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ABSTRACT

A simple linear stochastic climate model of extratropical wintertime ocean–atmosphere coupling is used
to diagnose the daily interactions between the ocean and the atmosphere in a fully coupled general circu-
lation model. Monte Carlo simulations with the simple model show that the influence of the ocean on the
atmosphere can be difficult to estimate, being biased low even with multiple decades of daily data. Despite
this, fitting the simple model to the surface air temperature and sea surface temperature data from the
complex general circulation model reveals an ocean-to-atmosphere influence in the northeastern Atlantic.
Furthermore, the simple model is used to demonstrate that the ocean in this region greatly enhances the
autocorrelation in overlying lower-tropospheric temperatures at lags from a few days to many months.

1. Introduction

The coupling between the extratropical ocean and
the atmosphere, and in particular the small effect that
the ocean has on the atmosphere, is difficult to under-
stand and quantify in observations and models (Kush-
nir et al. 2002). Studies suggest that there is a small
positive effect of the midlatitude ocean on the large-
scale atmospheric circulation (e.g., Robinson 2000).
Many of these studies rely on descriptive statistical co-
variance/correlation techniques such as maximum co-
variance analysis to identify the main coupled patterns
of variation in the ocean and in the atmosphere (e.g.,
Czaja and Frankignoul 2002; Rodwell and Folland
2002; Deser and Timlin 1997). Lag correlations be-
tween oceanic fields and subsequent atmospheric fields
are interpreted as causal influences from the ocean to
the atmosphere (e.g., Frankignoul et al. 1998; von
Storch 2000). Here, a more rigorous time series mod-
eling framework based on a simple coupled stochastic
model is used to diagnose the coupling and causality
between the atmosphere and the ocean.

Stochastic models have been used in coupled climate
modeling since Hasselmann (1976) and Davis (1976).
Frankignoul and Hasselmann (1977) developed a

simple stochastic atmosphere coupled to a slave ocean
and used this to model observed variability in the at-
mosphere and ocean. Barsugli and Battisti (1998, here-
after BB98), based on the work of Barsugli (1995), pro-
posed a similar two-variable autoregressive model that
incorporates two-way interactions between the extra-
tropical atmosphere and the ocean. In BB98 and later
in Bretherton and Battisti (2000), this model was used
to investigate coupling by comparing output from the
model run in coupled and uncoupled modes. In this
study, the model is used to diagnose interactions in a
more complex coupled general circulation model
(GCM).

The following section describes the simple stochastic
model and the GCM data. Monte Carlo simulations of
the simple model are described in section 3. The simple
model is fit to the complex model data, and results of
how the ocean affects the autocorrelation in the atmo-
sphere are given in section 4. Conclusions and some
future directions are presented in the final section.

2. Models

The aim of this work is to use a very simple model of
ocean–atmosphere interaction to understand the inter-
actions in a very complex model. To achieve this, the
simple model should be simple enough that the inter-
actions in this model can be easily understood.

Figure 1 shows a schematic of ocean–atmosphere in-
teraction in coupled systems—the state of the atmo-
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sphere and the ocean today can both influence the state
in the following day. The processes giving rise to inter-
actions between the atmosphere and the ocean are la-
beled as “a,” “b,” “c,” and “d.” In a real world scenario,
or in the complex coupled models, each of these labels
incorporates a vast number of complicated processes.
For example, the label a refers to all of the processes by
which today’s atmosphere directly affects tomorrow’s
atmosphere (advection, turbulent motions, radiation,
etc.).

The simple model used here models each of these
sets of processes by a single numerical value that rep-
resents local ocean–atmosphere interactions.

a. The complex model: HadCM3

The complex model investigated in this study is the
Third Hadley Centre Coupled Ocean–Atmosphere
GCM (HadCM3), which has been used extensively in
previous climate variability, sensitivity, and prediction
studies (e.g., Gordon et al. 2000; Collins et al. 2001).
Fifty years of daily model output has been analyzed to
allow the day-to-day coupling between the ocean and
the atmosphere to be examined, as these processes oc-
cur on time scales shorter than monthly averages (Wal-
lace et al. 1990; Ciasto and Thompson 2004). The time
scale of 1 day allows for passing weather systems to be
resolved, while being long enough so that the effects of
the diurnal cycle can be neglected. The model ocean is
coupled to the atmosphere in HadCM3 once per day,
making the daily time step a natural choice. Daily ocean
fields were not previously archived from the HadCM3
control simulation so a separate 50-yr simulation had to
be made. The thermal variables chosen are surface air
temperature (at 1.5 m) and sea surface temperature
(SST). These are representative of the two well-mixed
layers on either side of the air–sea interface. The air
temperature at 1.5 m was chosen rather than at a higher
level as heat fluxes between the atmosphere and ocean
depend on these surface properties, so the surface air
temperature is an obvious choice.

Anomalies were calculated by removing the mean
and the annual cycle composed of the mean annual and
semiannual harmonics at each grid point (note that in
this version of the model a 360-day calendar was
adopted). The harmonics were obtained by Fourier
analysis of the 50 years of the simulation. The domain
was chosen to be the northern and tropical Atlantic
(20°S–87.5°N, 101.25°W–22.5°E). Only long winters
have been considered (October–March inclusive), and
the time series of atmospheric and oceanic anomalies
are both standardized by dividing by their respective
standard deviations at each grid point to facilitate com-
parison of results at different geographical locations.
The resulting atmospheric temperature anomalies are
denoted by T, and the SST anomalies by S. Figure 2
shows some basic summary statistics: the sample means
and standard deviations prior to standardizing and the
lag-1 autocorrelation of each time series. By comparing
Figs. 2e and 2f, it can be seen that the autocorrelation is
much greater in the languorous ocean than in the more
volatile atmosphere.

b. The simple model: Barsugli and Battisti (1998)

The simple model used here is based on the two-
variable linear stochastic model proposed by BB98 and
Barsugli (1995). The model, as explained in BB98, is
derived from a local energy balance model for a one-
layer extratropical atmosphere overlying a slab ocean.
The stochastic forcing is assumed to be atmospheric
only and represents internal atmospheric wintertime
variability. The rate of change of the atmospheric and
oceanic variables are linear functions of the current
state of the system with model parameters defined by
physical values of quantities such as the heat capacities
of the atmosphere and ocean and the fluxes between
them.

In this study, a discrete time representation of the
model is employed, with model equations forming the
following first-order vector autoregressive [var(1)]
model:

Tn�1 � aTn � bSn � �n
T, �1�

Sn�1 � cTn � dSn � �n
S, �2�

where �n is Gaussian white noise forcing. Note that, in
contrast to the continuous form given in BB98, this
discrete form includes a stochastic term in the ocean
component. This enables more flexibility in the model
interpretation and represents effects of short time-scale
oceanic noise, for example, from advective or mixing
processes. The stochastic term for the ocean has a much
smaller amplitude than that for the atmosphere (a for
�T compared to c for �s; values follow).

Note that the a, b, c, and d in this matrix correspond
to those shown schematically in Fig. 1 (not those used in
BB98). Parameter a determines how much of today’s
atmosphere affects tomorrow’s atmosphere, and pa-

FIG. 1. Schematic of daily atmosphere–ocean interaction. In a
GCM each of the labels a, b, c, d contains a large number of
processes, which are reduced to single numerical values in the
simple model. Label b denotes the causal effect of the ocean on
the atmosphere, which is the main focus of this study.
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rameter d similarly for the ocean. Parameter b is of
great interest since it quantifies how much today’s
ocean influences tomorrow’s atmosphere—the causal
effect of the ocean on the atmosphere. Parameter c
quantifies how much today’s atmosphere influences to-
morrow’s ocean. Typical midlatitude values derived
from BB98 are (a, b, c, d) � (0.79, 0.092, 0.0046, 0.995).

Figure 3 shows time series from a simulation of this
model and time series simulated by the complex GCM.
Although there is by definition no seasonal dependence
in this simple model, half of the year designated “sum-
mer” is removed for this model data as was done for the
complex GCM data that does have seasonal variations.
The simple model ocean and atmosphere time series

FIG. 2. Summary statistics for HadCM3. [(left) Statistics for 1.5-m atmospheric temperature (T ) and (right) statistics for
SST (S)]. (a), (b) The long-winter averages and (c), (d) the standard deviation of the variables after removal of the annual
cycle. Note that in (c) values for the standard deviation of the atmospheric temperature T greater than 5°C are blackened
out to highlight the structure over the Atlantic basin. (e), (f) The daily lag-1 autocorrelation of each variable indicates
reduced atmospheric persistence over midlatitudes and reduced oceanic persistence in the equatorial and subtropical
regions. Note the reversed scale on these panels.
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are similar to those from the GCM, with a noisy-
looking atmospheric time series and a smoother ocean
time series with long-term (up and down) trends. The
behavior of the atmosphere in the Tropics is different
from the extratropics, as the tropical atmosphere is less
prone to daily variations from passing baroclinic sys-
tems and has a slower trending behavior coupled to that
of the ocean. Trends in the ocean and the atmosphere
in Figs. 3e and 3f are clearly collocated, suggesting that
interaction between the ocean and the atmosphere is
important in this region.

3. Monte Carlo simulations with the simple model

Before fitting the simple model to the complex model
data, tests of the statistical techniques were performed
using a simulation procedure whereby the simple model
was fitted to data generated by that same model. Ordi-
nary least squares regression is used to estimate sepa-
rately the model parameters in Eqs. (1) and (2). For
simulations from the simple model, the estimates
should be able to recover the original parameters used
to perform the simulation (up to the addition of sam-
pling errors).

a. Fifty-year simulations

One thousand Monte Carlo simulations of 50-yr
length were performed using the simple model. Table 1
shows the median and standard deviation of the distri-
butions of the parameter estimates. The estimates for
parameters a, c, and d are all close to the value used to
make the simulations, and the errors are small, as ex-
pected for a large Monte Carlo simulation of long daily
datasets (the sample size is 9000 for each simulation).
However, parameter b is significantly underestimated,
with a large error even for these very long artificial
datasets. More complex regression procedures such as
the Cochrane-Orcutt (1949) method have been tested

and were not found to give any significant improve-
ment. The parameter b is difficult to estimate due to the
covariability of long-term trends in S and T. Due to
oceanic persistence, one of the eigenvalues of the map-
ping matrix is close to unity, and such unit roots lead to
nonstationary random walk behavior that is difficult to
estimate (see Mills 1999).

These experiments with the simple model demon-
strate that, not only is it difficult to estimate the effect
that the ocean has on the atmosphere, but that the
effect is likely to be underestimated in a regression es-
timation even when using long time series from models
or observations.

b. The variation of parameter estimates with
simulation length

A further investigation was carried out into the ef-
fects of changing the length of the Monte Carlo simu-
lations. One thousand simulations with lengths of 10,
20, 50, 100, and 200 years were performed.

Figure 4 shows the estimates versus the length of the
simulations. For the simple BB98 model the estimates
for b and d and those for a and c are linearly related.
Whereas for a and c, the best estimate is close to the
true value even with a short simulation of 10 years, for
b and d there is a only slow convergence to the true
value as simulation length increases. The underestimate
in d at 10 years is less than 1%, but for b the underes-

FIG. 3. Time series of selected model variables: (a), (c), (e), (g) atmospheric temperature T and (b), (d), (f), (h) the SST S. Here, (a)
and (b) are for a simulation of the simple model, and the remaining six are from three grid points of the GCM: high latitude (65°N),
midlatitude (47.5°N), and low latitude (15°N) all at 26.25°W. Five winters are shown with intervening summers removed.

TABLE 1. True values for the stochastic BB98 model parameters
with estimates and standard deviations of these parameters fitted
from 1000 Monte Carlo simulations each of length 50 years.

Parameter True value Estimate � std dev

a 0.794 0.794 � 0.007
b 0.092 0.076 � 0.036
c 0.0046 0.0046 � 0.00004
d 0.9947 0.9946 � 0.0002
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timate is around 40%. There is a systematic underesti-
mate of the effect that the ocean has on the atmo-
sphere, which improves only slowly with extended
simulation length.

There is a disparity in the size of the error compared
to the size of the parameter for a, c, and d compared
with b. For a, c, and d the confidence interval is only a
few percent of the actual value, in stark contrast to the
large relative uncertainty in b—for a simulation length
of 10 years, this is around 300% of the estimated value.
In particular, note that the 90% confidence interval
contains zero for simulation lengths of less than 50
years and so at least 50 years would be needed to reject
a no-ocean-effect hypothesis at the 10% level of signifi-
cance. The no-effect hypothesis (see Czaja et al. 2003)
of b � 0 reduces the atmospheric component of the
BB98 model to a simple autoregressive [AR(1)] un-
coupled process, as proposed by Hasselmann (1976). For
this value of b (� 0.092), 50 years of daily data are re-
quired to be able to be able to state, at 90% confidence,
that there is an effect of the ocean on the atmosphere.

4. Diagnosis of the complex model

a. Estimates of model parameters

In this section, the simple BB98 model is fitted to T
and S time series from the HadCM3 coupled model.
The model parameters are estimated using ordinary
least squares, as in the previous section, to give a, b, c,
and d at each grid point. Note that there are disconti-
nuities in the time series between each winter. In all of
the following analysis, care is taken to not relate two
temporally adjacent data points in the time series when
these two points are, in fact, 181 days (the whole summer)
apart. Instead, subsets of the 50 winters, each 179 days
long, are considered, where {Tn} consists of days 1 to 179
of each winter and {Tn�1} consists of days 2 to 180.

Figure 5 shows estimates of the parameters. Due to
the standardization of the T and S time series before
estimation of a, b, c, and d, the values of the parameters
at different grid points are directly comparable. Tests of
how well the simple model fits the complex model data
are shown in the following section. It should be empha-

FIG. 4. Variation with simulation length of estimates of each parameter a, b, c, and d from 1000 Monte Carlo simulations
from the BB98 model. The 90% confidence interval is given by the whiskers, and the best estimate (the median of the
distribution) by the dot. The true value of each parameter used in the simulations is shown by a dashed line.
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sized at this point that the simple model was designed
by BB98 for extratropical conditions, and this is the
focus of this study. Results are also shown for the Trop-
ics but the model fit is less reliable here, so results
should be interpreted with caution. The analysis has
been repeated using upper-ocean heat content as the
oceanic variable, with very similar results outside of the
Tropics.

Figure 5a shows a large region of small values of
parameter a (atmosphere to atmosphere influence) in
the vicinity of the North Atlantic storm track, where
rapid changes in conditions reduce the day to day per-
sistence of the atmosphere. The maps of c and d are
more spatially uniform throughout the domain, al-
though the estimates of c (the atmospheric forcing of
the ocean) are slightly increased in the storm-track re-
gion where the active atmosphere affects the underly-
ing ocean. The most striking feature in the extratropics,
Fig. 5, is the well-defined and spatially coherent region
of nonzero b in the Gulf Steam/North Atlantic Current
region. There is also a smaller positive patch in the
Norwegian Sea. In these regions the simple model di-
agnosis suggests that the ocean is influencing the atmo-
sphere in the complex model. It is noteworthy that this
interaction occurs in regions where there is a strong

horizontal gradient in the mean SST. Based on the
simple model results of the previous section, it is likely
that this b is biased low and so the influence of the
ocean may be greater than estimated here.

There is also strong ocean to atmosphere influence in
the Tropics (Fig. 5b). However, this area is subject to
strong colinearity problems in the estimates. As surface
air temperature and SST are so highly correlated here
(r � 0.8), the regression model is unable to reliably
decide which of these variables is causing any predictive
effect. Regressing out the part of S that covaries with T
to retain the “oceanlike” part of SST removes the tropi-
cal regions of b while leaving the extratropical region.
This demonstrates the differences in ocean–atmosphere
interaction between the Tropics and the extratropics.
This colinearity is also seen in this region by comparing
maps for c and d.

b. Goodness of fit

In fitting any model to data it is important, not only
to look at the results, but to analyze the residuals, that
is, the part of the data not explained by the model, to
see how well the model fits the data (see Draper and
Smith 1998).

The most commonly used statistic to test this is the

FIG. 5. Local estimates of the parameters a, b, c, and d for T and S daily data produced by HadCM3.
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R2 statistic—the fraction of variance of the data that is
explained by the model, ranging from 0 for no fit to 1
for a perfect fit. Maps of R2 for the atmosphere com-
ponent [Eq. (1)] and for the ocean component [Eq. (2)]
are shown in Fig. 6. The ocean BB98 equation provides
a good fit to the data, with R2 values in excess of 0.99
almost everywhere (Fig. 6b) mainly due to the very
strong day to day persistence of the ocean. Figure 6a
shows that the BB98 model is able to capture around
50% of variance in the center of the storm track region,
increasing to about 80% poleward and equatorward of
this. Again, this follows the pattern of persistence in the
atmosphere where the atmosphere persists for a long
time; the model captures this well but fails to capture
the more complicated atmospheric variability. This is to
be expected for a simple autoregressive model such as
in BB98.

Implicit in the BB98 model are assumptions about
the form of the residuals, so it is important to analyze
residuals to test whether these assumptions hold. The
three main assumptions of the residuals are

1) Normality: The residuals should be Gaussian distrib-
uted. Histograms of T and S residuals show that this
condition is fairly well met (not shown). However,

the complex model T is slightly negatively skewed
over much of the North Atlantic due to more ex-
treme and shorter cold events than warm events.
None of this skew in the data is accounted for by the
simple model, so some slight skewness still remains
in the residuals.

2) Linearity of the fit : The residuals should not have
any dependence on the variables T and S. This is
best analyzed by making scatterplots of the residuals
against these variables. Departures from linearity
can be seen by an irregular scatter of points forming,
for example, a wedge or curved shape. For HadCM3
over the Atlantic, only uniform bands of scatter ex-
ist (not shown), suggesting that the linear model is
adequate.

3) Seriality: The residuals should be uncorrelated in
time. For HadCM3, this was the least well-satisfied
criterion, as can be seen in the lag-1 autocorrelation
maps in Fig. 6. In the atmosphere, the lag-1 corre-
lation of the residuals is small, around 0.1 to 0.3 in all
but isolated patches. The ocean residuals exhibit
larger autocorrelation at lag 1, with 0.6 a more typi-
cal value. As the residuals are still serially corre-
lated, a higher-order autoregressive model than

FIG. 6. Goodness of fit statistics: (a) R2 values for the T equation, (b) R2 values for the S equation. (c), (d) Lag-1
autocorrelation of the residuals, for the T and S regressions, respectively. Note the reversed scale in (a) and (b).

1092 J O U R N A L O F C L I M A T E VOLUME 18



BB98 would be required to obtain a white noise
structure for the residuals. Tests using a higher-order
model helped reduce the problem substantially, but
the more parsimonious BB98 model was retained
here because of its ease of interpretation.

These residual diagnostics show that the simple model
captures many of the major features of the more com-
plex model.

c. Atmospheric persistence and predictability

Where the ocean affects the atmosphere there is the
possibility of improved predictability for the atmo-
sphere, given prior knowledge of the ocean. Using lag
covariance analysis, Rodwell and Folland (2002) inves-
tigated the large-scale predictability of the North At-
lantic Oscillation (NAO) based on ocean–atmosphere
interactions and found that the ocean can add some
modest predictive skill by the use of May SSTs to pre-
dict the following winter NAO. In the present study,
predictability is explored by examining the persistence
of atmospheric temperature anomalies as measured by
the autocorrelation function. Due to the short decorre-
lation time (about 1–2 weeks) in the atmosphere, the
expected atmospheric behavior in the absence of oce-
anic effects would be a rapid decrease in autocorrela-
tion with increasing time lag. Figure 7 shows autocor-
relation functions from the three points shown previ-
ously (Fig. 3): one at high latitude (60°N, 26.25°W), one
at midlatitude (47.5°N, 26.25°W), and one in the Trop-
ics (15°N, 26.25°W). Note that, as lag increases, the
amount of data used to compute the autocorrelation
decreases, due to the noncontiguous winters. However,
even at lag 120 the sample size is 3000 data points. The
three points exhibit different behavior. At high and
midlatitudes there is a fast decrease over the first few
days. In midlatitudes the decrease is much slower at
large lags and the subsequent decrease is then very slow
over the following months, with this transition occur-
ring at a lag of about 5 days. The Tropics show quite
different behavior, with atmosphere–ocean coupling
there leading to a much slower and more uniform decay
in autocorrelation.

Using the BB98 model, the autocorrelation of the
atmospheric variable T can be split into the sum of a
direct atmospheric and an indirect oceanic part (Junge
and Stephenson 2003; Charlton et al. 2003):

r�Tn, Tn�lag� � alag � blagr�Tn, Sn�, �3�

where r(Tn, Sn) is the correlation between T and S, and
alag and blag are the a and b estimated using multiple
regression of T and S at different time lags. The first
term on the right-hand side is the “direct” effect of the
atmosphere on the atmosphere and the second term is
the “indirect” effect of the ocean on the atmosphere.

The three plots in Fig. 7 show very different roles for
the direct and indirect parts. First, at high latitudes the
direct part is virtually indistinguishable from the auto-

correlation itself because the oceanic indirect part is
negligible; hence at high latitudes there is generally
little ocean influence on the persistence of atmospheric
boundary layer temperature. In midlatitudes, where the
map of b indicates that the ocean does influence the
atmospheric boundary layer on a daily time scale (Fig.
5b), the indirect part is a much greater fraction of the
total autocorrelation. It explains the “shoulder” in the
autocorrelation, caused by the slower decrease after
lags of 5 days. The direct part shows a similar behavior
to that at high latitudes with no significant autocorre-
lation after about 10 days. This analysis shows that after
10 daysS it is the ocean that gives the atmosphere per-
sistence and therefore potential predictability in mid-
latitudes. Finally, the Tropics (Fig. 5c) show a strong
indirect part over the first 3-month lag, given by the
stability of the air–sea interface in this region.

FIG. 7. Autocorrelation of T at the three points shown in Fig. 3:
high latitude (65°N, 26.25°W), midlatitude (47.5°N, 26.25°W), and
Tropics (15°N, 26.25°W). The autocorrelation function [r(Tn,
Tn�lag); thick line] is split into the sum of a direct atmospheric
effect (alag; thin black line) and an indirect part from the ocean
[blagr(Tn, Sn); dashed line] where r(T, S) is the correlation be-
tween T and S. (a) The oceanic effect is negligible.
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5. Conclusions

The main conclusions of this study are as follows.

1) The simple stochastic model proposed by Barsugli
and Battisti (1998) provides a useful tool for diag-
nosing the daily ocean–atmosphere coupling in a
very complex fully coupled GCM.

2) Monte Carlo experiments using the simple model
have shown that the parameter b, a measure of the
effect of the ocean on the atmosphere, is systemati-
cally underestimated and has a large sampling error.
The estimation is worse for short simulations, with
an underestimate of b by 40% for 10-yr simulations,
slowly decreasing to 17% even for 50 years of daily
data. This suggests that the oceanic effect on the
atmosphere is likely to always be underestimated by
regression procedures in similar studies with finite
samples of data.

3) Using Monte Carlo tests, 50 years of daily data,
equivalent to 9000 data points, were required to be
able to detect that the “standard” value of b is dif-
ferent from zero and thus that there is an ocean to
atmosphere influence, at the 90% confidence level.
The estimation problems with the parameter b are
intriguing, particularly in the light of the very good
estimation of the other parameters. One of the prob-
lems involved in estimating the effect of the ocean
on the atmosphere is that the two systems have very
different time scales. As d approaches unity in the
simple model, the ocean component tends toward a
nonstationary random walk process. Such a process
is much harder to estimate than a simple decaying
stationary behavior. Resorting to higher-order VAR
models might help to improve the situation, but then
the parsimony of the simple model and its ease of
interpretation will be lost.

4) The simple model was fitted to the daily data from a
control simulation of HadCM3. Parameter estimates
revealed spatially coherent regions. In particular,
there is a region where the ocean influences the at-
mospheric boundary layer in the North Atlantic, in
the region of the Gulf Stream/North Atlantic Cur-
rent. The area of greatest influence is in the eastern
North Atlantic. Comparison with a second complex
coupled GCM, the Bergen climate model (Furevik
et al. 2003), gives very similar results for this param-
eter, both in spatial structure and in strength (not
shown). While not confirming that this is also
present in the real climate system, the agreement
does improve the robustness of this result.

5) Diagnosis of the HadCM3 data in terms of the
simple model allows the autocorrelation of the at-
mospheric variable to be split into a direct part,
which comes about solely through atmospheric in-
teraction, and an indirect part, which is the product
of ocean–atmosphere coupling. In the midlatitudes,
where the ocean affects the atmosphere, the atmo-
spheric autocorrelation is increased by the presence

of this interaction on lags from a few days to several
months. This confirms that the ocean here leads to
increased low-frequency variability of the atmo-
sphere.

The simple model used in this study is, of course, a
very limited model of ocean–atmosphere interaction.
Perhaps the greatest omission is in not modeling advec-
tion of ocean or atmosphere temperatures, which will
certainly have an effect on longer time scales. The
BB98 model does not allow any nonlocal influences on
either the ocean or the atmosphere. Such influences
include that of the tropical Atlantic on the extratropical
atmosphere in the North Atlantic region (e.g., Czaja et
al. 2003). A nonlocal influence would be communicated
via the atmosphere on the time scales discussed here, so
any external influence on the local atmosphere–ocean
system will be part of the residual variance in the sys-
tem and may manifest itself in the map of c where this
external influence affects the extratropical ocean. The
map of b will not be influenced by any external effects,
as the lag involved in estimating this parameter allows
influences from the underlying ocean to the atmo-
spheric boundary layer only, and external influences
communicated through the atmosphere will have the
reverse direction. The possibility remains that the per-
sistence in the extratropical ocean is caused by a per-
sistent external influence via the extratropical atmo-
sphere. Further assumptions and limitations of the
simple model are discussed by BB98.

The stochastic climate model–based approach is cur-
rently being applied to fields outside the boundary
layer, including pressure fields. In particular, an analy-
sis of the North Atlantic Oscillation using these and
more powerful time series techniques for testing cau-
sality is being performed.
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