H � F

H þ F � 2HF
ð9Þ

Thornes and Stephenson (2001) provide a useful table with the
minimum values of ORSS needed to have significant skill at dif-
ferent levels of confidence depending on the value of nh.

The ROC (Swets 1973) is a signal-detection curve plotting the
hit rate against the false alarm rate for a specific event over a
range of probability decision thresholds (Evans et al. 2000;
Graham et al. 2000; Zhang and Casey 2000). Basically, it indi-
cates the performance in terms of hit and false alarm rate
stratified by the verification. The probability of detection is a
probability decision threshold that converts probabilistic binary
forecasts into deterministic binary forecasts. For each probability
threshold, a contingency table is obtained from which the hit
and false alarm rates are computed. For instance, consider a
probability threshold of 10%. The event is forecast in those cases
where the probability is equal to or greater than 10%. This
calculation is repeated for thresholds of 20%, 30%, up to 100%
(or whatever other selection of intervals, depending mainly on
the ensemble size). Then, the hit rate is plotted against the false
alarm rate to produce a ROC curve. Ideally, the hit rate will
always exceed the false alarm rate and the curve will lie in the
upper-left-hand portion of the diagram. The hit rate increases by
reducing the probability threshold, but at the same time the false
alarm rate is also increased. The standardized area enclosed
beneath the curve is a simple accuracy measure associated with
the ROC, with a range from 0 to 1. A system with no skill
(made by either random or constant forecasts) will achieve hits
at the same rate as false alarms and so its curve will lie along the
45� line and enclose a standardized area of 0.5. As the ROC is
based upon a stratification by the verification it provides no
information about reliability of the forecasts, and hence the
curves cannot be improved by improving the climatology of the
system. The skill score significance was assessed, as in the case of
RPSS, by Monte Carlo methods.
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Déqué M (1997) Ensemble size for numerical seasonal forecasts.
Tellus 49A: 74–86
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