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ABSTRACT

Seasons are the complex nonlinear response of the physical climate system to regular annual solar forcing.
There is no a priori reason why they should remain fixed/invariant from year to year, as is often assumed
in climate studies when extracting the seasonal component. The widely used econometric variant of Census
Method II Seasonal Adjustment Program (X-11), which allows for year-to-year variations in seasonal shape,
is shown here to have some advantages for diagnosing climate variability. The X-11 procedure is applied to
the monthly mean Niño-3.4 sea surface temperature (SST) index and global gridded NCEP–NCAR re-
analyses of 2-m surface air temperature. The resulting seasonal component shows statistically significant
interannual variations over many parts of the globe. By taking these variations in seasonality into account,
it is shown that one can define less ambiguous ENSO indices. Furthermore, using the X-11 seasonal
adjustment approach, it is shown that the three cold ENSO episodes after 1998 are due to an increase in
amplitude of seasonality rather than being three distinct La Niña events. Globally, variations in the seasonal
component represent a substantial fraction of the year-to-year variability in monthly mean temperatures. In
addition, strong teleconnections can be discerned between the magnitude of seasonal variations across the
globe. It might be possible to exploit such relationships to improve the skill of seasonal climate forecasts.

1. Introduction
The annual march of the Earth around the Sun pro-

vides a periodic solar forcing that acts as a strong pace-
maker for the general circulation of the terrestrial cli-
mate. The resulting seasons that we observe are the
complex nonlinear response of the atmosphere, land,
and oceans and represent one of the most important
variabilities of the climate system. Unlike the external
solar forcing, which varies very little from year to year,
there is no guarantee that climatic seasons have to be
the same each year. This has been apparent to many
generations of farmers, who have been aware of the
vagaries in the sowing times, or satiōns in Latin, from
which the word season originates.

The variability of seasonality is not something new in
climate research. For example, Cook et al. (2000)
pointed out that El Niño–Southern Oscillation (ENSO)
has exhibited large changes in the amplitude/phase of
the annual cycle as well as in the frequency/intensity of
warm/cold events in the past century as shown from
instrumental observation record. Thompson (1995) and
Thomson (1995) addressed the issue of varying season-
ality using complex demodulation. Thompson (1995)
found coherent phase/amplitude changes in the annual

cycle of temperature records at six different stations
across Europe. Thomson (1995) suggested that changes
in the annual cycles may be caused by changes in the
Sun’s luminosity and greenhouse gas, that is, atmo-
spheric CO2 concentration. He found that doubling
CO2 concentration can decrease the amplitude of the
annual cycle in global temperature. Van Loon et al.
(1993) analyzed seasonality in monthly mean of pres-
sure and wind in the Southern Hemisphere. They
showed that the annual cycle has undergone zonal
asymmetric changes.

The climate response to the annual cycle in solar
forcing is complex. Note that one should not refer to
the annual cycle as the seasonal cycle since the period is
one year not one season (cf. diurnal cycle; K. E. Tren-
berth 1996, personal communication). Due to nonlin-
earities in the climate system, the climate response to
the annual cycle in solar forcing can be surprisingly
abrupt (e.g., the rapid onset of the Asian monsoon).
The periodic solar forcing is rectified by nonlinearities
to give higher-frequency harmonics such as the semi-
annual oscillation, which is particularly dominant in the
western equatorial Pacific (van Loon and Jenne 1970;
Meyers 1982). In addition, endogenous (internal)
modes of variability such as ENSO can lead to sub-
harmonic variations such as the tropospheric quasi-
biennial (2 yr) and quasi-quadrennial (4 yr) oscillations
(e.g., Rasmusson and Carpenter 1982; Rasmusson et al.
1990; Tziperman et al. 1994; Jiang et al. 1995; Jin et al.
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1994, 1996; and references therein). Such harmonics
whose periods are rational multiples of the annual har-
monic give rise to synchronized interannual anomalies,
occurring at preferred times of the year. Phase locking
of interannual anomalies to the annual cycle is evident
in many modes of climate variability: the monsoons,
ENSO, the North Atlantic Oscillation, etc. The phase
locking of subharmonics with the annual cycle is re-
sponsible for variations in the Peru Current at Christ-
mastime that led to ENSO warm events being named
El Niño by Peruvian fishermen (Philander 1990). Stud-
ies have shown that interannual variations such as
ENSO can modulate the annual cycle of tropical Pacific
temperatures (Chang et al. 1995; Gu and Philander
1995; Gu et al. 1997; Yu and McPhaden 1999; and ref-
erences therein). The existence of nonlinearities and
phase locking imply that the seasonal and interannual
variability can mutually interact, and as such, the prob-
lem of separating out the different signals becomes in-
tricate and should be performed with care.

The traditional approach in most climate studies is to
treat the annual cycle as a fixed mean effect that does
not vary from year to year. For monthly data, for ex-
ample, the mean annual cycle is estimated by averaging
the climate variable for each calendar month separately
over all the available years. The mean annual cycle is
then subtracted from the original data to give what is
referred to as an anomaly from the mean annual cycle.
These anomalies are widely used in climate studies to
characterize variability. This approach is based on the
(unjustifiable) assumption that the annual cycle is a
constant from year to year. However, interannual varia-
tions in the annual cycle can be seen in many climate
time series (see, e.g., Thompson 1999; Bograd et al.
2002; Whitfield et al. 2002; and references therein) and
deserve more careful attention. The traditional ap-
proach can incorrectly mix up these fluctuations of the
annual cycle with longer-term variations in the mean.

In this study, we propose and demonstrate a more
flexible alternative approach that can allow for varying
seasonality. Section 2 reviews the traditional approach
in more depth and introduces the econometric variant
of Census Method II Seasonal Adjustment Program
(X-11) that is frequently used in economics to model
seasonality. Results obtained with this approach for
ENSO indices and global gridded monthly mean sur-
face temperature data are presented in section 3. Con-
clusions and suggestions for future extensions are given
in section 4.

2. Methods

In general, observed and model-simulated climate
data have equally spaced sample time intervals and
thereby consist of regular time series of the form Xt,
(t � 1, 2, . . . , N). The period of 1 yr is defined to be an

integer number (p) of sample times. For the monthly
mean data studied here, the sample time is 1 month and
hence there are p � 12 sample times in 1 yr. The results
are completely general and are applicable for other
sampling times such as daily or seasonal.

a. The traditional approach

The annual cycle for any particular year y, is fully
described by the p-dimensional vector, xy, containing
the p successive time series values for that year. The
complete time series for n yr can be therefore consid-
ered as a yearly sequence of p-dimensional vectors and
can be usefully represented by the (p � n) rectangular
data matrix X:

X � �x1, x2, . . . , xn� � �
x11 x12 . . . x1n

x21 x22 . . . x2n
···

···
···

xp1 xp2 . . . xpn

� ,

where n � N/p is the total number of years and the
element xmy is the value at sample time (e.g., month) m
of year y.

The data matrix X completely summarizes the time
series and can be represented as a numeric table. It also
can be mapped using colors and/or contour lines to give
a visual representation (as shown later in Fig. 3).

The ensemble of n annual vectors xy describe a cloud
of n points in p-dimensional seasonal-state space. The
mean annual cycle c is the center of mass of the cloud,
obtained by averaging over the columns of the data
matrix. The seasonal time series, Ct, is the periodic ex-
tension of c replicated n times to produce a time series
of length N.

Fluctuations about the mean annual cycle can be ob-
tained by considering the anomalies x�y � xy � c. The
anomalies can also be represented either as a matrix or
as a time series X�t � Xt � Ct. The matrix elements will
be denoted by x�my.

The annual mean of the anomalies, ay, is a simple
way to filter out annual and subannual variations and
retain the interannual variations. It is equivalent to as-
suming that each year has a specific constant effect on
the series, and the interannual variations are modeled
by mean-level jumps between years. In other words, the
corresponding series of the interannual variations, At,
replicates p times a1, for all t in the first year, then
becomes a2 in the second year and so on, that is, a
piecewise-constant and discontinuous evolution.

The centered annual cycle c̃ is obtained by subtract-
ing out the long-term mean � � x of the original series
from the annual cycle. Hence the generic element of the
centered annual cycle is

c̃m � cm � �,
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representing the net seasonal response for season m.
Denoting by C̃t the periodic extension of c̃, we obtain
the additive decomposition

Xt � � � C̃t � At � Rt , �1�

where by construction the seasonal effect C̃t is periodic
while the interannual effect At is a piecewise constant.
Both seasonal and annual effects are net (or centered)
components, that is, have zero means. The value Rt

represents irregular residual variations such as suban-
nual fluctuations.

Annual and seasonal means calculated in this tradi-
tional way are the best least squares fit for the two-way
analysis of variance (ANOVA) model (see appendix A).

For obtaining a continuous trend component, a stan-
dard approach for ENSO studies is the 5-month run-
ning mean of the anomalies

A*t � MA5�X�t� �
1
5 	

��t�2

t�2

X�� ,

while the subannual terms are given by the residual
series R*t � X�t � A*t . This yields the decomposition

Xt � � � C̃t � A*t � R*t . �2�

Note that additivity is assumed in both the traditional
decompositions (1) and (2); that is, the constant level,
interannual, seasonal, and irregular terms sum up to the
original datum. It is good practice to question this ad-
ditivity assumption, but usually this is not done.

b. The X-11 seasonal adjustment procedure

Numerous bandpass filtering methods have been de-
veloped in order to remove the seasonal component
from (seasonally adjust) economic indices such as com-
modity prices and unemployment rates (Franses 1996).
In this study, we adopt a simple and flexible method
known as the X-11, which is currently used to produce
official statistics and various analyses in many national
institutions and central banks around the world. Intro-
duced in 1965 by the U.S. Census Bureau, it was the
product of over a decade of development beginning
with Method I in 1954, followed by twelve variants
(X-0, X-1, etc.) of Method II, culminating in X-11
(Shiskin et al. 1967; Shiskin 1978). Further contribu-
tions were added to the basic version of the seventies,
including regression and Autoregressive Integrated
Moving Average (ARIMA) modeling (for a detailed
account see Findley et al. 1998). Here, we will define
and use a simple version of the basic procedure.

The X-11 procedure generates the decomposition

Xt � Tt � St � It , �3�

where Tt is the trend component, corresponding to the
traditional uncentered trend � � At (or � � A*t when
the five-term running mean is used), St is the net sea-

sonal term corresponding to the traditional centered
seasonal term C̃t, and the residual It is the irregular
variation corresponding to the traditional subannual
term Rt (or R*t ).

We have stated that the traditional approach, and in
particular the additive decomposition (1), can be seen
as the least squares solution of the two-way ANOVA
model. The X-11 procedure, on the other hand, may be
seen as a straightforward extension of the two-way ap-
proach, in order to provide a continuous interannual
trend, Tt, and a quasi-periodic seasonal term St (see
appendix A). The main reason for allowing a variable
annual cycle is that interannual nonseasonal fluctua-
tions in economic growth cycles are known to modulate
seasonal fluctuations. For example, New Year shopping
sales can be adversely affected by recessions (Franses
1996).

The X-11 method can be defined by a three-step fil-
tering algorithm. For monthly data it proceeds as fol-
lows (with trend and seasonal filters as defined in ap-
pendix B):

1) Initial trend and seasonal estimates
(a) Estimate the Tt component by the annual-

centered running mean: Tt � MA2�12(Xt).
(b) The trend-adjusted series Zt � Xt � Tt repre-

sents seasonality and shorter-term noise only.
Thus a seasonal running mean SMA2�2 of the
trend-adjusted series, Zt, can be applied without
confusing trend and seasonal signals. The result-
ing (seasonal) series is finally adjusted by sub-
tracting its annual-centered running mean
MA2�12, which will approximately produce a
zero mean seasonality.

2) Revised trend and seasonal estimates
(a) Repeat step 1a on the seasonally adjusted series

Yt � Xt � St to obtain an improved estimate of
Tt � MA2�12(Yt). Note that trend filters work
better on seasonally adjusted series than on
original data.

(b) Repeat step 1b on the revised trend-adjusted
series Zt � Xt � Tt.

3) Final trend and irregular estimates
Repeat step 2a on the revised seasonally adjusted
data Yt � Xt � St and finally compute the residual
series It � Xt � Tt � St. The seasonal series of the
previous step is left unchanged.

The algorithm consists of an alternate trend estima-
tion on seasonally adjusted series and seasonal estima-
tion on the trend-adjusted one. Usually, for trend esti-
mation in steps 2a and 3, the centered annual running
mean is replaced by the Henderson trend filter (Hen-
derson 1916), which produces a smooth local cubic
polynomial trend. The filter is defined by the number h
of weights. In this paper, we used h � 23 (see section
2d).

Main features of the X-11 decomposition (3) are that
the trend does not contain the annual cycle or its higher
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harmonics, any consecutive 12-month mean of the sea-
sonal term is approximately zero, and the seasonal term
is defined locally in time.

c. Spectral filtering properties of X-11 and
traditional procedures

The combined action of the preceding three steps can
be more simply described as the effect of filtering the
data with a low bandpass filter Tt, a seasonal filter St,
and a high-pass filter It. The properties of these sym-
metric filters can be studied by considering their effect
on the component of frequency 
 of the input series.
The spectral densities of input and filtered output se-
ries, say f1(
) and f2(
), are related by

f2��� � |g��� |2f1���, �4�

where g is the frequency response function

g��� � 	
j��m

m

�je
�i�j,

and {�j; j � �m, �m � 1, . . . , m} are the filter weights.
The frequency response modulus |g(
) | is called the

gain and the squared gain

G��� � |g��� |2

is known as the power transfer function of the filter
(Bloomfield 1976). From Eq. (4) the power transfer
function G(
) represents the extent to which the con-
tribution of the component of frequency 
 to the total
variance of the series is modified by the action of the
filter.

Figure 1 shows the power transfer function for the
X-11 filters (solid lines) compared to the power transfer
function of the components obtained using the tradi-
tional fixed season approach on a 50-yr-long monthly
series (dashed lines). The annual cycle has (nonangu-
lar) frequency f � 12
/(2�) � 1, and has higher (sub-
annual) harmonics f � 2, 3, 4, 5, and 6, corresponding to
waves of periods 6, 4, 3, 12/5, and 2 months, respec-
tively.

Whereas the spectral transfer properties of X-11 do
not depend on the length of the time series, the transfer
properties of the traditional approach have the disad-
vantage that they do depend on the length of the time
series. This in practice produces a distortion effect (see
Fuenzalida and Rosenblüth 1986), which is evident in
the power transfer function. The sample size used here
is the same as that of the data analyzed later. For
shorter time series, the transfer functions of the tradi-
tional approach become more spread out and the
method separates out less well seasonal variations from
interannual variations (not shown).

The solid line in Fig. 1a shows that the power transfer
function of the X-11 trend filter acts as a good bandpass
filter for f  1 (interannual variations). In contrast, the

transfer function for the traditional 5-month running
mean anomaly transfer function (dashed line in Fig. 1a)
allows substantial amounts of subannual power to leak
through into the higher-frequency subannual range.

The seasonal X-11 filter lets power pass through at
the annual frequency and harmonics and neighboring
frequencies (Fig. 1b). Leakage around the harmonics is
essential for obtaining a variable seasonal component
since an impulsive power transfer function (e.g., the
traditional seasonal component—dashed line in Fig.
1b) gives a perfectly periodic seasonality. The irregular
component power transfer functions shown in Fig. 1c
indicate that the X-11 approach has a more smooth and
uniform response for all subannual nonharmonic com-
ponents, whereas the traditional approach has irregular
behavior near harmonics and has a maximum response
for frequencies between 3 and 4 (i.e., periods between
3 and 4 months).

The traditional approach exhibits complicated filter
behavior close to the annual frequency, both in trend
and irregular terms. Finally, Fig. 1 indicates that when
many quasi-annual frequencies are important modes of
variability, so that the annual cycle is subjected to in-
terannual variations, these are almost completely
added to the trend component, under the traditional
approach, but they are correctly included in the sea-
sonal component by X-11.

The different spectral behavior is related to differ-
ences in the autocorrelation of the series. The X-11
irregular component exhibits negative autocorrelation
at 12 months, whereas the traditional irregular compo-
nent has negative autocorrelations at shorter lags of 1
and 2 months. Such negative autocorrelations are the
consequence of using moving-average filters in both ap-
proaches.

One might be tempted to use Fourier filtering instead
of the X-11 procedure. However, an important differ-
ence between X-11 and Fourier filtering is that X-11 is
local in time whereas Fourier filtering is nonlocal in
time and uses data from all the time series. The local
property of X-11 is an advantage when dealing with
time series where seasonality can be severely disrupted
during specific events (e.g., strong El Nino events such
as 1982/83). X-11 provides a robust local estimate of the
seasonality in a particular year influenced only by re-
cently preceding and proceeding years.

d. Calibrating X-11

As mentioned at the end of section 2b, the X-11 pro-
cedure can be defined in different ways depending on
alternative filters. Other common variants include us-
ing Henderson trend filters with h � 13 and h � 17, and
the seasonal running means SMA3�3 and SMA3�5.

For the Henderson filter, lengths shorter than h � 23
would produce an undesirable subannual peak in the
transfer function between one and two cycles per year.

For the choice of the seasonal filter, note that
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SMA2�2 is based on three consecutive years (with
weights 1/4, 1/2, 1/4) and so is the most local of the
suggested alternatives. Another 3-yr-based filter is the
simplest SMA3 (with weights 1/3, 1/3, 1/3) but the re-
sulting power transfer on St would produce secondary
peaks on halfway frequencies of the subannual range
f � 1.5, 2.5, . . . , 5.5.

In order to extend X-11 to any periodicity p, the filter
MA2�12 (appendix B) can be substituted by MA2�p if p
is even and by MAp otherwise. The Henderson filter
length h � 23 must also be replaced by 2p � 1. With
these changes, the same spectral properties shown here
for monthly data will be achieved in general.

Moving averages cause some terms at the end of the
series to be lost. Many methods for the imputation of
these lost values have been suggested so far (e.g., see

Findley et al. 1998). The simplest one is the circular
method, where the last year is replicated until necessary
to fill in the gaps. A simple alternative method is the
all-available-data method, which consists in giving zero
weights to the lost observations when filtering the data.
The results shown in this study use the circular method,
but no significant differences were found when using
the all-available-data method.

3. Data and results

After describing the temperature data used in this
study, this section presents some of the results obtained
by applying the X-11 procedure and by comparing
these findings with the traditional approach.

FIG. 1. Spectral power transfer properties of the X-11 approach (solid line) and the traditional approach (dashed line): (a) the trend
component, (b) the seasonal component, and (c) the irregular component.
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a. Data

We have used for our analysis various monthly sea
surface temperature (SST) indices over the equatorial
Pacific and global gridded 2-m air surface tempera-
tures. SST time series include four monthly Niño time
indices: Niño-3.4, Niño-1.2, Niño-3, and Niño-4.

The Niño-3.4 index is obtained by averaging the
monthly SSTs over the domain (5°S–5°N, 120°W–
170°W). The Niño-1.2, Niño-3, and Niño-4 are obtained
by averaging the SSTs over (0°–10°S, 80°–90°W), (5°S–
5°N, 90°–150°W), and (5°S–5°N, 160°E–150°W), re-
spectively. The SST data used to construct these indices
consist of monthly gridded optimum interpolation
analyses made at the National Centers for Environmen-
tal Prediction (NCEP; the Web site utilized is http://
nic.fb4.noaa.gov:80/data/cddb/). The data covers the
period January 1950 to February 2002.

The other data consist of the NCEP–National Center
for Atmospheric Research (NCEP–NCAR) gridded
2-m air temperature, over the period January 1948 up
to February 2002, and were obtained from the Climate
Diagnostics Center (CDC; the Web site utilized is
http://www.cdc.noaa.gov/cdc/data.ncep.reanalysis.
derived.html). The gridded data were provided on a
T62 Gaussian grid with spatial resolution 192 � 94 from
88.542°N–88.542°S and 0°–358.125°E.

b. An example: Niño-3.4 temperatures

The area-averaged SSTs in the Niño-3.4 region (5°S–
5°N, 120°E–170°W) of the equatorial Pacific Ocean
provide an interesting and important example for
demonstrating the X-11 procedure.

Compared to the Niño-3 time series, the Niño-3.4
region has the advantage of being more centrally lo-
cated in the Pacific and thereby better captures all
ENSO events. The Niño-3.4 anomalies are less skewed
and more normally distributed than are Niño-3 anoma-
lies, and hence produce a more symmetric and less
problematic ENSO index (Burgers and Stephenson
1999; Hannachi et al. 2003). Furthermore, correlation
analysis of the Southern Oscillation index (SOI) and
SSTs in the eastern equatorial Pacific (e.g., Wang 1995;
Trenberth and Hoar 1996) indicate that the key region
is somewhat farther west of the Niño-3 region. For
these reasons the Niño-3.4 index is increasingly used to
define ENSO events instead of the Niño-3 index (Tren-
berth 1997).

Figure 2a shows a time series plot of Xt (dashed line),
the monthly mean Niño-3.4 temperatures from January
1950 to February 2002. One can clearly note the anoma-
lously warm El Niño episodes of 1982/83, 1987/88, and
1997/98, and the anomalously cold La Niña episodes in
1973/74, 1976, and 1988. The time series can be seen to
consist of a strong seasonal variation superimposed
upon a longer-term interannual variation.

The X-11 procedure was applied to the Niño-3.4 time

series to separate out trend, seasonal, and irregular
components. The solid line in Fig. 2a shows the result-
ing trend component, Tt, which clearly picks out the
smooth interannual variations in the mean level related
to ENSO events. The seasonal component, St, shown in
Fig. 2b, exhibits strong variation in magnitude through-
out the years. For example, since 1999 and from 1990 to
1994, the seasonal component has much greater ampli-
tude than in the remaining periods, for example, 1987/
88 and 1995/96. This indicates that the seasonal magni-
tude is not simply related to ENSO events with, for
example, reduced amplitude during El Niño events and
increased amplitude during La Niñas. Figure 2c shows
the irregular component, It, left over after subtracting
out the seasonal and trend components from the origi-
nal time series. The irregular component consists of
noisy subannual variations that show no apparent
trends. However, some interesting short-term persis-
tence in the irregular component can be seen in certain
periods such as 1970–74 and 1994–99.

Figure 3 shows the same time series in matrix repre-
sentation: image plots of the Niño-3.4 index as a func-
tion of year and calendar month. The original time se-
ries is shown in Fig. 3a and the corresponding X-11
trend and seasonal components are shown in Figs. 3b
and 3c, respectively. The trend component clearly picks
up the major ENSO events as tilted vertical bands of
persistent values. It can be seen that the strongest am-
plitudes occur mainly in the cold winter season. Note
that only a single cold event can be seen after 1998 in
the X-11 trend component and this will be discussed in
more detail in section 3d. The seasonal component in
Fig. 3c shows a strong dependence on calendar month
with warmest temperatures generally in April–May and
coldest temperatures in November–March. However,
there is also a clear variation of the seasonal component
from year to year, most likely due to modulation of the
SSTs by long-term changes in the depth of the ther-
mocline.

Interannual variation in the seasonal component ac-
counts for a nonnegligible fraction of the total variance
of the original Niño-3.4 index. A Monte Carlo proce-
dure can be used to test whether this fraction is larger
than could be expected due to chance sampling assum-
ing the null hypothesis of fixed seasonality (see appen-
dix C). For the Niño-3.4 index the interannual variation
in seasonality is statistically significant at the 1% level,
and so the hypothesis of fixed seasonality can be re-
jected. This suggests that the traditional approach that
assumes fixed seasonality is not appropriate for this
index.

For Niño-1.2 and Niño-4, the test obtains the same
result at the 1% level. Interestingly, it turns out that this
is not the case for the Niño-3 index (p value 0.18), for
which the stability of the annual cycle can not be re-
jected. These results are in agreement with those of
Trenberth and Hoar (1996) where ocean–atmosphere
interactions were found on the Niño-3.4 rather than the
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Niño-3 region. Because the interaction between various
modes of the spectrum can alter the seasonal response
to the solar forcing, the most interacting areas are likely
to show a variable annual cycle. The tests have been
repeated with different Henderson filters (e.g., with
larger/smaller spans) and the results were not found to
be overly sensitive to the specific choice of filter.

c. Interannually changing seasonality map

To further identify regions with variable seasonality,
we have applied the statistical test to global gridded
2-m air surface temperatures. Figure 4 shows the result-
ing p-value map of the test statistic (appendix C). Dark
regions correspond to the smallest p values (less than
1%), that is, regions where there is strong evidence of
changing seasonality. Intermediate p values (between
1% and 10%) are shown in lighter gray. White regions

(more than 10%) correspond instead to the most regu-
lar annual cycles.

There is evidence of significant changes in seasonal-
ity over most of the Tropics. Particular key regions for
climate interactions include the Indian, the Pacific, and
the Atlantic Oceans, and also some extratropical areas
such as Antarctica. The results in Fig. 4, are also in
agreement with the results obtained by applying the
statistical test to the four ENSO indices. For example,
unlike the Niño-3.4, the Niño-3 region in Fig. 4 does not
show strong evidence of variable seasonality.

d. Improved definition of ENSO events

It is of interest to compare the trend obtained from
the traditional definition to the X-11 trend component.
Traditionally, ENSO indices are obtained by smoothing
anomalies from the mean annual cycle using an arbi-

FIG. 2. The X-11 decomposition of the Niño-3.4 SST time series: (a) original series (dashed) and X-11 interannual trend component
(solid); (b) X-11 interannually varying seasonal component; and (c) X-11 irregular component. [Note that the vertical scale in (a)–(c)
is different—the same interval of 0.2°C is indicated by the vertical bar at the right of each plot.]
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trary 5-month moving average A*t . Figure 5 shows
Niño-3.4 indices defined using both the traditional
smoothed anomaly approach (Fig. 5a) and the X-11
(centered) trend approach (Fig. 5b).

Both indices seem to agree broadly with one another.
However, more careful inspection reveals that the X-11
trend yields a smoother index with less short-term
variations. For example, the traditional approach shows
a series of small ripples during 1983–86 and 1998–2002,
which are much less evident in the X-11 trend compo-
nent. By the traditional index the ripples shown in Fig.
5a since 1998 are interpreted as a series of La Niña
events. The X-11 interpretation, instead, suggests a sim-
pler single and more reasonable (because it is more
consistent with ocean dynamics) La Niña event starting
in 1998.

The reduction in short-term variations is not simply
due to different amounts of smoothing in the two ap-
proaches, since it can be seen that the X-11 trend is also
able to correctly reproduce the peak amplitudes asso-
ciated with the major ENSO events.

Figure 5c shows the difference between traditional
and X-11 indices. Since the former assumes a fixed an-
nual cycle, the interannual variations of seasonality are
split between the trend index A*t and the residual irregu-
lar component R*t . However, as has been pointed out
from the spectral analysis of the traditional approach in
section 2c, most of the variable-seasonality signal is likely
to be falsely “explained” by the interannual trend com-
ponent (the five-term running mean). The difference
between the two index definitions (Fig. 5c) shows many
1-yr cycles caused by variations in the annual cycle.

FIG. 3. Matrix two-way representation of Niño-3.4 temperature time series: (a) the original monthly mean data; (b) the X-11 trend
component; and (c) the X-11 seasonal component.
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Figure 6 shows time–longitude plots of sea surface
temperatures in the equatorial Pacific since 1994. The
evolution of the traditional 5-month running mean
anomalies (Fig. 5a) and the centered X-11 trend (Fig.
5b) are quite similar up until just after the El Niño
event in 1998. After 1998, the traditional approach
gives the impression that there are three separate west-
ward-propagating La Niña events whereas the X-11
trend gives a much simpler picture of just one single
extended La Niña event lasting from mid-1998 until end
of 2000. The reason for the different interpretation can
be clearly seen in the increased amplitude of the sea-
sonal component in Fig. 5c that occurred after 1999.
The change in the annual cycle translates into a mis-
leading impression of multiple La Niña events when
viewed from the traditional approach perspective. The
extended nature of the cold event can also be con-
firmed by careful diagnosis of multiple variables
(Lawrimore et al. 2001). Possible mechanisms for the
extended nature of the ENSO event include multide-
cadal modes in the tropical Pacific (Chelliah and Bell
2004; Vimont et al. 2002) and phase-locked interaction
with the Asian monsoon (Kirtman and Shukla 2000).

In summary, the assumption of fixed seasonality in
the traditional approach leads to ENSO indices that
contain variations in seasonality in addition to smooth
interannual trends. The centered X-11 trend avoids
confounding changes in seasonality with interannual
trends, and therefore can provide a more reliable index
for defining ENSO events.

e. Interannual volatility

A simple and widely used measure of variability is
provided by the standard deviation sX of the time series
Xt. On the other hand, the contribution from year-to-
year variability can be assessed by considering the stan-
dard deviation s�X of the 12-month differences �Xt �
Xt � Xt�12 in the monthly mean time series. Twelve-
month differencing is a simple well-known method for
detrending time series that removes both the mean an-
nual cycle and the linear trend. We will refer to this
quantity as the volatility of X, since it represents the
typical size of innovations from one year to the next.

Small volatility, relative to sX, is an indication that
the 12-month-ahead persistence forecasts, X̂t�12 � Xt,
provide good predictions of future values. In fact sX can
be interpreted as the root-mean-square error of pre-
dicting the time series using climatology, whereas s�X is
the root-mean-square error in predicting the same ob-
servations using the previous year data. A small ratio
s�X/sX indicates that persistence forecasts will give good
results, compared to the general uncertainty in the data.

Figure 7a shows a map of the standard deviation s�X

of year-to-year differences, that is, volatility, in monthly
mean 2-m air temperatures. The largest volatility oc-
curs at high latitudes near the edge of sea ice and over
continental regions. Small changes in the position of sea
ice or snow cover from one year to the next can easily
lead to large changes in surface air temperature. Less
volatility can be seen over the oceans, although the

FIG. 4. The p values (%) of the fixed seasonality test [in case of independent heteroscedastic
irregular terms (see appendix C)], applied to the gridded 2-m air surface temperatures.
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characteristic ENSO upwelling region in the eastern
equatorial Pacific associated with ENSO can also be
noticed.

Let us consider the decomposition �Xt � �St � ��t,
where Nt � Tt � It is the nonseasonal (aggregate) com-
ponent. Hence we obtain the squared-volatility decom-
position:

s�X
2 � s�S

2 � s�N
2 � 2s�S,�N,

where s�S,�� is the covariance between seasonal and
nonseasonal components.

The main point is that, by using a variable-
seasonality approach, one can potentially predict the
interannual variations in both seasonal and nonsea-
sonal components, while the traditional approach, by
definition, can only address the nonseasonal variability.
Thus, a measure of the gain in 1-yr-ahead predictability,

allowed by nontraditional variable-seasonality meth-
ods, is the seasonal volatility s�S. Note that this ignores
the interaction between seasonal and nonseasonal com-
ponents that is represented by the covariance term in
the preceding squared volatility decomposition.

The seasonal volatility s�S is shown in Fig. 7b. In
comparing this map with the total volatility map of Fig.
7a, we note a very similar pattern, although the ENSO
upwelling region is not visible anymore, and the scale is
reduced by about a third. Finally, the relative seasonal
volatility s�S /s�X is shown in Fig. 7c. Around 24%–40%
of the total volatility over land regions is due to year-
to-year changes in the seasonal component. Because of
its slow variation, this component is potentially predict-
able and represents a window of opportunity for im-
proving seasonal climate forecasts. Over the tropical
Pacific and Atlantic Oceans less volatility is accounted
for by the seasonal component, most likely due to the

FIG. 5. Niño-3.4 sea surface temperature anomalies from 1980 to 2002: (a) traditional 5-month running mean anomalies and (b)
centered X-11 trend component. Note the smoother evolution of the X-11 anomalies that could be used to construct a less ambiguous
index for defining El Niño and La Niña events. (c) The difference between (a) and (b).
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dominance of the trend component. However, even in
these tropical regions, the seasonal component ac-
counts for more than 10% of the total volatility.

f. Global teleconnections

It is well known that there exist significant correla-
tions between climatic variables calculated at locations
separated by large distances. These teleconnections are
a major component of climate variability and their
study can provide a deeper understanding of the cli-
mate system. This section will present an interesting
example of the teleconnections that exist in the trend
and seasonal components of 2-m air temperature.

Figure 8a shows the correlation map of the center of
the Niño-3.4 region (0°, 145°W) with elsewhere, for the
monthly mean X-11 trend component in 2-m air tem-
perature. The characteristic boomerang-shaped ENSO
pattern can be clearly seen in the Pacific Ocean, where
positive correlations are found over a large area cen-

tered over the Niño-3.4 region, but also extending along
the western coast of both North and South America.
Positive correlations with the western tropical Indian
Ocean are found. Regions whose trend is negatively
correlated with the Niño-3.4 trend are indicated by dot-
ted contours. Negatively correlated areas are also
rather large and form a typical wave train pattern with
positively correlated areas.

Figure 8b shows a similar one-point Niño-3.4 corre-
lation map, using instead the 12-month running means
of the modulus of the seasonal component. In other
words, Fig. 8b shows teleconnections between interan-
nual variations in seasonal amplitudes around the globe
and seasonal amplitudes in the Niño-3.4 region. Com-
pared to Fig. 8a, teleconnections in seasonal amplitudes
appear to be far more extended over the globe, than are
the teleconnections in the trend component. Although
positive correlations in the equatorial Pacific cover a
somewhat smaller region than in Fig. 8a, there are more
extended teleconnections over both the Atlantic Ocean

FIG. 6. Time–longitude plot of SSTs in the equatorial Pacific Ocean from 1994 to 2002: (a) traditional 5-month running mean
anomalies; (b) centered X-11 trend component; and (c) the X-11 seasonal component. Note in (a) the three apparent La Niña events
since 1999 and their reduction in (b) and the marked increase in seasonal amplitudes after 1999.
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and Africa. Negative correlations over both North and
South Poles are also found. Teleconnections in season-
ality suggests possible opportunities for improving sea-
sonal climate forecasts outside the Tropics.

These types of teleconnection in seasonal amplitude
rather than in the long-term mean are intriguing and
merit further investigation beyond the scope of this
study. For example, cross correlations within trend, sea-
sonal and irregular components, different fixed points,
and different time lags could also be studied.

4. Conclusions

Seasonal variation is one of the most noticeable and
dominant aspects of climate variability. Despite exter-
nal solar forcing being (almost) perfectly periodic,
there is no fundamental reason why the seasonal cli-
mate response should remain exactly the same from
year to year. The traditional approach assumes a fixed
annual cycle response, which is appropriate only if the
solar forcing is perfectly periodic and there are no non-
linearities or internal modes of variability. Under these
assumptions, variability is simply the sum of internal
variability and the response to the external forcing.
However, the observational evidence presented here
and in previous studies (cited in the introduction) sug-

gests that annual cycles in temperature vary from year
to year. The traditional approach has the disadvantage
that variations in seasonal behavior become mixed up
with longer-term interannual variations in the mean. As
mentioned in the introduction, well-known nonlinear
phenomena such as phaselocking can produce simulta-
neous quasi-seasonal frequencies, and lead to changing
seasonality. Longer-term variability of internal modes
of the climate system such as ENSO and climate change
can also easily modulate the climate system’s response
to periodic solar forcing. Some understanding of how
these nonlinearities may affect variations in seasonality
could be gained by modeling studies of periodically
forced low-order chaos models (e.g., Lorenz 1963).

Seasonality is not uniquely defined—it depends on
which method is used to isolate the seasonal compo-
nent. Different methods make different underlying as-
sumptions and reveal different aspects of seasonality.
Empirical approaches such as the X-11 method used
here and complex demodulation (Bloomfield 1976;
Thompson 1995) use predefined filters to extract, in a
flexible manner, the varying seasonal component. How-
ever, a more explicit structural approach to seasonality
is to use a (suitable) time series model to extract the
various components. Autoregressive time series models
can be used such as the seasonal ARIMA models

FIG. 7. Maps of interannual variations in surface temperatures: (a) standard deviation s�X of year-to-year
differences in monthly mean 2-m air temperatures (data volatilities); (b) seasonal volatilities s�S; and (c) fraction
of variation s�S/s�X (%) due to interannual variations in the X-11 seasonal component.
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FIG. 7. (Continued)
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FIG. 8. Correlation maps showing teleconnections of monthly mean 2-m air temperatures with the Niño-3.4
region: (a) correlation between trend components and (b) correlation between seasonal amplitudes.
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or the periodic ARIMA models (Franses 1996). Peri-
odic ARIMA models have been shown to be useful for
describing and predicting time series having periodic
correlations, in other words time series whose autocor-
relations are stationary with respect to time translations
by multiples of one period (Lund et al. 1995). Such time
series are also known as cyclostationary time series
(Huang and North 1996, and references therein). A
more holistic model-based approach is to treat the an-
nual cycle as a smooth function of calendar month and
then use an autoregressive approach to forecast the
whole function in the following year (Besse et al. 2000).

In this study, we have presented a simple approach
based on the X-11 procedure for analyzing seasonal
variations. By relaxing the strong assumption of a fixed
annual cycle, the annual cycle is treated as a fundamen-
tal entity on its own and can then be studied in more
detail. The X-11 approach defines the seasonal compo-
nent using filters that are local in time, whereas the
traditional approach relies on averaging over all years
in the sample. This local property ensures that the val-
ues obtained in any one year are not overly biased by
events happening at other times that could be unrelated
to events in that year. For example, an unusually large
El Niño event such as 1982/83 can easily bias all other
years in the traditional approach. Local behavior also
guarantees that spectral transfer properties do not de-
pend on the length of the record, which is not the case
for the traditional approach. For shorter records, the
traditional approach provides less reliable estimates of
the mean annual cycle and distinguishes less well be-
tween interannual and annual cycle variations. The
main advantage of X-11 is that it is able to cope with
changes in the annual cycle whereas the traditional ap-
proach assumes that such changes do not happen. For
example, when applied to the Niño-3.4 index, it has
been shown that the X-11 approach clearly takes ac-
count of the recent increase in Niño-3.4 seasonal am-
plitude, whereas the traditional approach suggests in-
stead occurrence of spurious multiple La Niña events.
The X-11 approach has the flexibility to deal with
changes in seasonality expected from natural variability
and anthropogenic climate change. It may also be of use
in paleoclimate studies, where variations in seasonality
are of great interest (Clement et al. 1999; An et al. 2000;
Rutherford and D’Hondt 2000; Koutavas et al. 2002).

Our conclusions are robust and not overly dependent
on the choice of dataset. The X-11 results from the
NCEP–NCAR 2-m temperature analyses agree well
with those of the Nino indices based on the Reynolds
SST dataset. Furthermore, we have also applied X-11 to
the Southern Oscillation sea level pressure index and
found similar conclusions concerning the nature of the
La Niña events after 1998 (not shown). The NCEP–
NCAR reanalyses have a known problem with the 2-m
air temperature associated with the skin temperature
when the wind is weak (less than about 0.75 m s�1). We

have inspected the NCEP–NCAR wind speeds and
found that the regions where the wind speed is smaller
than 0.75 m s�1 are concentrated in a very narrow band
over mountainous regions in central Africa and the
Andes (less than 2% of the globe). Furthermore, the
skin temperature problem is much less of an issue when
dealing with monthly and seasonal means rather than
daily data (Chelliah and Bell 2004). We feel confident
that similar results would be obtained using other sur-
face temperature datasets.

As in economics, the X-11 approach is able to sea-
sonally adjust time series so that the resulting trend
component correctly reflects long-term changes in the
mean level of the process. Therefore, the X-11 trend
component is able to produce better climate indices for
monitoring and predicting interannual and longer-term
climate variations, and this has been demonstrated with
the Niño-3.4 index. Similarly, we have shown using the
volatility maps that a substantial fraction of year-to-
year variation over land areas is due to interannual
variation in the seasonal component. Further, we dem-
onstrated that teleconnections can also be found be-
tween the annual cycle amplitudes. These findings in-
dicate some potential for improving seasonal forecasts.
The understanding of the variations in the annual cycle
is particularly important for applications in agriculture.

In conclusion, we believe that the traditional ap-
proach based on the assumption of a fixed annual cycle
is unjustifiable on physical grounds and is overly restric-
tive. Relaxing this assumption using procedures such as
X-11 (and complex modulation, etc.) can lead to a
richer diagnosis and clearer interpretation of climate
variations. Obvious extensions would be to use the
X-11 method to understand and validate output from
climate model simulations and seasonal forecasts. The
X-11 approach could also be of use in analyzing other
quasi-periodic phenomena such as the diurnal cycle.
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APPENDIX A

The Two-Way ANOVA Model

Equation (1) defines an additive decomposition of
the data into a constant mean �, a periodic seasonal
effect C̃t, a piecewise constant trend At and a residual
short-term error component Rt. This model is called the
two-way ANOVA model in statistical literature (see,
e.g., Cressie 1991) and it is elegantly summarized in
matrix form as

xmy � � � c̃m � ay � rmy. �A1�

In a two-way model, apart from the residual term rmy,
data variation occur as a row variation (an annual ef-
fect) and/or as a column variation (seasonal effect). In
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fact, the effect of annual and monthly factors is easiest
to interpret if their joint contribution is the sum of two
separate contributions.

The least squares fit is optimal in various theoretical
senses when the residuals have an underlying distribu-
tion with certain special properties. For example, it is
often assumed that the rma are fluctuations indepen-
dently and normally distributed with zero mean and
constant variance, but it is still asymptotically optimal
when the residual variance can vary (e.g., with the sea-
sonal index m).

The least squares fit of the two-way model is per-
formed by finding and subtracting row and column
means. We could begin with the mean of all the values
in the table to estimate �, and then subtract it from all
observations. Next, we could calculate the mean of each
column for the annual (net) contribution, ay, subtract it
from every observation in the column and, finally, es-
timate c̃m by the row means of these residuals. Alter-
natively, as in section 2a, we can proceed by rows and
obtain first the monthly effects c̃m (by centering the
monthly averages cm) and then the annual effects by the
annual means of the anomalies. The results are invari-
ant because of the properties of the arithmetic mean,
and successive iterations on the residual matrix would
find no further row and column contributions.

The recursive definition of X-11, given in section 2b,
can be seen to be a very simple extension of this pro-
cess, starting from trend (column) subtraction. In order
to obtain a continuous trend, the running annual mean
(on the starting step) and the Henderson filter (on steps
2 and 3) replace the (yearly constant) annual mean and
the local seasonal filter replaces the annual cycle (the
seasonal mean filter) to obtain quasi-periodic seasonal-
ity.

APPENDIX B

Trend and Seasonal Filters

Note that the symbol MAm, defined in section 2 for
the five-term running mean (m � 5) is ambiguous when
the index m is even. In this case it can allow two defi-
nitions. For example, for MA2(Xt) one can choose be-
tween (Xt�1 � Xt)/2 and (Xt � Xt�1)/2. The means of
these two is called the centered running mean and de-
noted, in general, as MA2�m. Two relevant examples
are the two-term centered filter

MA2�2�Xt� �
Xt�1 � 2Xt � Xt�1

4

and the annual centered filter

MA2�12�Xt� �

Xt�6 � 2Xt�5 � · · · � 2Xt � · · · � 2Xt�5 � Xt�6

24
.

Both the MAm, when m is odd, and the MA2�m,
when m is even, are centered averages, or symmetric
filters, because they rely on an odd number of consecu-
tive terms and have symmetrical weights �j � ��j. A
(finite) symmetric filter of an input series Xt produces
an output Ft of the form

Ft � 	
j��m

m

�jXt�j � �0Xt � 	
j�1

m

�j�Xt�j � Xt�j�.

A seasonal running mean SMA is obtained by sepa-
rate applications of the MA on each seasonal subseries.
For example, on monthly data, the series SMA(Xt) �
Ft, with matrix form F � fam, is given by filtering with
MA the January subseries {X1, X13, X25, . . .} to fill the
first column ( fa1), then the February subseries {X2, X14,
X26, . . .} giving the fa2 values, and so on. Seasonal mov-
ing averages based on symmetric filters are symmetric
filters as well.

The fixed seasonal series Ct, on the other hand, can
be seen as an infinite symmetric filter, because it is
equivalent to an SMA2m�1 when the semiwindow pa-
rameter m of the filter tends to infinity, since in this
case

SMA2m�1�Xt� → Ct. �B1�

In practice, this causes distortion effects on short cli-
matological time series (see Fuenzalida and Rosenblüth
1986).

APPENDIX C

Testing Fixed Seasonality

From initial data analysis, temperatures appear to be
well fitted by the additive model, either the traditional
or the X-11 decomposition. The main difference is that
a global or a local seasonal filter is being used.

The next question is whether or not the traditional
assumption of fixed seasonality can be accepted. Let us
call H0 the traditional hypothesis. Several tests for the
presence of variable seasonality have been developed.
The early version of X-11 included an F test based on a
two-way analysis of variance performed on the de-
trended data developed by Higghinson (1975). Other
tests were introduced later by Dagum (1978), Findley et
al. (1990), and Sutradhar and Dagum (1998). The main
problem of these approaches is that easy versions are
incorrectly based on the F distribution, so that the
nominal significance level is not the actual one. More
accurate procedures, instead, relying on the actual dis-
tribution of the test statistic, are quite complicated in
computing both the statistic and the significance level,
and so these are not well suited for testing gridded
climate datasets.

Monte Carlo (MC) testing, on the other hand,
allows an exact control of the significance level. There-
fore, a relatively simple MC method is proposed
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here to verify the fixed seasonality assumption H0

against the alternative of a moving seasonality charac-
terized by gradual changes in the seasonal amplitudes,
as estimated by X-11. As usual it will be assumed that
the trend can be well estimated by the X-11 trend filter
Tt. Alternatively, the 13-term running mean can be
used (Sutradhar and Dagum 1998).

Given a time series Xt with fixed net cycle C̃t and
X-11 trend Tt, let �2

m be the seasonal variances of the
residual terms

Vt � Xt � Tt � C̃t.

Let �2
t , t � 1, 2, . . . , � be the periodic extension of

these p variances for the entire length of the time series.
The MC test is as follows:

(a) generate a large number of samples

X*t � Tt � C̃t � W*t ,

where Tt and C̃t are always the same series, as es-
timated on the original data, while the irregular
terms

W*t � N�0, �t
2� �C1�

(which means that they are drawn from a normal
distribution with mean zero and variance �2

t ).
(b) Compute the X-11 decomposition of the MC

sample

X*t � T*t � S*t � I*t

and the traditional annual cycle C̃*t on the de-
trended series X*t � T*t . This gives the traditional
decomposition (conditional to X-11 trend)

X*t � T*t � C̃*t � V*t

where the irregular terms V*t are the residual series
after trend and seasonal subtraction.

(c) On each MC sample, compute and save a test sta-
tistic U*, to be compared with the same statistic U
observed on the original data.

At the end, the fraction p* of U* that are bigger than U
can be used to evaluate the p value for H0, within a fixed
error. More precisely, if m* is the MC sample size (that
is the number of generated samples), then a 95% con-
fidence interval for the p value can be approximated by
(p � 2h, p � 2h), where h � �p*(1 � p*)/m*.

Any statistic can be used in step c, so long as it is
useful to distinguish between fixed and variable season-
ality. A classical choice is the F statistic, measuring the
lack of fit due to the null hypothesis H0. Because the
residual variability (�t) can vary under H0, the statistic
can be written as

F* �
	�V*t ��t�

2

	�I*t /�t�
2

� 1.

For the current application, on the other hand, an-
other interesting choice is based on the L1 distance
between the fixed and variable annual cycle:

D* �
1
N 	

t�1

N

�|C̃*t � S*t |�,

which measures, on the MC (simulated) sample X*t , the
average absolute variation in the original units (e.g.,
degrees Celsius) between traditional and X-11 seasonal
terms.

The stochastic model used in (a) to generate the MC
time series with fixed (e.g., exactly periodic) seasonality
can be called the null hypothesis model. A significant p
value means that the H0 model is not able to reproduce
the observed data and thus H0 can be rejected. Of
course, the more flexible the null model, the more con-
fidence can be put on the rejection. That is why the
residual variances �2

t are allowed to vary in (C1) (het-
eroscedasticity).

The null hypothesis was also modeled assuming a
Markov process for the irregular component. For this
alternative test, the first-order autoregressive [AR(1)]
process is fitted to the observed irregular component
Vt. Then the MC sampling procedure is accordingly
modified: the V*t are sampled from the fitted autore-
gressive process. The remaining part of the procedure
remain unmodified.

Since the Markov AR(1) model is more flexible than
the uncorrelated AR(0) model, a slight preference for
H0 was generally obtained in performing the MC test
by using the former assumption. However, this was not
enough to change the test results on El Niño indices.
Also the test on the gridded 2-m air temperatures gives
small differences and the general conclusions from the
p-value map remains unchanged.

Unlike the choice of the error model (Markovian or
uncorrelated), the Monte Carlo test is rather sensitive
to the choice of the test statistic, F* or D*. In general,
the D* statistic obtained more significant p values than
the F statistic. The corresponding map of the p values
identifies essentially the same regions with unstable
seasonality, but with much bigger extensions than the
ones found in Fig. 4 for the F statistics.
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