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It has been a challenge for turbulence com-
putations to capture the geometrical complexities
of real-life applications such as cars and air-
planes. Geometry is a major driver of complexity
in these problems, as it selects the morphology
and energetics of coherent structures sustaining
the turbulence. As an example of the LBM’s
capabilities, in Fig. 3 we plot streamlines of flow
past a realistic car geometry, with various win-
dow offsets as well as wheels and wheel houses.
This simulation locates the major morphological
structures of the flow. The detail-tracking capa-
bilities of LBM are best appreciated by inspect-
ing the pressure distribution at the center line
around this car shape (see Fig. 4). The com-
puted drag is typically within 5% of experiment.

LBM’s Cartesian mesh proves instrumen-
tal to the task of automating and accelerating
the grid generation process, and the control of
physical realizability in the Boltzmann repre-
sentation is highly robust, avoiding the need
for difficult and time-consuming manual
code and geometry adjustments. Other details
of the PowerFLOW code, including the for-
mulation of boundary conditions, are given in
(32). Once the CAD specification is provided
for the flow geometry, grid generation re-
quires several orders of magnitude less time
than with conventional methods based on the
Navier-Stokes equations, whereas the run
times of the turbulence simulations them-
selves may be an order of magnitude faster.
Also, once the functional form of T, in Eq.
4 is prescribed, there is no adjustment of
parameters in the basic code or in the turbu-
lence model. This strategy has been carefully
tested and compared with experiments for a
wide variety of car geometries (36, 37).
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Stratospheric Memory and Skill
of Extended-Range

Weather Forecasts
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We use an empirical statistical model to demonstrate significant skill in
making extended-range forecasts of the monthly-mean Arctic Oscillation
(AO). Forecast skill derives from persistent circulation anomalies in the
lowermost stratosphere and is greatest during boreal winter. A comparison
to the Southern Hemisphere provides evidence that both the time scale and
predictability of the AO depend on the presence of persistent circulation
anomalies just above the tropopause. These circulation anomalies most
likely affect the troposphere through changes to waves in the upper tro-
posphere, which induce surface pressure changes that correspond to the AO.

Deterministic prediction of daily weather, using
numerical forecast models, is limited to several
days. As the lead time increases to a week and
beyond, deterministic prediction of the weather
for a particular day gives way to stochastic
prediction of the time-averaged weather, which
is more predictable than its instantaneous state
(I). Weather forecasts beyond 10 days are
called “extended-range” predictions (2); they
may be ensemble forecasts, in which many
model forecasts with slightly differing initial
conditions are averaged together, or they may
be based on empirical statistical models trained
on historical data.

Forecast skill in predicting the time-
averaged state of the atmosphere beyond 10
days comes in part from slow and predictable
influences of Earth’s surface. In the Northern
Hemisphere extratropics, the main contribu-
tor to predictability is tropical sea surface

"Northwest Research Associates, 14508 NE 20th
Street, Bellevue, WA, 98007, USA. 2Department of
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6BB, UK. 3Department of Atmospheric Science, Colo-
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temperature anomalies (3, 4), with possible
contributions from soil moisture, vegetation,
snow and ice cover, land surface temperature
and albedo, and sea ice movement and extent.
Forecast skill also derives from memory
within the atmosphere, or phenomena with
long lifetimes, such as the Madden-Julian
Oscillation in the tropical troposphere (35).
There is growing evidence that additional
extended-range tropospheric forecast skill
may also come from slow variations of the
circulation of the stratosphere (6-§).

In general, the largest spatial scales of
atmospheric variability are more persistent
and easier to forecast than the smaller scales.
The Arctic Oscillation (AO) (9), similar to the
North Atlantic Oscillation (10, 11), is a plane-
tary-scale pattern of near-surface (1000 hPa)
variability, characterized by movement of at-
mospheric mass between high and low latitudes
and a corresponding out-of-phase relation, or
dipole, in the strength of the zonal (/2) flow
along ~55°N and ~35°N. AO variations are
associated with wintertime climate variations
throughout the middle- and high-latitude conti-
nental regions. These changes include not only
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average conditions but also day-to-day variabil-
ity, modulating rainfall and storm tracks, the
frequency of occurrence of high-latitude block-
ing events, and cold air outbreaks (73).

The Northern Annular Mode (NAM) is
identical to the AO at 1000 hPa, but we define
it separately at each isobaric level from Earth’s
surface through the stratosphere (/4). Time-
height analysis of the NAM links variations in
the strength of the stratospheric polar vortex
downward to the AO (/5). Stratospheric NAM
variations, which are driven mainly by upward-
propagating planetary-scale waves of tropo-
spheric origin, tend to descend through the
stratosphere and create persistent NAM anom-
alies just above the tropopause (7, 16). On
average, lower stratospheric NAM anomalies
are followed by persistent AO anomalies of the
same sign (7). This observation suggests that
the time scale of the NAM may be a key to
understanding how stratospheric circulation
anomalies affect the troposphere.

We define the time scale of NAM anom-
alies as the time for the autocorrelation func-
tion of the NAM to decrease to 1/e (~0.368,
the “e-folding time”). On the basis of data
from 1958 to 2002 (/7), we find that the time
scale of the NAM in the stratosphere is great-
er than that in the troposphere during all
seasons (Fig. 1A). The time scale of the AO
is greatest during winter, which is coincident
with the longest NAM time scale in the low-
ermost stratosphere.

We hypothesize that, during winter, the
time scale of the AO is increased by persis-
tent NAM anomalies in the lowermost strato-
sphere. By itself, the coincidence of the tro-
pospheric and stratospheric maxima (Fig.
1A) is merely suggestive of stratosphere-
troposphere coupling. For evidence in sup-
port of our hypothesis, we examine the time
scale of the Southern Annular Mode (SAM)
(18). In the troposphere, the time scale of the
SAM has a peak during late spring (Novem-
ber and December) superposed on a gentle
annual cycle that is maximized during winter
(Fig. 1B). The late-spring maximum in the
time scale of the tropospheric SAM coincides
with the largest SAM anomalies just above
the tropopause (Fig. 1C). Climatologically,
the Southern Hemisphere stratospheric polar
vortex is strong throughout the winter, with
relatively small SAM anomalies. It is not
until spring, when the vortex begins to dimin-
ish, that interaction between the waves and
the mean flow results in large SAM anoma-
lies (19). The breakdown of the Southern
Hemisphere vortex begins in the upper strato-
sphere and progresses downward. This pro-
cess is reflected in the time-height develop-
ment of the SAM variance; the maximum in
SAM variance progresses downward during
spring, peaking during November and De-
cember just above the tropopause. The max-
imum time scale of the tropospheric SAM
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(Fig. 1B) aligns precisely with the maximum
SAM variance just above the tropopause
(Fig. 1B). In both hemispheres, the time scale
of the tropospheric annular mode is a maxi-
mum when the amplitude of lower strato-
spheric annular-mode anomalies is largest
(20). The longer time scale of the AO during
winter is also consistent with general circu-
lation model experiments in which the time
scale of the AO is found to decrease when
stratospheric variability is artificially sup-
pressed (21).

The observation that long-lived AO
anomalies tend to follow stratospheric NAM
anomalies of the same sign suggests the use
of a statistical model in which the NAM at

REPORTS

one or more levels is used to predict the
time-averaged value of the AO (22). Data
analysis (23) suggests that there is a linear
relationship between NAM anomalies in the
lower stratosphere and subsequent AO anom-
alies, so that a linear statistical model appears
to be an appropriate way to investigate the
relationship between stratospheric NAM val-
ues and future values of the AO. We demon-
strate this technique by predicting the month-
ly-mean AO, with a forecast period begin-
ning after 10 days in order to exclude the initial
time period when numerical forecasts of daily
weather have appreciable skill. Our linear pre-
diction model uses the present value of the
NAM at one level between 1000 and 10 hPa to

A Northern Annular Mode Timescale (Days)

10 %

30
hPa B

100 1—

300 -

1000

B B N
= -

30
hPa

100 -

300

30 -
hPa

10 +——

Ervan
=

300

| =

1000

i A & B N D

Fig. 1. (A) Time scale of the NAM as measured by the time (days) for the autocorrelation function
to drop to 1/e (~0.378). The horizontal line in each panel represents the approximate tropopause.
Daily values are a time average using Gaussian weighting with a full width at half maximum
(FWHM) of 60 days (o = 26 days). The time scale is estimated with a least-squares fit of an
exponential curve to the autocorrelation function. The contour interval is 3 days up to 30 days, and
10 days at higher values. (B) The time scale of the SAM, measured as in (A). (C) Variance of the
SAM. Daily values were obtained with the same methodology as in (A). The SAM time series at each

level are normalized to unit standard deviation.
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predict the monthly-mean AO beginning 10
days later: A(t + L) = B, + B, M) + €, where
A represents the AO, L = 10 + (30/2) = 25
days, A(¢ + L) represents the one-month mean
of the AO centered on time ¢ + L (starting at
time ¢ + L — 15 and continuing to time ¢ + L +
15), N(?) represents the NAM at one level at
time ¢, B, and [, are regression parameters to
be estimated, and € represents noise.

We performed least-squares regressions to
calculate the percent variance of A (¢ + L)
that is accounted for by the predictor series
N(t) (24), as a function of height and time of
year (Fig. 2A). Predictability of the AO was
greatest during the extended winter season
(October through April). The stratospheric
NAM was a better predictor of the AO than the
AO was of itself—and it did so for a longer
season (Fig. 2B). The optimum single level for
forecasting the AO is 150 hPa (~13 km), which
is the lowest data level that lies entirely above
the tropopause in the extratropics.

In order to test the predictability of the
AO, it is necessary to make forecasts and
assess their skill. When we used all years of
December through February data, the NAM
at 150 hPa accounted for 20.2% of the vari-
ance of the AO 10 to 40 days later (25). In
order to avoid artificial skill (26), we per-
formed cross-validated forecasts by removing
one winter at a time, estimating 3, and 8,
and then forecasting the missing winter. The
cross-validated skill dropped slightly to
17.9%. If instead of the 150-hPa NAM, the
AO was used to predict itself, the cross-
validated skill was 12.3%. We also tried fore-
casts using both the 150-hPa NAM and the
AO together, but we obtained an identical
cross-validated skill of 17.9%, indicating that
the AO adds no information that is not al-
ready in the 150-hPa NAM and that the 150-
hPa NAM is a sufficient predictor (27).

Our prediction methodology uses annu-
lar mode indices as both predictors and
predictands, so the results thus far have
demonstrated only that the forecasting re-
lationship projects onto the annular mode
patterns. There is no reason to believe a
priori that the annular mode patterns opti-
mize the relationship between circulation
anomalies in the lowermost stratosphere
and subsequent 1000-hPa anomalies. We
used maximum covariance analysis (MCA)
(28) to pair daily 150-hPa geopotential
fields with monthly-mean 1000-hPa fields
centered 25 days later. We found that the
MCA patterns for 1000 and 150 hPa were
nearly identical to the AO and 150-hPa
NAM patterns, respectively (Fig. 3). The
optimal spatial patterns for both the predic-
tor and predictand were nearly identical to
the annular mode patterns.

The interaction between NAM anoma-
lies just above the tropopause (~150 hPa)
and waves in the wupper troposphere
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(~300 hPa) may be the primary mechanism
by which stratospheric anomalies induce
changes to the troposphere (29). Both
synoptic-scale and planetary-scale waves
penetrate the lowermost stratosphere, pro-
viding a region of overlap between the
NAM anomalies and the waves. Based on
the observations (Figs. 1 to 3), we reason
that the lower stratospheric NAM (or some
similar quantity involving zonal-mean
wind) must be involved in coupling to the
troposphere.

Previous work has shown that the tropo-
spheric NAM is driven by transient mo-
mentum flux anomalies (30). These ano-
malies tend to occur over a broad latitudinal
band, peaking in midlatitudes, so that the
momentum-flux ~ convergence anomalies
form a north-south dipole, forcing both the
NAM and a dipole in zonal-mean wind. The
response to any such forcing is both a zonal
wind acceleration and a mass redistribution
(changes to surface pressure) as part of an
induced circulation in the meridional plane
(31). Through this mechanism, upper tropo-
spheric momentum-flux anomalies lead di-
rectly to AO changes (32).

For specific evidence that lower strato-
spheric NAM anomalies affect momentum
fluxes in the upper troposphere, we examined
how the 150-hPa NAM is related to lag cor-
relations between 300-hPa eddy momentum
fluxes and the 300-hPa NAM (33, 34). We

categorized each day during December
through February by whether or not the NAM
anomalies increased in magnitude between
300 and 150 hPa. This methodology is nearly
equivalent to categorization based on the ver-
tical shear of the zonal-mean wind. On 38%
(1575) of the days, the NAM anomaly
strengthened with height (i.e., had the same
sign anomaly at both levels and was numer-
ically larger at 150 hPa). We compared the
distributions of the 300-hPa NAM for the two
categories and found that neither the standard
deviation nor the mean differed significantly
from that for all days (35).

When the NAM strengthened with height,
upper tropospheric momentum-flux anoma-
lies were more effective at forcing upper
tropospheric NAM anomalies of the same
sign, and they did so for a longer time (Fig.
4A). When the NAM weakened with height,
the lag correlations were smaller and dropped
to near zero within a few days. This differ-
ence supports the hypothesis that the lower
stratospheric NAM modulates momentum
fluxes in the upper troposphere.

We find that both planetary-scale waves
and synoptic-scale waves are involved. The
propagation of planetary waves is particularly
sensitive to wind anomalies just above the
tropopause (36), but planetary waves 1 and 2
account for only ~25% of the variance of the
momentum flux at 300 hPa. When the NAM
strengthened with height, momentum fluxes
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Fig. 2. (A) Predictability of the monthly-mean AO after a 10-day lead. Values are obtained by linear
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from planetary waves 1 and 2 had a greater
effect on the NAM, especially at positive lags
(Fig. 4B); when waves 3 and higher were

Arctic Oscillation
A i '

1000- hPa MCA Pattern
C == E:

used (Fig. 4C), the effect was similar to that
for all waves (Fig. 4A). These results pro-
vide evidence that both planetary-scale and
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Fig. 3. (A) The AO regression pattern (in geopotential meters). (B) The 150-hPa NAM. (C and D)
Leading MCA patterns between geopotential at 150 hPa and monthly-mean geopotential at 1000
hPa beginning after 10 days (centered 25 days later). For comparison with the EOF patterns, the
data in (C) are normalized to have the same area-weighted spatial variance as in (A), and the data
in (D) are normalized to have the same area-weighted spatial variance as in (B). The area-weighted
spatial correlation is 0.96 between (A) and (C), and 0.96 between (B) and (D)

All Waves
0.6
0.54
§ 0.44
;S 0.3 NAM strengthened with height -
8 0.2
0.1 NAM weakened with height
0.0 . i i ‘ ‘ ‘ .
40 -30 -20 -10 O 10 20 30 40
Lag (Days)

Fig. 4. Lag cross correlation between the 300-
hPa NAM and the 300-hPa, zonally averaged
momentum flux poleward of 20°N, during De-
cember through February. Negative lag means
that the momentum-flux anomalies lead the
NAM anomalies. The red curve is for the subset
of days on which the 150-hPa NAM was of the
same sign as the 300-hPa NAM and numeri-
cally larger. The blue curve is for all other days.
(A) All waves. (B) Waves 1 and 2. (C) Waves 3
and higher.
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synoptic-scale tropospheric waves are affect-
ed by stratospheric NAM anomalies.

Other mechanisms allow stratospheric
processes to affect the troposphere, such as
“downward control” (37), which relates
steady-state wave drag to vertical mass flow
(and by continuity, surface pressure changes),
or planetary wave reflection (38, 39). Our
results are also consistent with studies of
potential vorticity “inversion” in which lower
stratospheric circulation anomalies induce
AO-like changes to surface pressure of real-
istic magnitudes (40).

Our results have implications for numer-
ical extended-range weather forecasting.
Forecast models that do not adequately re-
solve the stratosphere (or that do not have
realistic NAM anomalies in the lowermost
stratosphere) will likely not be able to sim-
ulate the additional predictive skill from the
stratospheric memory effect. A complete
understanding of the details of the mecha-
nism by which the lower stratospheric
NAM affects waves in the upper tropo-
sphere will likely require carefully de-
signed numerical experiments. On longer
time scales, stratosphere-troposphere cou-
pling would presumably allow stratospheric
signals (e.g., greenhouse gas and ozone
changes, solar-ultraviolet variations, and
the quasi-biennial oscillation) to affect sur-
face climate and trends in the stratospheric
NAM to be reflected in the AO index.
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Role of Adaptor TRIF in the
MyD88-Independent Toll-Like
Receptor Signaling Pathway

Masahiro Yamamoto," Shintaro Sato,"? Hiroaki Hemmi,"

Katsuaki Hoshino,"* Tsuneyasu Kaisho,"* Hideki Sanjo,’

Osamu Takeuchi,” Masanaka Sugiyama,’ Masaru Okabe,?
Kiyoshi Takeda,'? Shizuo Akira’*

Stimulation of Toll-like receptors (TLRs) triggers activation of a common
MyD88-dependent signaling pathway as well as a MyD88-independent path-
way that is unique to TLR3 and TLR4 signaling pathways leading to interferon
(IFN)-B production. Here we disrupted the gene encoding a Toll/IL-1 re-
ceptor (TIR) domain-containing adaptor, TRIF. TRIF-deficient mice were
defective in both TLR3- and TLR4-mediated expression of IFN- and acti-
vation of IRF-3. Furthermore, inflammatory cytokine production in response
to the TLR4 ligand, but not to other TLR ligands, was severely impaired in
TRIF-deficient macrophages. Mice deficient in both MyD88 and TRIF showed
complete loss of nuclear factor kappa B activation in response to TLR4 stim-
ulation. These findings demonstrate that TRIF is essential for TLR3- and TLR4-
mediated signaling pathways facilitating mammalian antiviral host defense.

TLRs recognize specific patterns of microbial
components and are critical in provoking in-
nate immune responses through activation of
signaling cascades via Toll/IL-1 receptor
(TIR) domain-containing adaptors, such as
MyDS88 and TIRAP (I, 2). MyDS88 is com-
mon to all the TLRs, whereas TIRAP is
specifically involved in TLR2- and TLR4-
mediated signaling pathways (3-5). In addi-
tion to the common MyD88-dependent path-
way, TLR3 and TLR4 utilize a MyD88-inde-
pendent signaling pathway that leads to the
activation of IRF-3 and induction of IFN-f
(6-8). TIR domain-containing adaptor induc-
ing IFN- (TRIF) was recently identified as a
third adaptor and was shown to activate
IFN-B expression via TLR3 (9, 10).

To assess the physiological role of TRIF, we
generated mice lacking the 77if gene [support-
ing online material (SOM) Text and fig. S1]).
Mutant mice homozygous for the disrupted 77if
allele were born at the expected mendelian ratio
and grew to be healthy in specific-pathogen—
free conditions.
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Previous in vitro studies have suggested
that TRIF is involved in production of
IFN-f in response to double-stranded RNA
and its analog poly(I:C), both of which are
recognized by TLR3 (9-11). Therefore, we
first analyzed poly(I:C)-induced messenger
RNA (mRNA) expression of IFN-B and
several IFN-inducible genes, such as RAN-
TES, IP-10, and MCP-1, in peritoneal mac-
rophages (Fig. 1A). Macrophages from
TRIF~~ mice showed impaired expression
of IFN-B and IFN-inducible genes in re-
sponse to poly(l:C), which is consistent
with results seen in TLR3™~ mice (11, 12).
In addition, splenocytes from TRIF~~ mice
showed severely defective proliferation in
response to poly(I:C), but not to the TLR9
ligand CpG DNA (Fig. 1B). TRIF”~ B cells
were also severely impaired in poly(I:C)-
induced, but not anti-IgM Ab (antibody to
immunoglobulin M)-induced, augmenta-
tion of surface expression of CD69, CD86,
and major histocompatibility complex
(MHC) class II (Fig. 1C). Thus, TRIF7~
mice showed defective responses to poly(I:
C), indicating that TRIF is essential for
TLR3-mediated signaling pathways.

In addition to the TLR3 ligand, the
TLR4 ligand LPS has been shown to induce
IFN-B and subsequent expression of IFN-
inducible genes in a MyD88-independent
manner (6-8). We analyzed LPS-induced
mRNA expression of IFN-inducible genes
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