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Abstract

The accuracy of weather forecasts is not only influenced by the skill of the forecasting system, but also by the weather itself.

Here, we propose the use of the odds ratio (benefit), ORB, as a measure, which is not influenced by the base-rate of the event and

thus enables a fair comparison of categorical forecasts for different years, regions, events, etc. The ORB has a simple

interpretation and it permits a split of forecasting skill into contributions from forecasting the event and the non-event.

Applying this measure to operational quantitative precipitation forecasts reveals that forecasts of more extreme (rare) events

have more skill than forecasts for more ‘normal’ events which is contrary to the results typically obtained with other categorical

measures traditionally used in meteorology and also to subjective perception. Both of the latter can be interpreted as a delusive

consequence of the ‘neglect of the base-rate’ effect. Further consequences are described for the composition of model trials and

for the verification of forecast warnings.

Over recent years there have been trends showing a small improvement in skill and a large reduction in model bias for

forecasts of slight precipitation.
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1. Motivation

One objective in the verification of a weather

forecasting system is the assessment of the skill of the

system, which produces the forecast, e.g. a numerical

model. This must not be equated to the assessment of

the accuracy of the forecast since the latter is also

influenced by the weather itself, e.g. by the variable

amplitude and predictability of the event to be

forecast. For continuous variables, the reduction in

the Mean Squared forecast Error (MSE) over a

reference forecast is often used to define a skill

score (SS), i.e.

SS ¼
MSEf 2 MSEpers

MSEperf 2 MSEpers

ð1Þ

where MSEf,per s,per f are the mean squared errors of

the forecasts, persistence forecasts and perfect fore-

casts, respectively (Wilks, 1995). Following Murphy

(1988), the MSE of forecasts f and observations o can
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be decomposed into the bias B ¼ Eðf Þ 2 EðoÞ; the

variance of the observations s2
o or forecasts s2

f and the

correlation between forecasts and observations, rof or

roper s

SS ¼ 1 2
B2 þ s2

o þ s2
f 2 2sosfrof

2s2
oð1 2 ro persÞ

ð2Þ

This decomposition of the skill score reveals that for a

given MSEf the skill of, or improvement due to, the

forecasting system is rated higher when the variance of

the weather process is larger or when the predictability

of the weather was lower. Here, the correlation of the

persistence forecast with observations acts as a

surrogate measure of predictability.1 In other words,

a forecast is less penalised when it ‘risks’ larger errors

by going far from the mean in a situation where the

variance is high. Conversely, when the variance of the

weather process is low, only a bad forecast has large

errors or, similarly, only a bad forecast would miss

predictable components like the daily cycle or a

constant weather in a blocking situation.

Generally speaking, a skill score should provide a

fair assessment of a forecasting system by isolating

the accuracy of the forecasting system from the

accuracy which a user has ‘for free’, for instance

given by knowledge of mean climatology and/or

current conditions. Forecast systems for different

seasons, regions, events and years can only be

compared fairly by using a skill score which at least

partly accounts for the varying ‘difficulty’ to forecast

the weather. A desirable property is the ability to

compare skill from year to year, since it is important

to highlight trends in skill over time to administrators

and the public. Assuming a normal-linear model,

Krzysztofowicz (1992) derives a measure of corre-

lation for categorical forecasts of continuous pre-

dictands between forecasts and observations which

allows a meaningful comparison of forecasts taking

into account prior knowledge.

Let us look at the annual cycle of verification of

northern hemispheric 500 hPa geopotential height

forecasts (Fig. 1) as an example of this difference

between the accuracy of the forecast as measured by

the root of the MSEf, and the skill of the forecasting

system as measured by the skill score. The MSEf is

highest in winter but this is largely due to the high

variance in winter. This can be seen in the skill score

which shows the same annual cycle, i.e. according to

this measure the forecasting system is most beneficial

in winter. The use of such skill scores for forecasts of

continuous variables has long been accepted practise.

But how should one proceed for forecasts of

categorical variables?

Binary yes–no forecasts of an event (often defined

by the exceedance above some threshold) are the

simplest form of a categorical forecast. The joint

distribution of forecasts f and observations o (see

Table 1 for definitions) can be documented in a 2 £ 2

contingency table. A widely used measure to

summarise the skill in this situation is the Equitable

Threat Score (ETS, or Gilbert skill score in Schaefer

(1990)), which is given as the improvement over

chance of the probability for a hit relative to the

probability for a threat which would not have been

foreseen by chance (an overbar denotes the comp-

lement of an event, i.e. a non-event; see Table 1 for

further definitions)

ETS ¼
pðf ; oÞ2 pðf ÞpðoÞ

pðf ; oÞ þ pðf ; �oÞ þ pð�f; oÞ2 pðf ÞpðoÞ
ð3Þ

Thus, the ETS contains some aspect of a skill score by

comparing the forecast hits against those obtained by

chance with a system with the same pðf Þ: But it is

explicitly dependent on the sample climate. Further-

more, there seems to be no obvious probabilistic

interpretation of the ETS or indeed the difference or

ratio of the ETS’s of two forecasts. Thus, it is not clear

how to properly compare the ETS of a forecast to a

persistence forecast and ultimately achieve a fair

comparison of categorical forecasts.

In the present paper, we will show that the odds

ratio discussed by Stephenson (2000) can be used as a

straightforward measure to fairly compare the skill of

categorical forecasts. Section 2 derives the odds ratio

from Bayesian statistics, i.e. we show how the use of a

forecast reduces the uncertainty about the future from

the uncertainty in prior, climatological knowledge.

Section 3 illustrates this concept using operational

Met Office quantitative precipitation forecasts

(QPF’s). Section 4 gives a summary of the main

results and suggestions for further applications of

1 Measuring predictability is a complicated issue and focus of

much current research. The skill of persistence forecasts is only a

very crude, but handy measure of predictability. For the sake of

brevity, we will further refer to it as the predictability indicator.
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the concepts presented here. Note, that we will solely

focus on measuring the skill of the forecast and not

the value of a forecast to a user (Thornes and

Stephenson, 2001), which has to be treated separately

(Murphy, 1993).

2. A Bayesian view of verification

Since Finley (1884), numerous measures of the

accuracy of categorical forecasts have been proposed

and discussed in the meteorological literature (see

Fig. 1. (a) Monthly root mean square error (RMSE) of Northern hemispheric 500 hPa geopotential height T þ 24 h forecasts from the Met

Office Global Model and (b) skill score (Eq. (1)).
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Marzban, 1998; Jolliffe and Stephenson, 2003 for

recent reviews). Murphy and Winkler (1987) estab-

lished the assessment of the joint distribution of

forecasts and observations as a general framework for

forecast verification (as applied for instance by

Brooks and Doswell (1996)). Mason (1982) pioneered

the use of the relative operating characteristic in

meteorology, a graph of the hit rate versus the false

alarm rate which is based on signal detection theory.

Recently, Stephenson (2000) brought the odds ratio to

attention in meteorology, a measure which is widely

used in the medical and social sciences (Agresti,

1996). The odds V or risk of an event is the ratio of the

probability p that the event occurs to the probability

1 2 p that the event does not occur. The odds ratio u

compares the conditional odds of making a good

forecast (a hit) to the odds of making a bad forecast

(a false detection), i.e.

u ¼
Vðf loÞ
Vðf l�oÞ

¼
pðf ; oÞ

pð�f; oÞ

pð�f; �oÞ

pðf ; �oÞ
ð4Þ

For example, an odds ratio of 5 means that the odds

for correctly detecting precipitation are five times

higher than the odds for wrongly forecasting precipi-

tation occurrence. The forecasts have positive skill if

the odds ratio is significantly larger than one and

negative skill (worse than pure chance) when it is

significantly smaller than one (see Stephenson (2000)

for significance tests of the odds ratio). In the

following, we will derive the odds ratio in a way

that leads to a slightly different interpretation, namely

as a product of the odds for forecasting the event

correctly and the odds for forecasting the non-event

correctly.

We start by noting that a joint probability of

forecasts and observations can be viewed from two

perspectives (Murphy and Winkler, 1987), e.g.

pðf ; oÞ ¼ pðf Þpðolf Þ ¼ pðoÞpðf loÞ ð5Þ

The first factorisation splits the joint distribution into a

measure pðf Þ of the refinement (or sharpness) of the

forecast and a measure pðolf Þ of the calibration (or

reliability) of the forecast. The second view splits the

joint distribution into a measure pðoÞ of the forecast-

ing situation called base rate (in meteorology its

usually the sample climatology, i.e. the relative

frequency of an event) and a measure pðf loÞ called

the likelihood of the forecast, which indicates how

well the forecast discriminates between events and

non-events.

We now adopt the view of a user of a forecast (e.g.

a gardener thinking about watering the plants) who

gets a forecast for precipitation and might wonder

what the probability is that the precipitation forecast is

correct. Thus, we rearrange Eq. (5) to obtain Bayes

theorem

pðolf Þ ¼
pðoÞ

pðf Þ
pðf loÞ ð6Þ

Thus, only if the frequency bias

FB ¼
pðf Þ

pðoÞ
ð7Þ

equals one, i.e. when the event was forecast as often as

observed, then the user can expect the event to occur

with the same probability pðolf Þ given the forecast of

the event as the user knows from past verification

pðf loÞ: If this is not the case a recalibration of the

forecast can be performed (Jolliffe and Stephenson,

2003). The conditional probability that the precipi-

tation forecast is wrong is

pð�olf Þ ¼
pð�oÞ

pðf Þ
pðf l�oÞ ð8Þ

Note, that for a rare event and an unbiased forecast

this conditional probability is much higher than the

conditional probability pðf l�oÞ for the forecast to fail to

detect dry weather. In other words, Eq. (8) says that

for a rare event it is very likely that a rain forecast

goes wrong just because there are only a few

Table 1

Joint probability distribution pð·; ·Þ of forecasts f and observations o

for a binary event as well as marginal distributions pð·Þ

Forecast Event observed

Yes No Total

Yes pðf ; oÞ pðf ; �oÞ pðf Þ

No pð�f; oÞ pð�f; �oÞ pð�fÞ

Total pðoÞ pð�oÞ 1

The non-event is denoted by an overbar. The joint distribution

can be estimated from the relative frequencies of the occurrence of

the joint events. A conditional probability is denoted by, e.g. pðf loÞ;
which reads “probability for f given o”.
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occasions to be right anyway, whereas the forecast is

very unlikely to fail to detect dry weather since there

is almost always dry weather. Notice the potential for

confusion when one unknowingly equates the two

conditional probabilities pð�olf Þ and pðf l�oÞ in situations

of rare or frequent events. It leads to numerous

failures of judgement and decision making in every-

day life (Plous, 1993), one of which is called

‘prosecutor’s fallacy’ in legal and statistical circles.

The odds for a correct precipitation forecast are

Vðolf Þ ¼
pðolf Þ
pð�olf Þ

¼
pðf ; oÞ

pðf ; �oÞ
ð9Þ

which can be rewritten as

Vðolf Þ
|ffl{zffl}

posterior

¼ VðoÞ
|{z}

prior

pðf loÞ
pðf l�oÞ

|ffl{zffl}

likelihood ratio

ð10Þ

where

VðoÞ ¼
pðoÞ

pð�oÞ
ð11Þ

A Bayesian interpretation of Eq. (10) reads that the

posterior odds Vðolf Þ to observe precipitation given a

precipitation forecast are equal to the prior2 odds VðoÞ

of precipitation times the likelihood ratio pðf loÞ=pðf l�oÞ
for a correct precipitation forecast. Thus, the posterior

‘perception’ Vðolf Þ of the quality of the forecast by

the user is not only determined by the quality of the

model to discriminate between precipitation and no-

precipitation situations ðpðf loÞ=pðf l�oÞÞ; but it is also

explicitly determined by ‘nature’ ðVðoÞÞ; which is not

under the forecasters control. For instance, for a rare

event the odds for getting the precipitation forecast

right might be low, but just because there are only a

few occasions in the first place to get the forecast right

relative to those many situations where there is no

event and the precipitation forecast could thus turn out

to be a false alarm. Furthermore, the prior odds may

vary substantially between ‘dry’ and ‘wet’ years and

consequentially, the quality of the forecast might

appear to vary in different circumstances just because

of this statistical base rate effect. The posterior odds

for a correct precipitation forecast are the quantity that

interests the user, but they are not a good measure to

judge fairly the quality of the forecasting system. It is

the likelihood ratio which measures the contribution

of the forecasting system to the overall quality of the

forecast.

Murphy (1991) discusses a proposal to include the

likelihood ratio of the event forecast into a probabil-

istic forecast. This could highlight to the user the

deviation of the odds for a rare event given the

forecast from the prior odds for the event.

Matthews (1996a,b) describes how the neglect of

the base-rate gives the false impression that precipi-

tation forecasts have low skill. But meteorology is not

the only subject to suffer from this ‘unfair’ appreci-

ation. More serious errors of judgement due to base-

rate neglect occur in fields like cancer screening or

DNA profiling (Gigerenzer, 2002).

Similarly, the odds for a correct no-precipitation

forecast are given by

Vð�ol�fÞ ¼
pð�ol�fÞ
pðol�fÞ

¼
pð�f; �oÞ

pð�f; oÞ
¼ Vð�oÞ

pð�fl�oÞ
pð�floÞ

ð12Þ

For example, this number tells a cyclist what the odds

are to arrive in dry weather given the forecast was for

no-precipitation. Note that the prior odds for no-

precipitation Vð�oÞ are just the inverse of the prior odds

for precipitation.

The odds ratio (Eq. (4)) can be obtained by

multiplying the posterior odds for correct precipi-

tation and correct no-precipitation forecasts

u ¼ Vðolf ÞVð�ol�fÞ ¼
pðolf Þ
pð�olf Þ

pð�ol�fÞ
pðol�fÞ

ð13Þ

Thus, by explicitly accounting for the two intertwined

tasks of the forecasting problem, i.e. the forecast of

the event and the non-event, it is possible to remove

the two equal, but inverse influences of nature

represented by the prior odds for precipitation and

no-precipitation. We are now left with a measure

which is not explicitly influenced by the base rate of

the event, and so fairly reflects the overall skill of the

forecasting system.

In the derivation of the odds ratio above we have

adopted a forecast-oriented view in that we looked at

the conditional probability for the observations given

a particular forecast. A similar derivation adopting an

observation-oriented view gives the same result (13)

2 In order to use the Bayesian terminology we assume the

climatology to be stationary, i.e. the sample climatology equals

the climatology and thus, we can call the climatology prior to the

forecast when in reality we know it only posterior to the observation.
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as above, i.e. the odds ratio is symmetric with respect

to the conditioning which is different to, for instance,

the ETS.

Note, that a forecast using only climatology (e.g.

pðf ; oÞ ¼ ðpðoÞÞ;2 etc.) has an odds ratio of one, i.e. the

climatological forecast has no skill and thus serves

automatically as a reference base line and u can be

interpreted as the skill with respect to climatology.

We can further raise the baseline by asking how much

better the forecasting system is than some other

reference forecast, e.g. persistence, by forming the

ratio of all probabilities involved to their equivalent

probabilities of the reference forecast. The added

benefit from the forecasting system can then be

expressed in the odds ratio benefit ðORBÞuþref

uþref ¼
u

uref

ð14Þ

Note, that for illustrative purposes it might be useful

to take the logarithm of Eq. (14), since then all terms

are additive and can be plotted on the same scale

ln uþref ¼ðln pðf ; oÞ2 ln pðfref ; oÞÞ þ ðln pð�f; �oÞ

2 ln pð�fref ; �oÞÞ2 ðln pðf ; �oÞ2 ln pðfref ; �oÞÞ

2 ðln pð�f; oÞ2 ln pð�fref ; oÞÞ ð15Þ

Furthermore, this split of the odds ratio benefit can be

helpful in getting to the source of forecast differences

because one might have a physical idea why one

forecast has for instance produced more hits. It is

more difficult to find out why an overall skill score is

better or worse, since it is the balance between the

entries in the contingency table, which make up

the total score. In the log odds all contributions have

the same weight and thus can be compared, whereas in

most other scores (e.g. ETS, Eq. (3)) the contributions

are nonlinearly combined and thus their balance is not

so clear.

3. Verification of operational precipitation

forecasts

Eight years (1995–2002) of four times daily, six-

hourly accumulated precipitation forecasts from the

operational Met Office (UK) mesoscale model are

verified against 42 rain gauge accumulations in the

UK. Thus, the daily cycle is sampled evenly. Because

of representativity problems gauges are not optimal

for estimating areal precipitation required for the

verification of model grid box average precipitation,

especially for single cases or in convective situations.

Yet here, we also want to compare monthly verifica-

tion results over a long time period. Thus, it is more

important that the selected set of stations is fairly well

distributed over the UK and that it was available most

of the time. Model forecasts are compared against six-

hourly observed accumulations persisted for 24 h.

Monthly and overall contingency tables are formed

by computing the relative number of joint forecast and

observed events and non-events (Table 1). An event is

defined by the exceedance of a threshold of accumu-

lation amount, e.g. 0.1, 0.2, 0.5, 1, 2, 4, 6, 10 mm per

6 h in our analysis.

3.1. Long term means

We start by analysing the contingency table for the

whole 8-year period. Fig. 2a–f present an illustration

with operational data of the derivation of the odds

ratio in Section 2. The product of the first two plots in

each column gives the third plot (cf. Eqs. (10) and

(12)). The posterior odds for a correct precipitation

forecast are on the bottom of the left column (Fig. 2c).

Here, the odds for getting the precipitation

forecast right are about even for slight precipitation

(0.1 mm/6 h) and they drop with increasing amounts

such that the forecast for heavy precipitation (10 mm/

6 h) is more likely to be a false alarm than a correctly

detected event. Yet, we see that the source of this drop

in perceived quality of the forecast is solely due to the

sharp drop in the prior odds for precipitation events

with large amounts (Fig. 2a), i.e. the (few) precipi-

tation forecasts go wrong relatively often since there

are only a few occasions to be right anyway. Indeed,

the likelihood ratio (Fig. 2b and Eq. (10)) reveals that

the (largely unbiased) model has more skill when it

forecasts precipitation in distinguishing between

events and non-events for heavy precipitation than

for slight precipitation. The model raises the odds for

observing slight precipitation from about 1:3 prior to

the forecast to 2:1 when the forecast is for

precipitation. For heavy precipitation, the increase in

the odds is even higher, i.e. from 1:125 prior to 2:5

after the forecast. Note also that the benefit from using

M. Göber et al. / Journal of Hydrology 288 (2004) 225–236230



Fig. 2. Contributions to the odds ratio as function of accumulated precipitation threshold. Left column: forecast correctly detected precipitation

amount; right column: forecast correctly rejected precipitation amount. First row: prior odds; second row: likelihood ratios; third row: posterior

odds. 12–18 h forecast range accumulation model forecasts (stars and solid line) and persistence forecasts (triangles and dashed line). Dotted

line for odds equal one (‘evens’). Prior odds are the same for model and persistence forecasts, because they reflect the base rate of the same

observations.
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model forecasts instead of persistence forecasts also

increases with precipitation amount.

In other words, when one removes the effect of the

low prior odds given by nature to get the precipitation

forecast right then we see that the model actually has

more skill at predicting heavy precipitation than slight

precipitation. We suspect the reason for this behaviour

lies in clearer precursors for a more extreme event

than for slight precipitation. For instance, the initial

state may consist of an already developed strong low

which is well observed or of high available potential

energy or high convective available potential energy,

i.e. most extreme events do not happen ‘out of the

blue’ while drizzle forecasts have less obvious

precursors. At least from the perspective of seasonal

variations, continuous skill scores also show that more

extreme winter weather forecasts have more skill than

summer forecasts (Fig. 1). Van Den Dool and Toth

(1991) cite numerous observations particularly from

long range forecasting that forecasts of ‘near-normal’

situations often fail.

The no-precipitation forecasts (right column of

Fig. 2) have a prior odds which is just the inverse of

the prior odds for precipitation (Fig. 2d). Thus, it is no

surprise that the posterior odds for a correct no-

precipitation forecast are high and strongly increases

with amount (Fig. 2f). In this situation, many people

know intuitively that the forecaster should not get the

credit (e.g. by saying “no wonder that you get the no-

rain forecast right in Southern California, because it

never rains in Southern California”3). Yet for this, no-

precipitation part of the forecasting problem the skill

of the model is not as high as for the precipitation

forecast and it is slightly decreasing with amount (Fig.

2e), i.e. the miss rate rises slightly stronger with

amount than the correct rejection rate increases. The

model raises the odds for observing no-precipitation

from about 3:1 for slight precipitation prior to the

forecast to 8:1 after the forecast was for no-

precipitation and for no-heavy precipitation from

125:1 prior to 190:1 after the forecast.

Fig. 3 shows that combining the skill for

precipitation and no-precipitation forecasts using

the odds ratio (Eq. (13)) gives a clear increase in

skill for more extreme events and relative to

persistence forecasts. The odds for making a hit are

10 times larger than the odds for making a false alarm

for slight precipitation and 60 times larger for heavy

precipitation. Furthermore, the odds ratio is 5 times

larger than for persistence forecasts for slight

precipitation and it is 60 times larger for heavy

precipitation. The increase in skill for more extreme

events is generally opposite to what many other

traditional categorical ‘skill’ scores indicate (Ebert

et al., 2003). However, the majority of these

traditional scores are explicitly dependent on the

base rate of the event, i.e. the base rate cannot be

factored out and thus the scores decrease as the base

rate decreases (see chapter 3 in Jolliffe and Stephen-

son (2003)).

Fig. 4 presents an illustration of Eq. (15). We see

that the major difference between model and persist-

ence forecasts comes from a higher probability for a hit

pðf ; oÞ achieved by the model and the difference also

increases with amount. This underlines the assumption

that with increasing severity of the event there are

stronger precursors in the atmosphere which make the

occurence of an extreme event less of a ‘surprise’ for

the model compared to a persistence forecast.

It should be noted that there is hardly any

difference between model and persistence forecasts

for the successful forecast of the non-event ðpð�f; �oÞÞ:

Fig. 3. Odds ratio as a function of threshold of accumulation.

12–18 h forecast range accumulation model forecasts (stars and

solid line) and persistence forecasts (triangles and dashed line).

Dotted line for an odds ratio of one, i.e. no-skill.

3 In regions of a high base rate, i.e. of more wet than dry events,

people rightly use the opposite argument, e.g. when they say “no

wonder that you get the rain forecast right in Scotland, because it

always rains in Scotland”.
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While the absolute change in this cell of the

contingency table is large, it is the relative change

which is important in the odds ratio. However, this

relative change is usually small and so is its influence

on the change in odds ratio with threshold or in a

comparison of models, i.e. the change in odds ratio is

hardly influenced by the no-forecast, no-observation

cell counts.

The model is doing slightly better than persistence

in terms of false alarms ðpðf ; �oÞÞ and specifically in

reducing the number of misses ðpð�f; oÞÞ: Having more

false alarms than missed events also shows that there

is a positive bias in the model forecasts whereas the

persistence forecasts are unbiased by construction.

3.2. Time evolution of forecast skill

Having shown a fair comparison of forecast skill

for different events we now turn to the comparison of

forecast skill over time. The model formulation has

been changed over the 8 years to improve temperature

and wind forecasts. Here, we look to see if there is

also improvement in precipitation forecasting. Fig. 5

displays the time evolution of monthly values of the

traditionally used ETS. We might be satisfied to

identify an annual cycle as an interpretable feature

(predominantly convective precipitation in summer is

less predictable than large scale precipitation in

winter), but this does not really tell us anything new

about the model performance but just that we should

not really compare seasonally varying performance in

order to find out about the model performance. We

note an increase in performance over the time period

which is small compared to the variability.

Fig. 6 shows that the variability of the prior odds

for slight precipitation (.0.2 mm/6 h) is larger than

the variability of the likelihood ratios and the odds

ratio which represent the model performance.

Furthermore, the prior odds show an annual cycle

whereas the model measures do not. Thus, the

‘perception’ of the variability of the accuracy of the

forecast as represented by the posterior odds would

be strongly influenced by the variability of the base-

rate (not shown). The variability of the likelihood

ratio for the no-precipitation forecast is smallest and

thus the variability of the odds ratio is mainly

Fig. 4. Contributions to Eq. (15). Bold dotted line: model ln u; bold

dash–dotted line: persistence ln uper s: RHS of Eq. (15): model

forecasts (solid lines connecting symbols); persistence (dashed lines

connecting symbols). Symbols: (þ) ln pð f ; oÞ; ( p ) ln pð �f; �oÞ; (S)

ln pð f ; �oÞ; (K) ln pð �f; oÞ: Note, that false alarms and misses have

been plotted with their negative sign from Eq. (15), allowing to

mentally add all curves from the RHS of Eq. (15) to arrive at

the LHS.

Fig. 5. Equitable Threat Score (ETS) for heavy precipitation

(.4 mm/6 h) for 12–18 h accumulation model forecasts (solid

line) and persistence forecasts (dashed lines) and their linear trends.
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influenced by the variability of the model skill to

forecast the event. No significant trends can be

detected.

The time evolution of the model and persistence

forecast skill as measured by the odds ratio and the

ORB is given in Fig. 7 for heavy precipitation

(.4 mm/6 h). No significant improvement can be

seen for model forecasts yet the skill of persistence

forecasts seems to have decreased slightly over this

time period. Thus, the ORB shows a small increase.

To summarise, from all the measures presented here

no big increase in skill of precipitation forecast can be

detected over the last 8 years, an observation which

has been made world wide and is the subject of much

research (Ebert et al., 2003).

However, a clear improvement in the model bias

can be seen in Fig. 8. The frequency bias for slight

precipitation events has decreased substantially from

about 30 to 10% over-estimation. This mesoscale

model no longer produces predominantly large areas

of slight precipitation but more realistic, concentrated

areas of higher precipitation amounts. Yet, the

accurate placement of these features remains a

problem.

4. Concluding remarks

It is a challenging task to fairly split forecast

accuracy into a part which is due to the skill of the

forecasting system and a noise part which is due to the

natural variability4 and predictability of the weather.

It is only possible to fairly compare forecasts from

different times, regions, events, etc. when we separate

out the skill of the forecasting system. Skill scores for

continuous variables largely achieve this goal but

categorical skill scores traditionally used in

meteorology fail to do so, because they depend

Fig. 6. Time series of prior odds for precipitation (dash–dot–dot–

dot line), likelihood ratio for precipitation forecast (solid line),

likelihood ratio for no-precipitation forecast (dotted line) and odds

ratio (dashed line) for slight precipitation (.0.2 mm/6 h) forecast.

Note, the logarithmic scale which allows a visual comparison of the

variability’s of the measures (Eq. (15)).

Fig. 7. Odds ratio for model forecasts (dashed line) and persistence

forecasts (dotted line) and odds ratio benefit (Eq. (14), solid line) for

heavy precipitation (.4 mm/6 h) for 12–18 h forecast range

accumulation model forecasts and their linear trends.

Fig. 8. Frequency bias FB for 12–18 h accumulation model

forecasts of slight precipitation (.0.2 mm/6 h, solid line) and

heavy precipitation (.4 mm/6 h, dashed lines) and their linear

trends.

4 The observations of the weather contain noise as well, which is

especially important in precipitation estimation, a topic which is

dealt with elsewhere in this special issue.

M. Göber et al. / Journal of Hydrology 288 (2004) 225–236234



explicitly on the base rate of the event. In order to play

fair in the comparison of categorical forecasting

systems, we propose the use of the odds ratio (benefit)

which:

† is independent of the base rate of the event;

† has a simple interpretation as the ratio of the odds

for making a hit to the odds for making a false

alarm;

† enables an interpretable comparison of different

forecasting systems;

† permits a split of the forecast accuracy into

accuracy of forecasting the event and the non-

event, which can be a useful diagnostic tool for

forecasters, users and model developers.

One major result of this study has been that on

average more extreme event precipitation forecasts

have more skill than ‘normal event’ forecasts,

provided the rarity of this kind of event is properly

taken into account as done in the odds ratio. We

suspect this may be due to clearer precursor signals in

the initial state. It would be interesting to similarly de-

compose continuous skill scores (Eq. (1)) into

contributions from more extreme and ‘normal’ cases

using the amplitude of the anomaly as an indicator.

Given that more extreme precipitation events are

more skilfully predicted, we question the wisdom of a

widespread habit for model trials composed of a

majority of extreme events. At other times, the

selection is for those less predictable extreme events

which lead to major operational forecast failures.

Overemphasis on extreme cases, predictable or less

predictable, should be avoided and trials should

consist of a proper selection of all kinds of cases,

ideally as frequent in the sample as observed

climatologically. An obviously silly example would

be to tune a model only on cases when it rained, thus

probably degrading the performance in no-rain cases.

Careful trial composition is especially an issue for

mesoscale models, where the sample of different

weather situations is small, whereas over the globe

there is usually already a good distribution of different

situations. Recently, Doswell et al. (2002) discussed

the underemphasis in the literature on the most

frequent case in operational forecasting, i.e. the

forecast of the non-occurrence of extreme weather.

Another application of the concepts presented here is

now opening up in the verification of the spatial

aspects of precipitation forecasts (Casati et al., 2003).

Extreme events are often treated as a special

forecasting task and there are separate groups or even

organisations who just issue warnings for extreme

events but no forecasts for ‘normal’ events. Many

publications deal with the specific problem of how to

verify warnings because they represent a degenerate

case of the contingency table in that the no-forecast,

no-observation element pð�f; �oÞ does not exist (Mason,

1989; Schaefer, 1990; Brown et al., 1997). This case

of ‘posterior censoring’ seems a bit odd because it is

as if the forecasting task is changed after the forecast:

before the forecast our eyes are shut and we pretend

that there is no threat (thus no warning), but after the

event our eyes are opened and it is sometimes realised

that there was an extreme event and now this is

counted as a miss. Furthermore, the forecast of no

threat, i.e. no warning, can be very important for some

users. A way out of this muddled situation is offered

by the use of the odds ratio benefit (14). Here, the

normal 2 £ 2 contingency table is used which now

contains a high probability pð�f; �oÞ for both the forecast

and the reference forecast. However, it is their ratio,

which enters the ORB, which will be very close to one

and thus does not influence the skill measure. The no-

forecast, no-event element can be measured by

defining a regular sampling interval and then count

the contributions to the contingency table as usual.

Thus, the ORB is a measure which is hardly

influenced by the ‘easy’ cases of no-forecast, no-

observation. However, the verification of warnings

still represents a particular challenge because the

observations might be biased towards observing the

event, e.g. pilot reports of in-flight icing (Brown et al.,

1997).

The Bayesian approach to categorical forecast

verification applied in this study complements the

traditional quest for the answer to ‘how good are the

forecasts’ by measuring ‘how well do we forecast’.
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