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On the existence of multiple climate regimes
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SUMMARY

New techniques are presented for testing the three main hypotheses about the probability distribution of
the climate system: multinormal (single regime), unimodal but not multinormal (single regime), and multimodal
(multiple regimes). Rather than searching for evidence that con� rms the multimodal hypothesis expected from
the chaos and other strongly nonlinear paradigms, our strategy is to try and reject the simplest single-regime
hypothesis of multinormality expected for aggregate indices of many local weather degrees of freedom. Concern-
ing multiple climate regimes in the northern hemisphere, we � nd no strong evidence in the available monthly mean
reanalysis data for rejecting the single-regime multinormal hypothesis in favour of the multimodal hypothesis.
A simple non-parametric method is presented for transforming state space into a more homogeneous probability
space that makes regimes easier to identify. A spatial point process test is used in this space to demonstrate
that the hemispheric clusters are not signi� cantly different to what could be expected from sampling a unimodal
distribution. Based on the observed data, the single-regime multinormal hypothesis can not be rejected at the 5%
level of signi� cance and so provides the simplest useful model for the probability distribution for the northern
hemisphere geopotential-height � eld.
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1. INTRODUCTION

Meteorologists have often tried to explain weather variations in terms of a � nite set
of preferred weather patterns/types. Persistent and/or recurrent states of the atmosphere
are referred to as ‘regimes’ and can have large socio-economic impacts. For example,
in autumn 2000 the three-month persistence of the Scandinavian (or Eurasian-1) tele-
connection pattern led to anomalous climate in western Europe and many costly � oods
in England. Despite enormous progress in modelling climate variability, there is little
understanding of why certain states persist for such long times, and there are at present
no reliable estimates for the probability of occurrence of such events. This study aims to
improve this situation by developing and statistically testing several possible probability
models. This is essential for improving our ability to interpret climate events and to make
probabilistic inferences about the future likelihood of such events.

Early studies identi� ed several low-frequency synoptic regimes that persist longer
than the lifetime of typical cyclones (Rex 1950; Namias 1950, 1964; Bauer 1951;
Bjerknes 1969; Dole and Gordon 1983; Horel 1985; and references therein). At the
end of the 1970s, two main approaches emerged for explaining the observed persistence
of large-scale extratropical � ow anomalies. One approach was based on Rossby wave
theories of linear stationary waves forced by persistent diabatic heating in the Tropics
(e.g. Hoskins and Karoly 1981;Simmons et al. 1983).An alternative approach explained
persistent � ow patterns as multiple (quasi-)stationary solutions of the nonlinear � uid-
dynamical equations of motion (e.g. Charney and DeVore 1979; Wiin-Nielsen 1979).
Many regime studies were theoretically motivated by the multiple regimes found in the
chaotic solutions of certain low-order nonlinear dynamical systems (Lorenz 1963, 1970;
Charney and DeVore 1979; Sutera 1986; White 1980; Palmer 1993, 1999). In the chaos
paradigm, such regimes are interpreted as quasi-stationary states or metastable � xed
points which sporadically attract the chaotic trajectory of the system (Legras and Ghil
1985; Mukougawa 1988; Branstator and Opsteegh 1989; Haines and Hannachi 1995).
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TABLE 1. SUMMARY OF SOME PREVIOUS REGIME STUDIES SHOWING HOW
MANY TIME SAMPLES WERE USED, THE SAMPLE TIME, AND THE NUMBER OF

REGIMES IDENTIFIED IN EACH SAMPLE

Study Sample size Sampling rate No. of regimes

Sutera (1986) 360 daily 2
Hansen and Sutera (1986) 1440 daily 2
Molteni et al. (1988) 1152 5-day 2
Marshall and Molteni (1993) 576 daily 2
Mo and Ghil (1988) 2400 daily 6
Vautard (1990) 2772 2-day 4
Kimoto and Ghil (1993) 3330 daily 4
Cheng and Wallace (1993) 702 5-day 3
Wallace et al. (1991) 702 5-day 3
Smyth et al. (1999) 3960 daily 2–3
Corti et al. (1999) 270 monthly 4
Monahan et al. (2000, 2001) 3670 daily 3
Hsu and Zwiers (2001) 300 monthly 1–3

Although mostly found in low-order chaotic systems, multiple regimes can also exist
in certain high-order nonlinear systems, for example, in the model of a stochastically
forced particle moving around multiple potential wells in a high-dimensional space
(Hasselmann 1999)

In order to support theoretical models of multiple equilibria, many investigators
have tried to � nd evidence of multiple regimes in observed data. The main techniques
used to detect multiple � ow regimes have been: cluster analysis (e.g. Mo and Ghil 1988;
Cheng and Wallace 1993); mode and bump hunting in probability density estimates
(e.g. Sutera 1986; Hansen and Sutera 1986; Molteni et al. 1988, 1990; Kimoto and
Ghil 1993, hereafter KG93; Corti et al. 1999); variants of principal-component analysis
(e.g. Vautard 1990; Marshall and Molteni 1993; Monahan 2000; Monahan et al. 2001).
Since the majority of these descriptive classi� cation approaches are designed to classify
the data into regimes, they invariably do ‘� nd’ varying numbers of discrete regimes (see
Table 1 for a summary). However, descriptive methods are not well suited to testing for
the existence (or number) of regimes since they are purely data analytic and often lack
any underlying probability model. To test hypotheses about the existence of regimes, it
is necessary to identify suitable probability distributions for modelling the distribution
in state space.

Section 2 of this article presents a brief overview of the main concepts involved,
and section 3 identi� es probability models (hypotheses) that can be tested. Rather
than attempt to con� rm the multimodal hypothesis, our strategy is to test whether
the simplest hypothesis of multinormality can be rejected given a particular sample
of data. The approach has been illustrated using northern hemisphere (NH) data from
the study of Corti et al. (1999) (hereafter C99) and data generated by the well-known
three-variable Lorenz chaos model (section 4). The joint probability distribution of both
datasets is explored in section 5 using several different techniques not previously applied
to meteorological data. Section 6 sets out a robust non-parametric methodology for
testing for the existence of clustering and applies it to both datasets to � nd out whether
the regimes reported in C99 are statistically signi� cant features or merely sampling
artefacts.

2. CONCEPTS AND DEFINITIONS

The quest to identify modes/patterns/regimes of the climate system is driven by
the desire to � nd structure in state space. To avoid the confusion caused by the
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interchangeable and imprecise use of the words ‘mode’, ‘pattern’ and ‘regime’, brief
de� nitions of these concepts will now be given.

(a) State space
The large-scale state of the atmosphere is de� ned by a set of meteorological vari-

ables; for example, a set of geopotential-height grid-point variables, or, alternatively, the
leading q principal components (PCs) of gridded geopotential height. The q variables
de� ne a q-dimensional ‘state space’, in which the evolving state of the climate system
can be represented by a trajectory of points¤. The dynamical evolution of the climate
system can be thought of as the motion of a point through this multidimensional state
space. The amount of time the system spends in each part of state space can be mea-
sured by estimating the joint probability density function (p.d.f.) of the state variables.
Some regions of state space will be visited for longer or more often than are other regions
and will therefore have larger probability densities. While it is true that persistence in
a particular state will lead to a larger p.d.f. for that state, the converse is not always
true since a p.d.f. can also be larger when a state is visited more frequently (yet less
persistently).

(b) Climate modes
The concept of ‘mode’ is the most dif� cult to de� ne, since it implies that the

structure is physically meaningful. Many previous studies have attempted to identify
‘physical modes’ of variability by their unique statistical properties in state space such
as, for example, maximum variance (‘empirical orthogonal function (EOF) patterns’) or
maximum probability density (‘regimes’). However, such techniques do not guarantee
that the resulting structures are physically meaningful. An interesting example of this
is provided by the ongoing debate over the physical meaning of the Arctic oscillation
leading sea-level pressure EOF (e.g. Wallace 2000; Ambaum et al. 2001, 2002; Wallace
and Thompson 2002). Therefore, it is perhaps better to use the more neutral words
‘pattern’ and ‘regime’ rather than ‘mode’ unless there is strong physical justi� cation for
doing otherwise. Rather than focus on individual structures, it is often more constructive
to consider a whole set of identi� ed structures as simply a useful reduced basis for
describing the state of the climate system.

(c) Climate patterns and indices
A ‘pattern’ de� nes a particular direction from the origin in state space independent

of amplitude. It can be de� ned by specifying a set of coef� cients for all the state
variables, for example, an EOF pattern. An associated climate ‘index’ can then be
constructed by using these coef� cients to make a linear combination of the variables, for
example, the PC time series associated with a particular EOF pattern. In other words, a
pattern is a direction in state space and the associated index is the projection onto this
direction (i.e. a linear combination of grid-point variables).

(d ) Climate regimes
A ‘regime’ can be de� ned as a region of state space that is more populated than

neighbouring regions: in other words, a region of clustering in state space. Local ‘clus-
ters’ can be identi� ed (de� ned) using clustering algorithms that aim to classify the points

¤ State space is sometimes referred to as ‘phase space’, which strictly refers to the space spanned by the canonical
variables of a Hamiltonian dynamical system.



586 D. B. STEPHENSON et al.

into several distinct classes (Mardia et al. 1979). These descriptive classi� cation tech-
niques depend on a choice of metric, and are not based on any underlying probability
model. Alternatively, clusters can be inferred from either local maxima (‘modes’) or
locally concave regions (‘bumps’) in the estimated p.d.f. (Silverman 1994). Bumps are
regions where the curvature of the p.d.f. is negative, and so include sharp drops in gra-
dient as well as local maxima. Hence, searching for multiple regimes becomes a quest
for multimodality or an exercise in ‘bump hunting’ (Good and Gaskins 1980; Silverman
1981, 1994). Care should be taken not to confuse ‘modes’ in the probability density with
‘physical modes’. As an example, consider a simple harmonic oscillation with a small
amount of added noise—the system has two local maxima (modes) at the edges of its
probability distribution, yet it is certainly not a bimodal (two-mode) physical system.
A major disadvantage of these density methods is that the resulting number of regimes
depends strongly on how much smoothing is used to estimate the p.d.f.

In addition to local clusters, it is also possible to have ‘directional clusters’ in which
particular directions rather than local regions of state space are more populated than
other directions. In other words, there can be preferred ‘patterns’, but with no preferred
amplitudes. An even more exotic possibility is to have clustering along curved lines
in state space that can be identi� ed using techniques such as nonlinear/curvilinear PC
analysis (see Monahan et al. 2000, 2001, and references therein).

3. PROBABILITY MODELS (HYPOTHESES)

Figure 1 illustrates the three simplest classes of probability density appropriate
for describing continuous climate variables in state space. It should be noted that
more complex multivariate distributions can also sometimes arise in certain speci� c
situations (e.g. for two-dimensional limit cycles such as the quasi-biennial oscillation).
The distributions in Fig. 1 represent distinct hypotheses about the state of the climate
system. The multinormal distribution (Fig. 1(a)) assumes that all variables are normally
(‘Gaussian’¤) distributed. The presence of nonlinearity, however, can lead to deviations
from normality such as skewness and kurtosis as shown in the unimodal (but not
multinormal) distribution in Fig. 1(b). When the interactions between the state variables
are suf� ciently nonlinear, the probability density can develop more than one local
maximum (multimodal), which can then be interpreted as ‘multiple regimes’.

(a) The multinormal hypothesis H0 : f .x/ D Nq.xI µ; /

The multinormal (MULTIvariate NORMAL) distribution is widely used to describe
multivariate data and has good sampling properties (Mardia et al. 1979). It is de� ned as

Nq.xI µ; / D
1

p
.2¼/q j j

e¡ 1
2 .x¡µ/T ¡1.x¡µ/; (1)

where q is the number of variables (e.g. q D 2 in the bivariate example shown in
Fig. 1(a)), µ and are, respectively, the population mean and population covariance
matrix, and j j is the determinant of . All state variables and linear combinations of
state variables are normally distributed: for example, the standardized PCs of multinor-
mally distributed variables are independently distributed as normal variables with unit
variance and zero mean. In other words, state space spanned by standardized PCs—
known as ‘Mahalanobis space’ (Stephenson 1997)—is directionally isotropic with a

¤ ‘Gaussian’ credits this distribution to the 1809 study by C. F. Gauss—whereas, in fact, it was already used by
A. DeMoivre in 1714!
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Figure 1. The three main classes of probability density illustrated for a bivariate climate system: (a) the
multinormal distribution (single regime); (b) a unimodal non-normal distribution (single regime); (c) a multimodal

distribution (multiple regimes).

single mode (regime) at the origin corresponding to the mean state. This may seem
rather boring and uninteresting but has the virtue of providing a simple yet powerful
probability model for climate studies (e.g. climate detection).

Leading EOFs (PC loading weights) often consist of several large-scale centres
of action made up of neighbouring grid points having the same sign of weights.
For example, EOF2 shown in Fig. 2(b) consists of three main centres of action: one
positive centre over the subtropical Atlantic, and two negative centres over the Iceland
and Aleutian regions. The leading PCs are linear combinations of several centres
of action, each of which consists of a positively weighted mean of local grid-point
variables. By the central-limit theorem, the centres of action and hence the leading
PCs can, therefore, be expected to be more normally distributed than are individual
grid-point variables. The same argument is less applicable to higher-order PCs where
spatial dependency plays less of a role (i.e. EOFs are noisier). It should be noted that
this argument relies upon the existence of spatial dependency between neighbouring
grid-point variables. The argument can not be inverted to argue that grid-point variables
should be normally distributed because individual grid-point variables are not linear
combinations of weighted means of PCs. The normal distribution is the maximum
entropy state referred to as statistical equilibrium by physicists. Statistical equilibrium
not only occurs in isolated isotropic systems but is known to occur in more complex
systems: for example, (chaotic) shell models of turbulence (Lorenz 1965; Aurell et al.
1994; Ditlevesen and Mogensen 1996), and many dissipative open systems (Egolf
2000). The key condition necessary for statistical equilibrium in any system is the
existence of a large number of weakly interacting subsystems. This condition is most
certainly satis� ed for weather subsystems in the NH despite climate being a forced
dissipative system (Stephenson 1997; Stephenson and Doblas-Reyes 2000). Evidence
of multinormality in the NH wintertime � ow was presented by Toth (1991) based on
radial distances in state space.
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Figure 2. The leading EOFs (PC loading weights) of the monthly mean northern hemisphere 500 hPa
geopotential-height analyses 1948–94: (a) EOF1 (17% of variance) that projects strongly on the PNA pattern,
and (b) EOF2 (12% of variance) that projects strongly on the NAO pattern. Contour interval is arbitrary and

negative values are shaded. See text for explanation.

(b) The unimodal hypothesis H1 : f .x/ D D.xI µ; ; /

The presence of nonlinearity or strong dependency between the local weather
variables can lead to a unimodal distribution D.xI µ; ; / having some skewness or
kurtosis (deviation from normality) described by the shape parameter (e.g. Fig. 1(b));
for example, the Niño-3 index is unimodally distributed with small yet signi� cant
positive skewness (Burgers and Stephenson 1999; Hannachi et al. 2003). Wallace et al.
(1991) also noted a small amount of skewness in midlatitude geopotential heights, and
attributed it to nonlinearity associated with blocking events.

(c) The multimodal hypothesis Hk : f .x/ D
Pk

iD1 ®iDi.xI µi ; i ; i/; where k > 1
For very nonlinear systems such as low-order chaos models and multiple potential-

well models, the probability distribution in state space can become multimodal with
multiple attracting regimes. This is most naturally described by assuming that the prob-
ability distribution is a mixture of k unimodal distributions Di with mixture weights ®i—
see section 5(b) for more discussion. This is a very broad hypothesis that includes many
possible probability distributions. The number of mixture components k is generally
unknown a priori, and so has to be estimated from the sample of data.

(d ) Hypothesis testing
Statistical inference can be used to decide which of these hypotheses is most likely

given the observed sample of data. Whereas previous regime studies such as C99 attempt
to ‘accept’ the multimodal hypothesis, the approach in this study will be to assess
whether there is evidence to ‘reject’ the simplest null hypothesis of multinormality.
This approach is required since hypothesis testing is inappropriate for ‘con� rmatory
studies’ based on testing results discovered by hunting through the data (Nicholls
2001). The rejection of the pure chance multinormal hypothesis avoids the prior belief
required in regime studies that seek to con� rm rather than reject multimodality. If no
strong evidence can be found for rejecting the multinormal hypothesis, the multinormal
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distribution can then be used as a suitable probability model for describing the state of
the system.

Rather than � x a signi� cance level a priori, we quote ‘p-values’ for all our test
statistics in this article so that readers can make their own decisions (Nicholls 2001).
The p-value is the probability of � nding samples of data less consistent with the null
hypothesis than the observed sample, i.e. the area in the tails of the sampling distribution
of the test statistic beyond the observed value. If the p-value is less than level of
signi� cance ® then we can reject the null hypothesis with .1 ¡ ®/100% con� dence,
e.g. p D 0:03 is less than 0.05 and so we can reject the null hypothesis with 95%
con� dence. Note that rejection of the multinormal hypothesis is a necessary but not
suf� cient condition for the existence of multimodality since it is also possible for the
distribution to be unimodal and non-normal (e.g. skewed and/or kurtotic).

4. DATA USED IN THIS STUDY

To assess the recent claim by C99 that there are several distinct regimes in the low-
frequency NH wintertime � ow, this study will focus on the same dataset of monthly
mean 500 hPa geopotential-height gridded analyses. To gain more insight, we also
compare results with those generated by a low-order chaotic system known to have two
distinct regimes (Lorenz 1963). Although only applied to these two examples, the new
techniques introduced in this study do have much wider applicability to other climatic
datasets, e.g. stratospheric data (Bo Christensen, personal communication).

(a) Low-order chaos system
The Lorenz (1963) model is a simple low-order set of nonlinear equations that

mimics the chaotic sensitivity to initial conditions seen in the atmosphere and other
� uid systems. It has been widely used as a test model for data assimilation (Miller et al.
1994; Hannachi and Haines 1998) and climate variability studies (Marshall and Molteni
1993; C99; Palmer 1999; and references therein). It has three degrees of freedom that
satisfy the differential equations

dx

dt
D ¡¾ .x ¡ y/;

dy

dt
D ¡xz C rx ¡ y;

dz

dt
D xy ¡ bz:

9
>>>>>=

>>>>>;

(2)

Chaotic solutions are obtained when the parameters are set to ¾ D 10, r D 30, and
b D 8=3 as in Lorenz (1963). To generate a data sample of identical size to that of the
height analyses (see following section), we have integrated these equations forward in
time 5000 times using a Euler scheme with time step 1 D 10¡2. The � rst 140 points
were then discarded in order to avoid transient behaviour not representative of the
chaotic attractor. A sample of n D 270 means was then constructed by making 270
non-overlapping18-point averages of the remaining values. The sample size was chosen
to be identical to that of the available height analyses used in C99 (see next section).

(b) Northern hemisphere wintertime � ow
We have repeated the analyses of C99 using National Center for Environmental

Prediction (NCEP) November to April monthly mean 500 hPa geopotential-height
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analyses for the period January 1949 to December 1994. The data were processed using
exactly the same procedure applied by C99:

(i) Centred monthly anomalies � rst are made by subtracting the long-term mean
annual cycle.

(ii) The anomalies are detrended by removing the � ve-year running November to April
means.

(iii) Principal-component analysis (PCA) is then applied to the detrended grid-point
anomalies in the NH extratropical region 0–360BE, 20BN–90BN (144 £ 29 grid-
point variables).

Only the reduced bivariate subspace of the two leading PCs is considered in all
subsequent analysis.

Figure 2 shows the coef� cients (EOFs) associated with the two leading PCs.
The leading pattern in Fig. 2(a) resembles the familiar Paci� c North American (PNA)
teleconnection pattern but with some extension over the Eurasian continent. The second
leading pattern in Fig. 2(b) captures the North Atlantic Oscillation (NAO) with further
extensions over the North Paci� c, Eurasia and parts of North America. These EOFs are
similar to those reported in KG93 and Hsu and Zwiers (2001). The two leading PCs
explain substantial amounts of the total variance of the � ltered detrended anomalies and
are well separated (17% and 12%). Reassuringly, our two leading PCs (not shown) are
very similar to those used in C99 that were based on a slightly older dataset (National
Meteorological Centre analyses). Despite the different PCs leading to almost identical
results, the rest of this article will present analyses based on exactly the same PCs as
those used in C99. This will avoid any ambiguity in interpretation that might arise from
the slight difference in datasets. A sample of 270 monthly mean values were created
using data from January 1948 to December 1993.

One can seriously question whether this rather ad hoc � ltering and data reduc-
tion/projection procedure is optimal for � nding regimes in the high-dimensional climate
state space. From the arguments presented in section 3(a), one should expect the leading
PCs of gridded data to be more normally distributed. Choosing a smaller spatial domain
(e.g. sector) for the PCA and reducing the amount of time-averaging may help in the
search for regimes. This important issue will be touched upon again in the conclusions.

5. DISTRIBUTION IN STATE SPACE

(a) Scatter plots
Before making and presenting estimates of the p.d.f., an important � rst step is to

visualize the scatter of the n D 270 data points. Figure 3 shows ‘scatter plots’ of the two
state variables for both the Lorenz system and the height analyses. Two distinct clusters
of points can be seen in the Lorenz system (Fig. 3(a)), whereas only one large cluster is
easily discernible in the height analyses (Fig. 3(b)). The regimes identi� ed by C99 are
marked with letters A, B, C and D in Fig. 3(b), and can each be seen to contain not more
than about 20 sample points. The lack of clearly visible clusters and the small samples
involved suggest that these clusters may easily be due to sampling variations.

The spatial patterns corresponding to regimes A, B and D have possible counter-
parts in the previous regime studies of Cheng and Wallace (1993, hereafter CW93) and
KG93. CW93 applied a hierarchical clustering technique to ten-day low-pass � ltered
NH geopotential-height data and identi� ed three clusters: a ridge over the Rockies, a
closed anticyclone over the southern tip of Greenland, and a ridge over the Gulf of
Alaska. The spatial anomaly patterns associated with these three clusters (CW93, Fig. 4)
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Figure 3. Two-dimensional scatter plots for (a) the Lorenz system variables .x; z/, and (b) the 500 hPa
geopotential-height analyses. Kernel density estimates are superimposed as contours. Marginal distributions of

each variable are shown using histograms that can be compared to � ts to the normal distribution (dashed line).

approximately resemble the spatial patterns of clusters A, D and B, respectively, shown
in Fig. 3 of C99. Interestingly, CW93 noted that the Alaskan and Greenland clusters
coincide with the two primary maxima in the temporal variance and skewness of the
500 hPa height � eld, and that the Alaskan cluster was the least reproducible. No signi� -
cance testing was performed by CW93, who pointed out that they were not aware of any
speci� c formal procedure for assessing the statistical signi� cance of the clusters. KG93
searched for regimes using a bump hunting technique based on kernel density estimates
of the p.d.f. of the leading two PCs. The discussion of Fig. 10 in KG93 states that the
p.d.f. does not show multiple peaks but does show some deviations from Gaussianity.
KG93 then went on to estimate p.d.f.s of more persistent subsets of the original data and
used these to identify four bumps, which they interpreted as the PNA pattern, its reverse,
and zonal and blocked phases of the NAO pattern. The fact that regimes could only
be found after exploring subsets of the data weakens the statistical signi� cance of the
� ndings. Composite maps of anomalies associated with the reverse PNA, zonal NAO,
and blocked NAO (KG93, Figs. 14(b)–(d)) approximately resemble clusters B, A, and
D of C99, respectively. The fact that some patterns resemble one another in these differ-
ent studies based on overlapping non-independent samples of analysis data says more
about the consistency of the clustering techniques than about statistical signi� cance of
the clusters. Statistical signi� cance is concerned with inference about whether similar
clusters will be present not only in the recent post-1950 analyses but also in all other
possible independent samples of data. It should also be noted that despite resemblances
there are also some substantial differences in related patterns identi� ed by these different
studies.

(b) Density estimation
The p.d.f. f .x; y/ can be used to quantify the local density of points in state space.

It is de� ned for random pairs .X; Y / as the limit

f .x; y/ D lim
±x;±y!0

Prfx · X · x C ±x; y · Y · y C ±yg
±x±y

; (3)
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where Prf:g denotes the ‘probability of’ a point being in a small region of state
space. There are two main approaches to estimating the p.d.f.: ‘parametric’ and ‘non-
parametric’. In parametric estimation, one assumes a known functional form for the
distribution determined by a few parameters and then one estimates the parameters; for
example, one could assume that the distribution is the sum (mixture) of one or more
normal distributions. In non-parametric estimation, no assumption is made about the
functional form of the probability distribution except that it is a ‘smooth’ function.
Various methods are then used to estimate the smooth function, for example, kernel
smoothing or roughness penalty approaches such as smoothing splines and maximum
penalized likelihood estimators (Silverman 1994).

The most commonly used non-parametric method for estimating probability dis-
tributions of weather and climate has been the kernel smoother (Sutera 1986; Molteni
et al. 1990; Marshall and Molteni 1993; KG93; C99). Kernel estimates based on the data
points have been superimposed as contours in Fig. 3. The kernel estimate is obtained by
smoothing the data using

f .x/ D
1

nh2

iDnX

iD1

K

³
x ¡ xi

h

´
; (4)

where the ‘kernel’ K. / is usually an isotropic distribution function such as the bivariate
normal distribution, h is the kernel width, and x D .x; y/. Gaussian kernel p.d.f.
estimates are superimposed as contours on Figs. 3(a) and (b). The density estimate in
Fig. 3(b) shows similar, yet slightly smoother, features to those shown in Fig. 2 of C99.
Differences arise due to our use of non-iterative kernel estimation rather than the non-
linear iterative estimation used by C99. In order to show multimodal behaviour, a much
smaller kernel width of h D 0:3 was required than the optimal value hopt D 45=6n¡1=6 D
1:25 suggested by Silverman (1994) for bivariate density estimation using n D 270 sam-
ple points. The kernel width was not speci� ed in C99, but was presumably close to
0.3. Two well-separated maxima are evident in the estimated probability distribution
shown in Fig. 3(a), and are associated with the two distinct regimes of this well-known
bimodal system. However, the interpretation of the probability distribution of the height
analyses shown in Fig. 3(b) is more problematic. The largest probability density (the
mode) is found near point A and is offset in the y-direction from the origin (the mean)
due to negative skewness in PC2 to be discussed in the next section. A weaker local
maximum can be seen at D but is perhaps very poorly sampled due to the low density
of points in this region. No other local maxima can be seen in this estimate although
there is perhaps some clustering near to points B and C which will be examined in
more detail in section 6. C99 used a kernel width ‘large enough to detect multimodality
with statistical signi� cance’, which implies they used the critical smoothing approach
described in section 6.3.3 of Silverman (1994). In section 6.3.4, Silverman (1994) points
out that ‘It may be futile to expect very high power from procedures aimed at such broad
hypotheses as unimodality and multimodality’: in other words, there is a high risk of not
rejecting the multimodal hypothesis even if it is false (type 2 error). Weisheimer et al.
(2001) illustrate this point nicely in their analysis of 50-year samples taken from a long
general-circulation model simulation.

Cox (1966) considered more than one bump in a probability density as a ‘descrip-
tive feature likely to indicate mixing of components’. Therefore, a more model-based
approach to identifying regimes is to use a parametric method that assumes that the prob-
ability distribution is the weighted sum (mixture) of known distributions. The ‘normal
mixture model’ assumes that the probability distribution can be written as a weighted
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Figure 4. Mixture model � ts to (a) the Lorenz system and (b) the 500 hPa geopotential-height analyses.
Covariance matrices for each mixture component are depicted by p D 0:39 equiprobability contours (solid lines).

Density estimates based on the mixture model � ts are shown using dashed contours.

sum of k multinormal distributions

f .x/ D
kX

iD1

®iN.xI µi ; i/; (5)

where .®1; : : : ; ®k/ are the k mixing proportions of the model that satisfy 0 < ®i < 1
and

P
k
iD1 ®i D 1. Although this model has been widely used in statistics since its

introduction by Pearson (1894), it has only recently been applied in climate studies.
Haines and Hannachi (1995) � rst introduced mixture modelling in an attempt to explain
Paci� c sector regimes as metastable � xed points. The method was also used by Hannachi
(1997) to identify regimes having vertical structure. The number of mixture components
for hemispheric and sectorial regimes was estimated by Smyth et al. (1999) and found
to be less than four using a cross-validation procedure. Hannachi and O’Neill (2001)
showed that this approach was sample size dependent and proposed an improved
resampling procedure.

Figure 4 shows density estimates obtained by � tting a two-component normal
mixture model to the Lorenz data and a three-component normal mixture model to the
geopotential height data. The � xed points of the Lorenz attractor are clearly identi� ed
by this approach (Fig. 4(a)), which gave almost identical mixing proportions, ®1 D 0:47
and ®2 D 0:53, as expected from symmetry.

For the height analyses, the three-component normal mixture model identi� ed a
dominant component (®1 D 0:55) close to regime A of C99, and two less dominant
components (®2 D 0:33 and ®3 D 0:12) situated around regime D of C99. The compo-
nents are aligned along the axis between regimes A and D of C99 and are most likely
attempting to model the skewness in the PC2 variable rather than any discrete modes.
The resulting mixture model p.d.f. in Fig. 4(b) is unimodal despite being the sum of
three components. An attempt was made to � t a four-component mixture model to the
height data but this led to ill-conditioned estimates due to the small sample size. As the
number of mixture components increases much more sample data is required in order to
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obtain reliable estimates. Bayesian approaches can be used to help alleviate this problem
but would be unlikely to give stable results with the small sample size in this study
(Richardson and Green 1997).

(c) The marginal distributions
A necessary but not suf� cient condition for the joint distribution to be multinormal

is that the ‘marginal’ distribution of each variable alone should be normal. The marginal
probability distributions,

Fx.x/ D
Z 1

¡1
f .x; y/ dy;

Fy.y/ D
Z 1

¡1
f .x; y/ dx;

9
>>=

>>;
(6)

can be estimated from histograms of PC1 and PC2, which are shown along the margins
of Fig. 3. These can be compared to the normal distributions (dotted lines) that are
expected when the joint distribution is bivariate normal f .x/ D N2.xI µ; / (the multi-
normal hypothesis). The x-component of the Lorenz system (Fig. 3(a)) has a bimodal
histogram that deviates strongly from normality. However, there is little evidence of
strongly non-normal behaviour in the histograms of PC1 and PC2 of the height analyses
(Fig. 3(b)).

Rather than compare histograms with continuous distributions, a better way to see
deviations from normality is by plotting the empirical quantiles of the standardized
variable versus the quantiles of a standard normal distribution. If the distribution is
normal then the quantiles should be equal. Such ‘quantile–quantile’ (or ‘q–q’) plots
are shown in Fig. 5 for the two variables of both the Lorenz system and the height
analyses. The q–q plot of x for the Lorenz system (Fig. 5(a)) shows a strong departure
from normality. The presence of an S-shaped curve (Fig. 5(a)) is a recognised sign of
likely clustering in the data (Everitt and Hand 1981). A Kolmogorov–Smirnov (K–S)
test statistic of 0.108 con� rms that the non-normality is highly statistically signi� cant
(p < 0:001). The z variable in Fig. 5(b) has a more linear q–q plot, and is closer to being
normally distributed (K–S test statistic D 0:058, p D 0:03). The q–q plots for the PCs of
the height analyses (Figs 5(c) and (d)) are also very linear and these variables are more
normally distributed with K–S test statistics of 0.039 (p D 0:50) and 0.051 (p D 0:09),
respectively. To summarize, normality of the marginal distributions can be rejected for
the Lorenz data but not for the height data at the 5% level of signi� cance. At the 10%
level of signi� cance, normality can also be rejected for PC2 of the height analyses (due
to the presence of skewness).

(d ) Radial and directional clustering
Under the hypothesis of multinormality, all linear combinations of the state vari-

ables should be normally distributed, yet we only tested two directions in the previous
section. To properly test multinormality, more invariant measures need to be used that
do not depend on the speci� c orientation of the axes.

Instead of pairs of standardized Cartesian coordinates .xi ; yi/, it is useful to
consider polar coordinates de� ned by the radial distance from the origin ri D

p
x2

i C y2
i

and the angle relative to the x-axis µi D tan¡1.yi=xi/. The r and µ variables can then be
tested, respectively, for radial and directional clustering. These types of clustering can
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Figure 5. Deviations from normality for the marginal distributions shown by using quantile–quantile plots. Plots
show the empirical quantiles versus quantiles of the standard normal distribution for (a) the Lorenz x-variable,
(b) the Lorenz z-variable, and (c) PC1 and (d) PC2 of the 500 hPa geopotential-height analyses. Only (a) deviates

substantially from the straight line expected for a normal distribution.

easily be missed when testing only a few directions as was done in the previous section.
Under the multinormal hypothesis, r2 should be asymptotically distributed as Â2 with
two degrees of freedom (since it is the sum of two squares of normally distributed
variables x2 C y2), and µ should be uniformally distributed in the range ¡¼ to ¼ .
Figure 6 shows histograms and superimposed theoretical distributions of r and µ for
the Lorenz system and the height analyses, respectively.

For the Lorenz system, the radial distribution shown in Fig. 6(a) differs signif-
icantly from Â2 (K–S test statistic D 0:133, p < 0:001). The directional distribution
in Fig. 6(b) is also signi� cantly different from uniform (K–S test statistic D 0:078,
p D 0:07). For the height analyses shown in Figs. 6(c) and (d), both the radial distri-
bution (K–S test statistic D 0:042, p D 0:72) and the directional distribution (K–S test
statistic D 0:051, p D 0:49) do not differ signi� cantly from the distributions expected
under the multinormal hypothesis. To summarize, based on radial and angle variables
calculated from standardized x and y variables, multinormality can be rejected for the
Lorenz data but not for the height data at the 10% level of signi� cance. At the 5% level
of signi� cance, directional uniformity can not be rejected for the standardized Lorenz
data. However, this is mainly because of a reduction in power of the uniformity test
caused by standardizing the variables.

This more geometric approach can be extended to develop invariant measures
of skewness and kurtosis that can be used to assess the normality of multivariate
data. Mardia (1980) introduced invariant measures of multivariate skewness, b1;q , and
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Figure 6. Histograms for the radial and angular coordinates of the two systems: (a) Lorenz radius squared and
(b) angle; 500 hPa geopotential height (c) radius squared and (d) angle. The solid lines depict the theoretical Â2

with two degrees of freedom and uniform distributions expected under the multinormal null hypothesis.

multivariate kurtosis, b2;q , de� ned as:

b1;q D
1

n2

nX

iD1

nX

jD1

r3
ij ; (7)

b2;q D
1

n

nX

iD1

r2
ii ; (8)

where q is the number of variables (dimension of state space) and

rij D .xi ¡ x/TS¡1.xj ¡ x/

is the scalar product between the two vectors from the origin to points i and j in Maha-
lanobis space. Mahalanobis space is simply the space spanned by the standardized PCs
(e.g. PC1 and PC2 of the height analyses)—refer to Stephenson (1997) for a more com-
plete discussion. Under the multinormal hypothesis, b1;q and b2;q are asymptotically
distributed as

b1;q »
6
n

Â 2
º ; º D q.q C 1/.q C 2/=6; (9)

b2;q ¡ q.q C 2/ » N.0;
p

8q.q C 2/=n/ (10)

in the limit n ! 1 (Mardia et al. 1979).
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To test the multinormal hypothesis, we have calculated the multivariate skewness
and kurtosis for the Lorenz and 500 hPa height data. At the 5% level of signi� cance,
the height analyses were not found to be signi� cantly skewed (b1;2 D 0:19, p D 0:07),
whereas the Lorenz data were found to have signi� cant amounts of skewness (b1;2 D
0:84, p < 0:001). This is related to the strong directional anisotropy previously noted
in the Lorenz data. The height analyses were also found to have a multivariate kurtosis
close to the value of 8 expected for a bivariate normal distribution (b2;2 D 7:63, p D
0:45), whereas the Lorenz data gave a much smaller multivariate kurtosis signi� cantly
different from 8 (b2;2 D 6:47, p D 0:002). Therefore, based on these invariant measures,
the multinormal hypothesis can be rejected for the Lorenz system but not for the
height analyses at the 5% level of signi� cance. At the 10% level of signi� cance,
the multinormal hypothesis can also be rejected for the height data due to the presence
of skewness (but not kurtosis). This is related to the skewness already previously noted
in PC2.

(e) Statistical power of the tests
Statistical signi� cance tests can fail in two possible ways: type 1 errors (false

positives/false alarms) where the null hypothesis is incorrectly rejected when it is true,
and type 2 errors (false negatives/misses) where the null hypothesis is incorrectly not
rejected when in fact it is false (DeGroot and Schervish 2002). In this study, type 1
errors are caused by rejecting multinormality when the data are multinormal, whereas
type 2 errors are caused by the failure to reject multinormality when the data are not
multinormal. The probability of making a type 1 error when the null hypothesis is true
(i.e. the false alarm rate) is determined in advance by the person making the test and
is known as the level of signi� cance (e.g. ® D 5%, 1%, or even 0.1% for situations
where one really wants to avoid making a type 1 error, for example, in clinical drug
trials). The probability ¯ of making a type 2 error given the null hypothesis is false is
determined by the choice of ®, the sample size, and the type of test. The quantity 1 ¡ ¯ ,
the power of the test, provides a convenient way of summarizing how well the test
rejects the null hypothesis when it is false (i.e. the probability of detection). The power
decreases for smaller levels of signi� cance because of there being fewer rejections of
the null hypothesis—in other words, there is a trade-off between the amount of type 1
and type 2 errors. Data that are closest to satisfying the null hypothesis generally give
the least power and so power is generally never less than the level of signi� cance.

To address this important issue, we have used Monte Carlo simulations to generate
1000 samples of n D 270 pairs of .x; y/ non-normally distributed data. The previous
tests used in this study have then been applied to the 1000 samples to calculate the
number of rejections. The fraction of rejections (in %) obtained are given in Table 2
for three different levels of signi� cance. Two types of non-normal data were generated:
strongly bimodal data generated by a two-component normal mixture model � t to the
Lorenz data shown earlier, and weakly bimodal generated by a three-componentmixture
model � t to the 500 hPa geopotential-height data. The two-component � t to the Lorenz
model has two clearly well-separated bumps (see section 5(b)) and so should easily
be discriminated from multinormality. A more subtle case of non-normality has also
been tested based on the three-component normal mixture model � t to the height data
PCs. Despite having three components and being non-normal, this � t yields a unimodal
p.d.f. (see Fig. 4(b), section 5(b)). However, by varying the weights of these mixture
components, it was possible to generate p.d.f.s that were slightly bimodal having
bumps situated near to regimes A and D of C99. Because of the large widths of the
components compared to their separation, no weights were found that could produce
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TABLE 2. POWER OF THE STATISTICAL TESTS USED IN THIS
STUDY FOR DIFFERENT LEVELS OF SIGNIFICANCE

Statistic 1% level 5% level 10% level

x >99% (3%) >99% (10%) >99% (17%)
y 1% (45%) 5% (71%) 10% (80%)
r >99% (1%) >99% (4%) >99% (9%)
µ >99% (4%) >99% (11%) >99% (23%)
b1;2 >99% (34%) >99% (59%) >99% (74%)
b2;2 23% (2%) 53% (7%) 68% (11%)

Power is the probability of the test correctly rejecting the multinormal
null hypothesis when it is not true. The power (in %) was calculated
by applying the different tests to 1000 Monte Carlo samples of n D 270
points simulated by mixture model � ts to the Lorenz and geopotential-
height data. Numbers not in parentheses are for a two-component � t
to the bimodal Lorenz data, whereas numbers in parentheses were
generated using a weakly bimodal three-component mixture model � t
to the 500 hPa geopotential-height data (see text for details).

trimodal behaviour in the p.d.f. By shrinking the estimated mixture model weights
from .0:55; 0:33; 0:12/ to .0:33; 0:33; 0:33/, bimodality was � rst found to appear for
weights .0:54; 0:33; 0:13/. This critical weakly bimodal mixture model was then used to
generate the Monte Carlo results shown in parentheses in Table 2. This three-component
normal model is similar to the three-well potential system discussed by Hasselmann
(1999).

From Table 2, it can be noted that most of the tests have very good power for
the strongly bimodal case, i.e. multinormality can be safely rejected for this data.
The normality test on the y-component has low power due to the Lorenz data being
unimodal in this direction. The multinormal kurtosis test based on b2;2 has lower power
than the other tests (due to it being based on higher moments) but it still has good power
at the 10% level. As to be expected, the power of the tests are much less for the weakly
bimodal case (numbers in parentheses in Table 2). This is not a failure of our tests but
rather a clear indication that the underlying data on which the mixture model was � tted
is very close to multinormality. Large powers are obtained for the normality tests based
on y and b1;2 because of the presence of skewness in the y-direction in the weakly
bimodal (and NCEP) data. The low power for the weakly bimodal case indicates that
it is dif� cult to discriminate between the multinormal and weakly bimodal hypotheses
when one has only 270 data points. High power is not to be expected when statistically
testing broad hypotheses such as multimodality (Silverman 1994). In such cases, one
should logically adopt the most parsimonious (simplest) hypothesis that can explain the
data (e.g. the multinormal hypothesis). This principle of parsimony is also known as
Occam’s razor after the medieval philosopher, William of Occam (or Ockham), who
stated plurality should not be assumed without necessity ¤—a rather appropriate remark
for multiple-regime studies.

6. IS THERE SIGNIFICANT CLUSTERING IN STATE SPACE?

Because of physical constraints, the scatter of points in state space is � nite and
clustered around the mean—the attractor is bounded as can be noted for example
in Fig. 5. This non-homogeneity can make it dif� cult to detect other local clusters
within this cloud of points especially if they do not lie near the centre or edges of the

¤ Pluralitas non est ponenda sine necessitate.
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distribution. Fortunately, this problem can be effectively alleviated by transforming to
empirical probabilities that remove information about the marginal distributions.

(a) Probability space
Rather than use pairs of variables .xi ; yi/, consider transforming to pairs of proba-

bilities .ui; vi/ de� ned as

ui D Fx.xi/ D
Z xi

¡1
fx.x/ dx;

vi D Fy.yi/ D
Z yi

¡1
fy.y/ dy:

Fx and Fy are the cumulative distribution functions that can be most easily estimated
using F .xi/ D rank.xi/=.n C 1/, where rank is the position of xi once all the xi are
arranged in ascending order. The transformed coordinates .u; v/ lie inside the unit
square 0 · u; v · 1 and de� ne ‘probability space’ (Nelsen 1999). Furthermore, it is
straightforward to show that the new probability distribution in probability space,
g.u; v/, is related to the probability distribution of the original variables, f .x; y/, by
the simple relationship

g.u; v/ D
f .x; y/

fx.x/fy.y/
: (11)

The marginal distributions of g.u; v/ are uniform. In other words, the transformation to
probabilities factors out the effect of the marginal distributions. Hence, when x and y are
independently distributed, the resulting probability distribution g.u; v/ is completely
uniform (and equal to one). So, under the multinormal hypothesis, one expects that
the scatter of points in probability space of the PCs should be completely uniform.
This makes searching for clusters and testing their signi� cance much simpler as will
be demonstrated in the following section.

Figure 7 shows the scatter of points and probability distribution in probability space
for the Lorenz system and the height analyses. The scatter of points are no longer
clustered around the origin—the marginal histograms are perfectly uniform as to be
expected from the preceding arguments. This makes it easier to identify clusters which
are much better separated than in Fig. 3. While clustering can clearly be seen in Fig. 7(a)
for the Lorenz system, the scatter of points for the height analyses in Fig. 7(b) appears
much more uniform. In the next section, a spatial point process technique will be used
to assess the amount of clustering in both scatter plots.

The probability distribution in probability space is related to a very elegant concept
in statistics known as the ‘copula’ (Nelsen 1999). Sklar (1959) proved that the joint
cumulative distribution function F .x; y/ for any pair of random variables can always be
written as

F .x; y/ D C.Fx.x/; Fy.y//; (12)

where C.u; v/ is the ‘copula’ function that links the joint distribution function to the
marginal distributions. The copula gives information about the dependencybetween the
two variables without caring about their individual marginal distributions. The probabil-
ity distribution in probability space is simply the probability density of the copula:

g.u; v/ D
@2C

@u@v
: (13)
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Figure 7. Scatter plots of the cumulative probabilities of the variables for (a) the Lorenz system and (b) the
500 hPa geopotential-height analyses. Note inhomogeneity evident in (a) but not in (b).

This non-parametric framework is completely general and can easily be extended to
more than two variables.

In order to see the density maxima more clearly, Hsu and Zwiers (2001) used an
alternative approach that involved subtracting (rather than factoring) out the product of
the marginal densities from the estimated probability distribution. This less robust para-
metric procedure involving smoothing does not result in a simple uniform distribution
under the multinormal hypothesis and so is less suitable for testing inferences about
clustering. It also has the drawback noted by Hsu and Zwiers (2001) that it is not robust
to skewness in the distribution: a ‘regime’ could be falsely identi� ed when a unimodal
skewed distribution is subtracted from the multinormal null distribution. Finally, it also
has the inconvenience of giving much smaller anomalies at the edges of the distribution
where there may also be signi� cant clusters of interest.

7. CLUSTERING IN PROBABILITY SPACE

For independent variables, such as PCs under the multinormal hypothesis, points in
probability space are expected to be uniformly distributed. Hence, by testing for devia-
tions from uniformity (i.e. clustering), it is possible to test the multinormal hypothesis.
Clustering of points in probability space can be tested using standard techniques devel-
oped for spatial point processes (Diggle 1983). Testing directly for clustering of points
has the great advantage that it is based directly on the data points and completely avoids
the smoothing and dependencyproblems encountered in bump hunting based on density
estimation (Good and Gaskins 1980; Silverman 1981, 1994).

Ripley (1976) developed a simple technique for testing for the presence of spatial
clusters of points based on the distance between pairs of points. The mean number of
points that are within distance d of a target point can be written as

n.d/ D K.d/f ; (14)
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Figure 8. The clustering statistic L.d/ (see text for details) as a function of the inter-point distance d for (a) the
Lorenz system and (b) the 500 hPa geopotential heights. The lines denote 95% con� dence bounds for no clustering

estimated by generating many random con� gurations of unclustered points.

where f is the mean density of points and K.d/ is often referred to as Ripley’s
K-function. For a perfectly uniform distribution of points, K.d/ is simply the area ¼d2

enclosed by a circle of radius d about the target point. Deviation from this relationship
can be used to detect the presence of clustering. Note that this and most other rigorous
clustering approaches require extra information about second-order moments (point-to-
point distances) in addition to just the � rst-order density estimates used in density bump
hunting approaches.

Figure 8 shows plots of the clustering index

L.d/ D
r

K.d/

¼d2
(15)

as a function of inter-point distance. The 95% con� dence limits were generated by
making Monte Carlo simulations of homogeneous spatial point process with the same
total number of points. Note that there are signi� cant deviations from no clustering
(L D 1) for the case of the Lorenz system (Fig. 8(a)) but not for the reanalysis PCs
(Fig. 8(b)). The same conclusions would also hold at the 10% level of signi� cance based
on 90% con� dence intervals having 0.84 (1.64/1.96) the width of those shown in Fig. 8.
This recon� rms the previous � ndings in this study that the multinormal hypothesis can
not be rejected for this sample of reanalysis data. It also suggests that the clusters seen
in Fig. 4(b) associated with the modes discussed in C99 are artefacts of sampling.

(a) Concluding remarks
This study has identi� ed three distinct hypotheses concerning the probability distri-

bution of the climate system: multinormal, unimodal and non-normal, and multimodal.
The simplest null hypothesis, expected for large-scale average indices of many weakly
interacting local weather variables, is that the probability distribution is multinormal.
This hypothesis has been tested using data generated by a simple low-order chaos model
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and NH 500 hPa geopotential gridded analyses 1949–94. While the hypothesis is easily
rejected for the chaos model data, it can not be rejected for the geopotential-height
data used in C99 at the 5% level of signi� cance. Furthermore, a spatial point process
clustering technique that does not involve density estimation/smoothing con� rms that
there is no signi� cant clustering in the data (at the 5% level of signi� cance). At the
less stringent 10% level of signi� cance, the geopotential-height data differs slightly
from normality due to the presence of skewness in PC2 but there is still no statisti-
cally signi� cant evidence of multiple clustering. Using different analysis techniques,
Hsu and Zwiers (2001) also concluded that ‘not all the regimes identi� ed by Corti et al.
(1999) are distinguishable from those that result from sampling variability’. However,
Hsu and Zwiers (2001) did identify the cold-ocean warm-land pattern (regime A) as a
regime using their AR(1) approach—although this could have arisen due to a weakness
of their approach in the presence of skewness. Our more robust non-parametric methods
help show that although there is some slight skewness (mainly in PC2) there is no real
evidence of signi� cant multiple clustering.

Although no convincing evidence of statistically signi� cant multiple regimes has
been found in this study of monthly mean data, regimes may exist when using other
variables and pre-processing techniques. It is questionable whether the � ltering and
data projection procedures used in this study and C99 are optimal for � nding regimes.
The averaging involved in using monthly means and leading PCs of hemispheric datasets
is likely to reduce any non-normality present in the original data. The existence of
multiple weather regimes in daily 500 hPa geopotential height over the Euro-Atlantic
region has also recently been tested using our methods in an MSc project by Ivar
Seierstad at the University of Bergen (Seierstad 2002). Despite having a much larger
sample of data, Seierstad (2002) found very similar conclusions to those reported here
for monthly mean data. In order to � nd regimes, it might be better to use pattern
extraction techniques applied to daily data in a smaller regions such as the North
Atlantic blocking region. However, such data mining techniques can seriously reduce the
signi� cance of any regimes that are eventually found. It is safer in general to have strong
prior physical arguments as to the location and number of regimes before searching.
This was the case in the early searches for bimodality in stationary waves inspired by
the Charney–DeVore model (Sutera 1986; Hansen and Sutera 1986).

Although we have found insuf� cient evidence to reject multinormality in favour
of multimodality in this particular study of NH geopotential height from 1948–93, it is
possible that the hypothesis may be rejected when more data become available in the
future (or in long general-circulation model simulations—see Weisheimer et al. 2001).
Nitsche et al. (1994) estimated that at least 150 years of data would be required in order
to � nd any signi� cant evidence of multimodality. High power is not to be expected when
statistically testing broad hypotheses such as multimodality (Silverman 1994). This is
one of the reasons that led us to test the simplest multinormal hypothesis rather than the
more complicated multimodal hypothesis.

Although the non-existence of multiple hemispheric regimes might appear to be
a negative result, it is in fact a very useful positive result. The inability to reject
the multinormal hypothesis suggests that this simple single-regime hypothesis may
be the most appropriate model for describing the NH � ow. In other words, we can
reasonably assume that the leading PCs of the 500 hPa geopotential-height � eld are
independent and close to being normally distributed. This allows us to make useful
inferences and predictions about the probability of different atmospheric states. It also
provides a simple probability model that can be used in forecasting, climate change
detection, and risk assessment studies.
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