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ABSTRACT

Empirical orthogonal functions (EOFs) are widely used in climate research to identify dominant patterns of variability and
to reduce the dimensionality of climate data. EOFs, however, can be difficult to interpret. Rotated empirical orthogonal
functions (REOFs) have been proposed as more physical entities with simpler patterns than EOFs. This study presents a
new approach for finding climate patterns with simple structures that overcomes the problems encountered with rotation.
The method achieves simplicity of the patterns by using the main properties of EOFs and REOFs simultaneously.
Orthogonal patterns that maximise variance subject to a constraint that induces a form of simplicity are found. The
simplified empirical orthogonal function (SEOF) patterns, being more ‘local’, are constrained to have zero loadings
outside the main centre of action. The method is applied to winter Northern Hemisphere (NH) monthly mean sea level
pressure (SLP) reanalyses over the period 1948–2000. The ‘simplified’ leading patterns of variability are identified and
compared to the leading patterns obtained from EOFs and REOFs. Copyright  2005 Royal Meteorological Society.

KEY WORDS: principal components; simplified empirical orthogonal functions; ordinary differential equations; gradient methods; North
Atlantic Oscillation; Arctic Oscillation

1. INTRODUCTION

Atmospheric scientists have introduced and developed various ways to find patterns of variability in high-
dimensional weather/climate systems. The main objectives of these methods are twofold: to reduce the
dimensionality of the system by retaining a much smaller set of dominant patterns (e.g. Hannachi and O’Neill,
2001) and to obtain a few, and in some cases just one, leading patterns of variability that are physically
relevant (e.g. Wallace and Thompson, 2002). Since their introduction in atmospheric research (Obukhov,
1947, 1960; Fukuoka, 1951; Lorenz, 1956), Empirical Orthogonal Functions (EOFs) have been widely used
to analyse atmospheric data (Kutzbach, 1967; Preisendorfer, 1988). A major reason for their widespread use
in atmospheric science is that they allow a space display and a time display, which would seem to be relevant
to climate researchers. The existence of fast and efficient algorithms that can handle large space-time data
sets also help their widespread use.

EOFs coefficients, or Principal Components (PCs), of a gridded spatio-temporal field are linear combinations
of the different variables of the field that maximise variance. The EOFs are the loadings of the PCs, but can
also be defined without defining PCs first. They can also be defined as linear combinations of the different
maps of the field that maximise norm. They have been applied to various atmospheric fields, e.g. surface
temperature, Sea Level Pressure (SLP), sea surface temperature, for various purposes such as analysing the
leading modes/patterns of variability (e.g. Kutzbach, 1967), predicting the weather (Lorenz, 1956; Ward and
Folland, 1991), and comparing model simulations to observations and reanalyses as routinely practiced in
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8 A. HANNACHI ET AL.

most climate research centres. For a definition and discussion on the differences between regimes, modes,
patterns, etc., see Stephenson et al. (2004).

By construction, EOFs of climate data yield sets of orthogonal spatial patterns and sets of uncorrelated
time series; see e.g. Preisendorfer (1988), Wilks (1995), von Storch and Zwiers (1999), and Jolliffe (2002)
and references therein. These are geometric properties that can be very useful in modelling studies using
PCs. For example, the covariance matrix of any subset of retained PCs is always diagonal. These constraints,
however, yield partially predictable relationships between an EOF and the previous ones. For instance, as
pointed out by Horel (1981), if the first EOF has a constant sign over its domain, then the second one will
generally have both signs with the zero line going through the maxima of the first EOF. The orthogonality
constraint also makes the EOFs domain-dependent and can be too non-local (Horel, 1981; Richman, 1986).
Consequently, these constraints can cause limitations to any possible physical interpretation of the obtained
patterns (Ambaum et al., 2001, 2002; Dommenget and Latif, 2002; Jolliffe, 2003) because physical modes
are not necessarily orthogonal. Normal modes derived, e.g. from linearised dynamical/physical models, such
as barotropic models (Simmons et al., 1983) are not orthogonal since physical processes are not uncorrelated.

To overcome some of the drawbacks caused by the geometrical constraints, researchers have looked for
an alternative through linear transformation of the EOFs. The concept of rotation emerged in factor analysis
and has been proposed since the late 1940s in social sciences. In atmospheric sciences, Rotated Empirical
Orthogonal Functions (REOFs) were nearly three decades later and continue to be widely used (Horel, 1981;
Richman, 1981, 1986; Preisendorfer, 1988; Cheng et al., 1995). The review of Richman (1986) provides
a particularly detailed discussion of the characteristics of unrotated EOFs. REOFs yield simpler structures,
compared to EOFs, by rotating the vector of loadings or EOFs, hence losing some of the useful geometric
properties of EOFs in favour of yielding better interpretation. REOFs, however, have their own shortcomings
summarised in how to (1) decide the rotation criteria that specify the simplicity, (2) choose the normalisation,
(3) choose the type of projection, and also (4) choose the number of EOFs to be rotated, though this latter can
be regarded by some as a more general issue. Of course, choosing the number of EOFs, e.g. can be difficult,
but adding an extra one does not change those found already, unlike REOFs.

Jolliffe et al. (2002) developed an alternative way to construct simple structure patterns without compro-
mising the useful properties of EOFs, namely, variance maximisation and EOF orthogonality. Although giving
the best low-dimensional representation in a least square sense, variance maximisation does not guarantee
physical interpretability. However, there is no way of knowing this in advance of an analysis, unless the form
of the physical modes is already known, in which case any analysis is pointless.

Our main objective in this paper is to demonstrate the usefulness of this method for a moderately
large climate application. Another motivation for using this approach is the fact that propagating planetary
waves (Hoskins and Karoly, 1981) tend to follow waveguides (Hoskins and Ambrizzi, 1993; Ambrizzi and
Hoskins, 1995) because of the presence of critical lines (Held, 1983; Nigam and Held, 1983; Killworth and
McIntyre, 1985). One would, therefore, expect physically relevant patterns to be more local or simple, i.e.
with zeros outside the main centres of action.

The method, which is computationally intensive, helps interpret the nature of the leading modes of variability
of SLP and also contributes to the current Arctic Oscillation/North Atlantic Oscillation (AO/NAO) debate.
The paper is organised as follows. In Section 2, we briefly review EOFs and REOFs and then introduce the
Simplified Empirical Orthogonal Functions (SEOFs) in Section 3. The application to winter monthly means
of sea level pressure is presented in Section 4. Conclusions are presented in the final section.

2. EOFS AND REOFS: BACKGROUND

2.1. EOFs: Formulation and algorithms

EOF analysis, also known as Principal Component Analysis (PCA), see e.g. Preisendorfer (1988)
and Jolliffe (2002), has been widely used since its introduction in atmospheric science by Obukhov (1947,
1960), Fukuoka (1951), and Lorenz (1956). Here we consider a finite set of a p-dimensional time series
xt = (xt1, xt2, . . . , xtp)T , t = 1, . . . n, where the superscript T denotes the transpose operator. Each vector xt ,
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SEARCHING FOR SIMPLE STRUCTURES IN CLIMATE 9

t = 1, . . . n, is a spatial field consisting of p grid point values. This multivariate time series may represent
e.g. the time evolution of the geopotential height or temperature at p different stations on the earth’s surface
recorded at regular time intervals over a finite period.

A sequence of spatial fields can be represented by the following n × p data matrix; see e.g. Mardia et al.
(1979):

X = (x1, x2, . . . , xn)
T =




x11 x12 . . . x1p

x21 x22 . . . x2p

...
...

...

xn1 xn2 . . . xnp


 (1)

where the rows constitute the time samples and the columns represent the grid point variables. For example,
the kth column constitutes the time series at the kth variable (or grid point) and the j th row constitutes a
map, i.e. the sample values at time j . EOFs normally describe the variability of the spatio-temporal field with
respect to a base state taken in general to be the climate mean (or climatology). The n × p anomaly data
matrix X′ is defined as the departure of X from the climatology or long-term mean

x = 1

n

n∑
t=1

xt = 1

n
XT 1n

and is given by

X′ =
(
In − 1

n
1n1T

n

)
X (2)

where 1n = (1, 1, . . . , 1)T is the column vector of length n containing only ones and In is the n × n identity
matrix. To keep the notation simple, the dash in the matrix (2) will be removed and the notation X will simply
refer to the anomaly data matrix for the rest of the paper. The sample covariance matrix is given by:

S = 1

n
XT X (3)

The EOFs {a1, a2, . . . , ap} are defined as directions (unit vectors a), in the p-dimensional state space. The
PCs, i.e. the time series associated with these EOFs, are uncorrelated linear combinations, Xa, of the variables
that successively have maximum variance. The EOFs are, therefore, obtained as the solution to the quadratic
optimisation problem:

max F(a) = aT Sa

subject to aT a = 1 (4)

and are subject to each EOF being orthogonal to previous EOFs. This is equivalent to maximising
(aT Sa)/(aT a). The straightforward solution to this quadratic optimisation problem is given by solving the
eigenvalue problem

Sa = λ2a

The EOFs are the eigenvectors of the sample covariance matrix S arranged in decreasing order of the
eigenvalues. The first eigenvector a1 gives the first PC, i.e. the linear function Xa1, with the largest variance;
the second EOF a2 gives the second principal component with the next largest variance subject to being
orthogonal to a1, etc.
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10 A. HANNACHI ET AL.

In a similar manner to the formulation (4), the EOFs can also be defined as linear combinations vX, where
v is a vector of weights of the different maps of the field that maximise the norm squared. Applying this
definition, one obtains a similar equation to (4), namely:

max(vT P v)/(vT v) (5)

where P = XXT is the matrix of scalar product between the different maps. Equation (5) yields automatically
the (standardised) PCs (instead of the EOFs as in Equation (4)). Note that Equation (5) is formulated using
a duality argument to Equation (4), and can be useful for numerical purposes when e.g. the sample size
is smaller than the number of variables. The EOFs A = (a1, . . . , ar ), where r is the rank of X, are the
eigenvectors of (3) or equally the right singular vectors of X derived from the Singular Value Decomposition
(SVD) (see e.g. Golub and van Loan (1996)) of X, i.e.

X = V �AT (6)

with � = diag(λ1, . . . , λr) containing the singular values λ1 ≥ λ2 . . . ≥ λr ≥ 0 of X.
Because it is quadratic, the optimisation problem (4) can be satisfactorily addressed using efficient

algorithms such as SVD. However, as will become clear later, it is important to put problem (4) in the
more general framework of nonlinear optimisation and make use of other attractive and efficient algorithms.
A number of algorithms exist to solve unconstrained as well as constrained minimisation problems. These
include non-gradient methods such as direct and Newton–Raphson methods and all gradient methods including
steepest descent and projected/reduced gradient methods (Gill et al., 1981). Most of these algorithms share
a similar property, namely, the search for and movement along directions of descent. In various problems,
however, the search for suitable step sizes (in-line search) can be problematic, particularly when the cost
function to be minimised is not quadratic, for which the algorithm can converge to the wrong local minima.

Other algorithms, such as simulated annealing, can be used to overcome problems related to convergence
to (wrong) local minima. Simulated annealing (Metropolis et al., 1953; Lin and Kernighan, 1973; Kirkpatrick
et al., 1983) makes use of the fact that when a crystal is heated and then slowly cooled, thermal mobility of the
atoms is gradually lost and the crystal gets to the state of its minimum absolute energy. The algorithm avoids
local minima through a process of random shocks; see e.g. Hannachi and Legras (1995) for an atmospheric
application. The algorithm is particularly useful when the feasible set is connected, but can easily fail when
it is not connected.

Instead of straight line search directions, an alternative is to proceed from an initial condition to the solution
by following a rather smooth curvilinear trajectory. To find the minima of F(x), then a simple trajectory is
provided by the continuous steepest descent trajectory of the Ordinary Differential Equation (ODE)

dx
dt

= −∇F(x) (7)

with suitably chosen initial condition (Brown, 1986). In fact, if x∗ is an isolated local minimum of F(x),
then x∗ is a stable fixed point of the dynamical system (7), see e.g. Hirsch and Smale (1974), and hence can
be reached by integrating (7) from some suitable initial condition. Such methods have been around since the
mid-1970s (Evtushenko, 1974; Botsaris and Jacobson, 1976; Botsaris, 1978) and can make use of efficient
integration algorithms available for dynamical systems. Trajectories defined by second order differential
equations have also been suggested (Snyman, 1982).

When the optimisation is constrained, the solution can also be approached in a similar way using
the projected or reduced gradient method. Here the continuous path can be obtained through projection
of the gradient ∇F(x) onto the tangent space of the feasible set, i.e. the set or surface satisfying the
constraints (Evtushenko, 1974; Evtushenko and Zhadan, 1977; Botsaris, 1979, 1981). For a review of these
methods as well as for further references see Brown (1986).

For the EOF problem, the successive variance maximisation and orthonormality conditions yield the
following projected gradient formulation.
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SEARCHING FOR SIMPLE STRUCTURES IN CLIMATE 11

For a given k = 1, . . . p, designated by

πk = Ip −
k−1∑
l=1

alaT
l (8)

the projection operator onto the orthogonal complement to the space spanned by the first k−1 EOFs
(a1, . . . , ak−1), then EOF ak is obtained as the limit, when t → ∞, of the solution to the following system
of ODEs:

d

dt
ak = πk(Ip − akaT

k )∇F(ak) = πk+1∇F(ak) (9)

It can be seen that the eigenvalues λ2
k , k = 1, . . . r , of the covariance matrix S satisfy (see, e.g. Magnus

and Neudecker, 1995)

λ2
k = max

P T
k−1x=0

xT Sx

xT x
(10)

where Pk = (a1, . . . , ak) is the matrix that consists of the set of the k-leading eigenvectors of S. Note that
the projection operator πk+1 simply derives from orthogonality between ak and al , l < k, plus the fact that
the condition aT a = 1 is equivalent to

πa = (Ip − aaT )a = 0

So πk is precisely the projection onto the linear space of the feasible set {x;P T
k−1x = 0}. The projection

operator is in fact used to ensure that the gradient yields a feasible point at each step during the optimisation.
So as can be seen from (6), by construction the EOFs are orthogonal and the PCs uncorrelated. These useful

geometric constraints can be, however, problematic when it comes to physical interpretation. To overcome
some of these setbacks, a number of methods have been proposed and are currently used in atmospheric
science to aid interpretation. The most common method is rotation, which is discussed below.

2.2. Rotated EOFs

Horel (1981) and Richman (1981, 1986) argued that EOFs can be too non-local and dependent on the size
and the shape of the spatial domain. As pointed out by Horel (1981) and others who applied rotated factors,
invariance or constancy of a solution, e.g. factors or EOFs, when the domain changes is a fundamental
necessity if the solution is to be physically meaningful. Also in his detailed review on REOFs, Richman
(1986) maintains that unrotated EOFs exhibit four characteristics that hamper their utility to isolate individual
modes of variation. These are domain dependence, subdomain instability, sampling problems, and inaccurate
portrayal of the physical relationship embedded within the data.

The principal objective of REOFs is to obtain patterns with simple structure and thereby overcome some of
the drawbacks of EOFs mentioned above. To aid interpretation, the most common definition of simplicity is to
drive the EOF coefficients (PC loadings) to have either small or large magnitudes with few or no intermediate
values. Rotation of EOFs attempts precisely to achieve this. Rotation acts on a predetermined subset of EOFs
(or PCs). Suppose we decide to keep the leading m EOFs, Am = (a1, a2, . . . , am). Rotation of the (p × m)

matrix Am is normally achieved by finding a rotation matrix R such that the rotated loadings

B = AmR (11)

optimise a predetermined ‘simplicity’ criterion. The scaled loadings Am�m, where � = diag(λ1, . . . , λm),
represents the diagonal matrix of the leading m singular values of X, can also be rotated. Depending on
the orthogonality/non-orthogonality of the rotation matrix R, one obtains an orthogonal/oblique rotation
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12 A. HANNACHI ET AL.

respectively. Various simplicity criteria exist in the literature, such as the most widely used VARIMAX
orthogonal rotation (Kaiser, 1958; Richman, 1986; Krzanowski and Marriott, 1995; Jolliffe 2002). The
VARIMAX criterion chooses R so as to maximise the function:

g(B) =
m∑

k=1


 1

p

p∑
j=1

b4
jk −


 1

p

p∑
j=1

b2
jk




2

 (12)

where bjk , j = 1, . . . p, and k = 1, . . . , m are the elements of the matrix B, i.e. [B]jk = bjk . VARIMAX
therefore maximises the total variance of the squared-loading coefficients within each column of B = AmR.
This operation drives the squared-loading coefficients towards 0 or 1 and hence the rotated loading coefficients
towards 0 or ±1. Another well-known orthogonal rotation criteria is QUARTIMAX, which attempts to
maximise instead the sum of the fourth power of the (rotated) loadings B. The structures obtained using
QUARTIMAX tend, in general, to be less local than those obtained using VARIMAX.

In oblique rotation, one seeks a (non-orthogonal) rotation matrix R with unit length columns, such that the
oblique rotated loadings:

B = Am(RT )−1 (13)

minimise a certain criterion f (B). Various oblique rotation criteria exist in the literature. A familiar example
is the QUARTIMIN criterion (Carroll, 1953; Harman, 1976, p. 305) for which:

f (B) = 1

4

∑
r �=s

∑
i

b2
irb

2
is . (14)

In this paper, we have applied orthogonal and oblique rotation. Results from VARIMAX will be shown, but
the discussion will also include results using other criteria. Although the results of Richman (1986) suggest
that VARIMAX is among the least accurate, his findings were based on synthetic data and as such should not
be taken as a rigid rule. In general, results are often more sensitive to the choice of how many EOFs to rotate
than to the choice of rotation criteria. Detailed comparison between existing rotation methods is beyond the
scope of this paper and is left for future research.

3. SIMPLIFIED EOF METHOD: SCoTLASS

3.1. Background

REOFs have been introduced as a way of improving interpretation and yielding simpler, more regional,
and physically believable patterns than EOFs. There is, however, a difficulty in building objective simplicity
criteria. As noted by Jolliffe et al. (2002), concentrating the EOF coefficients close to 0 or ±1 is not the only
or best possible definition of simplicity. For example, a constant pattern with only ones is simple though it
could rarely be of much interest in atmospheric science.

Although REOFs attempt to achieve this by using a simple and practical criterion, they have a number
of drawbacks that make the method quite controversial (Richman, 1986, 1987; Jolliffe, 1987, 1995; Mestas-
Nuñez, 2000). First, to apply rotation, one has to decide the number of EOFs or PCs that are to be rotated.
Technically, of course, all the EOFs can be rotated, but this defeats the objective of dimension reduction and
is likely to lead to trivial solutions. The result of rotation will depend, in general, on the particular number
chosen. Among the other issues that need to be addressed when using rotation are whether it should be
orthogonal or oblique and which of the large number of simplicity criteria should be used. The choice of
normalisation constraint (Jolliffe, 1995), although not unique to rotation, can make fundamental differences
in REOFs, whereas for EOFs it amounts simply to a rescaling. A simplification technique that can overcome
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SEARCHING FOR SIMPLE STRUCTURES IN CLIMATE 13

most of these problems, and which in the mean time retains some of the useful properties of EOFs, is desirable.
Such a technique is described next.

3.2. LASSO-based simplified EOFs

Chapter 11 of Jolliffe (2002) describes various simplification techniques. Most of these techniques attempt
explicitly or implicitly to reduce the two stages of rotated PCA into just one step. Here we discuss a
particularly interesting method of simplicity that is derived from a form of regression analysis. In multiple
linear regression, a common problem that arises is instability of regression coefficients because of colinearity
or high dimensionality. This problem has been investigated by Tibshirani (1996) who proposed a technique
known as the Least Absolute Shrinkage and Selection Operator (LASSO). The LASSO approach attempts to
shrink some regression coefficients exactly to zero, hence implicitly selecting variables. The same idea was
adapted by Jolliffe et al. (2003) for use in PCA in order to shrink some loadings to zero. Jolliffe et al. (2003)
called the technique simplified component technique-LASSO (SCoTLASS). Here we refer to the SCoTLASS
EOF method as SEOFs, but the reader should note that the use of adjectives ‘simple’ and ‘simplified’ can
also describe other different techniques in the literature.

The SEOF method makes use of the main principles behind EOFs and REOFs simultaneously. It achieves
simultaneously the three objectives of successive variance maximisation, orthogonality, and simplicity of the
patterns. The objective of SEOFs is to seek directions ak = (ak1, ak2, . . . , akp)T , k = 1, . . . , p that maximise

F(ak) = aT
k Sak (15)

subject to the constraints

aT
k al = δkl (16)

as with EOFs; but to achieve simplicity, the LASSO technique requires an extra constraint to be satis-
fied (Jolliffe et al., 2003):

‖ak‖1 =
p∑

j=1

|akj | = aT
k sign(ak) ≤ τ (17)

where τ is a tunable parameter and sign(ak) = (sign(ak1), . . . , sign(akp))T is the sign of ak . Because of
constraint (16), Equation (17) is only possible for τ ≥ 1. Furthermore, since ‖a‖1 reaches its maximum on
the unit sphere only when all the components are equal, we get ‖a‖1 ≤ √

p, and hence for τ ≥ √
p we regain

standard EOFs/PCs. Therefore, EOFs can be regarded as a special case of SEOFs obtained when τ ≥ √
p.

3.3. Numerical solution of SEOFs

The optimisation problem (15–17) is non-quadratic and non-differentiable due to the LASSO condition.
The solution can only be obtained numerically by using a suitable descent algorithm. The non-differentiable
condition (17) is a particular nuisance for optimisation, and it is desirable to smooth it out. Trendafilov and
Jolliffe (2005) used the fact that tanh(x) ∼ |x|

x
= sign(x) for large values of |x| to transform (17) to the

smooth constraint

aT
k tanh(γ ak) − τ =

d∑
j=1

akj tanh(γ akj ) − τ ≤ 0 (18)

for some fixed, sufficiently large number γ . Trendafilov and Jolliffe (2005) then solved this optimisation
problem by using the projected gradient approach, and for completeness we briefly review the method here.
To make it look like the standard EOF problem (4) or (9), condition (18) is incorporated into the function (15)
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14 A. HANNACHI ET AL.

as an exterior penalty function; see e.g. Gill et al. (1981). This means that this condition will be explicitly
taken into account only if it is violated. This resulting cost function that is to be maximised reads:

Fµ(ak) = 1

2
aT

k Sak − µH(aT
k tanh(γ ak) − τ) (19)

where the exterior penalty function is given by

H(x) = max(0, x),

and µ is a large positive number. Again to make (19) differentiable, we use the fact that max(x, y) =
1
2 (x + y + |x − y|), and hence the exterior penalty function is replaced by H(x) = 1

2x(1 + tan h γ x). Finally,
the optimisation problem (16–19) is solved using the projection operator πk applied to the gradient to yield:

dak

dt
= πk(Ip − akaT

k )∇Fµ(ak) (20)

The kth SEOF ak is then obtained as the limit of the solution to the dynamical system (20) as t → ∞.
In this high-dimensional application, we have found it more efficient and substantially faster for k ≥ 2 to

slightly modify Equation (20) as follows. To find the kth SEOF, we first remove the effect of the previous
k−1 SEOFs by defining the ‘residual’ data matrix:

Yk = X

(
Ip −

k−1∑
l=0

alaT
l

)
= Xπk (21)

with the convention a0 = 0. We then compute the corresponding ‘residual’ covariance matrix

Sk = 1

n
Y T

k Yk =
(

Ip −
k−1∑
l=0

alaT
l

)
S

(
Ip −

k−1∑
l=0

alaT
l

)
(22)

The kth SEOF ak is then obtained as the stationary solution to the dynamical system:

d

dt
ak = (

Ip − akaT
k

) ∇F (k)
µ (ak) (23)

where F (k)
µ is defined as in (19) except that S is replaced by Sk , i.e.

F (k)
µ (a) = 1

2
aT

k Ska − µH(aT tanh(γ a) − τ) (24)

4. APPLICATION TO WINTER MONTHLY SEA LEVEL PRESSURE

4.1. Dataset

We illustrate the methods with the winter monthly mean SLP over the Northern Hemisphere (NH) north
of 20 °N. The data set comes from the National Center for Environmental Prediction/National Center for
Atmospheric Research (NCEP/NCAR) reanalysis (Kalnay et al., 1996; Kistler et al., 2001). The data set is
available on a 2.5° × 2.5° regular grid and spans the period January 1948–December 2000. The winter season
is defined by December through to February (DJF). The mean annual cycle is first calculated by averaging the
monthly data over the years and then subtracted from the data set to get SLP anomalies. An area weighting
that consists of multiplying the SLP anomalies by the square root of the cosine of the corresponding latitude
is applied.
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SEARCHING FOR SIMPLE STRUCTURES IN CLIMATE 15

4.2. Application

4.2.1. EOF results. Figure 1 shows the two leading patterns EOF1 and EOF2 of the winter monthly SLP.
They explain respectively 21 and 13% of the total winter variance and are well separated according to
the North et al. (1982) rule of thumb. EOF1 (Figure 1(a)) has a low-pressure centre over the polar region and
two high-pressure centres over the Mediterranean/North-East Atlantic and over the North Pacific respectively.
It corresponds to the familiar AO pattern (Thompson and Wallace, 1998, 2000; Wallace, 2000, Wallace and
Thompson, 2002). EOF2 in Figure 1(b) shows two separated centres over the North- East Atlantic and North
Pacific respectively. Figure 2 shows the corresponding standardised PC time series. Note, in particular, the
increasing trend after the mid-1970s in the first PC, a well-known feature of the AO pattern.

4.2.2. REOF results. We have applied various rotation criteria to the winter monthly SLP EOFs including
orthogonal rotation, e.g. VARIMAX and QUARTIMAX, and also oblique rotation, e.g. QUARTIMIN. The
discussion, however, will be centred around VARIMAX, but will also mention results using other criteria. For
various values of m, rotation is applied to the leading m EOFs using (11) or (13). We have also investigated
the rotation of both – the (unscaled) EOFs and the EOFs scaled by the square root of the corresponding

(a) EOF1 (21%)

(b) EOF2 (13%)

Figure 1. The leading two EOFs one (a) and two (b) of monthly mean winter (DJF) sea level pressure. Positive contours are represented
by solid lines and negative contours by dashed lines. Note that the EOFs have been multiplied by 100
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Figure 2. The leading two-scaled PCs corresponding to the leading two EOFs of Figure 1

eigenvalues. We, therefore, have four types of rotation: (1) orthogonal rotation of EOFs, (2) orthogonal
rotation of scaled EOFs, (3) oblique rotation of EOFs, and (4) oblique rotation of scaled EOFs.

In all the cases studied, using various rotation criteria and the various number of EOFs chosen for rotation,
we have found that (1) and (3) give virtually the same result, which is discussed below. Figure 3 shows a
scatter plot of loadings in REOFs using VARIMAX versus REOFs using QUARTIMIN for m = 30. Similar
plots have been obtained for other values of m and other criteria. The scatter with negative slope (Figure 3)
simply indicates that the corresponding REOFs have opposite signs. Because the order of REOFs is arbitrary,
we have ordered them according to the variance of the associated time series, although it should be noted
that because the time series are correlated, the variances are not additive.

For example, when 3 EOFs are rotated, the first rotated pattern (not shown) comes out as the NAO with
maximum variance, whereas the Pacific pattern has the least variance of its time series. For 4 ≤ m ≤ 8,
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Figure 3. Scatter plot of VARIMAX REOFs versus QUARTIMIN REOFs using m = 30 EOFs. The scatter with negative slopes
corresponds to similar REOFs but with opposite signs
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however, the time series of the NAO rotated pattern loses its maximum variance in favour of a pattern that
has most of its structure located around the polar region. Figure 4 shows an example for m = 6. The time
series of the polar structure (Figure 4(a)) has the maximum variance, whereas time series of the NAO (Figure
4(b)) and the North Pacific pattern (Figure 4(c)) have respectively the third and fourth maximum variances. It
is worth noting that when the NAO can be identified, the Pacific pattern time series always has less variance
than that of the NAO.

As m increases further, the scale of the rotated patterns becomes smaller and more concentrated. In
particular, the NAO pattern starts losing its structure. For example, when m = 12 (not shown) we get two
NAO-like patterns with their northern centres located respectively over Hudson Bay and the west of Scotland.
Figure 5 shows an example when m = 20, where we obtain a small scale AO-like (Figure 5(a)) and NAO-like
pattern (Figure 5(b)) and another pattern looking like the NAO-jet (not shown). An example of the North
Pacific pattern for m = 20 is shown in Figure 5(c). Finally, for m larger than about 30, the rotated patterns
clearly become single structured, with smaller and smaller spatial extensions that become localised around
selected individual grid points.

The case (2), i.e. orthogonal rotation of scaled EOFs, turns out to be more robust with regard to changes
in the number m of chosen EOFs. This is due to the monotonic structure of the spectrum of the covariance
matrix whereby successive ranked EOFs contribute less than the previous ones and, therefore, cannot change
substantially the structure of the leading REOFs. Note that the ranks of REOFs are now obtained from
their squared norms. This robustness is found to apply for the two methods used here, i.e. VARIMAX
and QUARTIMAX. The leading REOFs from both methods are similar, but this correspondence breaks
down for higher REOFs. For example when m = 30, only the leading 15 REOFs using VARIMAX or
QUARTIMAX are similar. Figure 6 shows the first three REOFs obtained with VARIMAX (with similar
results for QUARTIMAX) using m = 20 EOFs. The first two REOFs show respectively the NAO (Figure
6(a)) and the North Pacific pattern (Figure 6(b)). The third REOF (Figure 6(c)) shows a structure similar to
the Eurasian type I pattern of Barnston and Livezey (1987) known also as the Scandinavian pattern. Note
that the variances given by the squares of the REOFs norms are not additive because the associated time
series XB are not uncorrelated. Any (non-trivial) orthogonal rotation of EOFs cannot conserve both the spatial
orthogonality and temporal uncorrelatedness.

For case (4), on the other hand, we found that the rotation algorithm runs into convergence problems. This
problem is related to matrix inversion where the rotation matrices turnout to be badly conditioned. Although
this may not happen with synthetic data, the problem seems more likely to arise with real data.

4.2.3. SEOF results. To obtain the winter monthly mean SLP SEOFs, we numerically integrated (23) using
the function ODE15S in the MATLAB software that solves stiff differential equations. The values of the
constants γ and µ were fixed to 1000 and 800 respectively, but the results are invariant to changes in these
constants. Figure 7 shows an example of the function Fµ(EOF1 ) versus γ for µ = 1000. It is clear that the
function becomes nearly independent of γ for γ larger than few hundred. The SEOF solutions are also found
to be invariant to changes in µ for µ ≥ 100. The obtained solutions for the various values of µ are virtually
identical. The integration of (23) is performed sequentially for a given number k of SEOFs to be computed.
Because the algorithm is computationally intensive, we have used a coarser grid of 5° × 5° by taking SLP
values at every other grid point, and we have limited ourselves to computing and discussing the leading three
SEOF patterns.

The SEOF’s search can be made more efficient by running the algorithm for various values of τ starting
from τ0 = √

p where the solution is known, then gradually decreasing τ , e.g. by 2 or 4, and using, for each τ ,
the previous solution, obtained e.g. with τ + 4 or τ + 2 as initial condition. In this way the, CPU time can be
reduced by about 1 order of magnitude compared to the case with a random initial condition. This is because
for small τ , as the feasible set is not connected (see Trendafilov and Jolliffe, 2005), the algorithm may jump
between the different connected parts of the set when the initial condition is not close to the optimum.

The leading SEOFs have been computed for various values of the threshold, τ , in the range 8–30. Note
that above τ = 32.8 (= √

1080) we get PCA. From about τ = 26 upwards, the leading SEOFs do not change
much and they start looking much like their EOF counterparts. For smaller values of the threshold τ , in
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(a) REOF1

(b) REOF3

(c) REOF4

Figure 4. Three rotated EOF patterns using the leading m = 6 EOFs, showing the first pattern (a), the NAO (b), and the North Pacific
pattern (c). These rotated patterns are ranked first, third, and fourth respectively. The order is fixed according to the variance of the
corresponding time series. Positive contours are represented by solid lines and negative contours by dashed lines. Values have been

multiplied by 100 as in Figure 1
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(a) REOF1

(b) REOF6

(c) REOF10

Figure 5. As in Figure 4 but for m = 20. The order of the patterns are 1 (a), 6 (b), and 10 (c)

the range 8 ≤ τ ≤ 20 we obtain the NAO as the leading pattern and the North Pacific pattern as the next
SEOF. Figure 8 shows SEOF1 (8(a)) and SEOF2 (8(b)) for τ = 8 showing a localised structure. The shaded
area indicates the region where the loadings (or coefficients) are ‘exactly’ zero. Figure 8(a) shows a clear
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(a) REOF1 (m=20)

(b) REOF2 (m=20)

(c) REOF3 (m=20)

Figure 6. The leading three REOFs obtained using VARIMAX rotation of the first m = 20 EOFs scaled by the square root of the
corresponding eigenvalues. The ranks of REOFs are given by their norm squared
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Figure 7. The function Fµ (EOF1) given by (19) versus the parameter γ for µ = 1000

dipolar NAO pattern with centres of opposite signs centred respectively over Iceland and west of the Iberian
peninsula. The second pattern (8(b)) shows a clear monopolar structure centred over the northern Mid-Pacific.
Figure 9 is similar to Figure 8 but is obtained with τ = 18. Note how the shaded region shrinks and the
pattern gets enlarged. Figure 10 shows the same patterns but for τ = 24 with further reduction of the shaded
area.

It is clear that the leading SEOF pattern is a NAO for a wide range of thresholds chosen in the middle of the
interval 1 ≤ τ ≤ √

1080 and that the second SEOF comes out as the North Pacific pattern. Figure 11 shows
the time series of the Simplified Principal Components (SPCs) associated with SEOF1 and SEOF2 patterns
respectively for τ = 18. The variance of the NAO time series (Figure 11(a)) is 5.87 × 103 hPa2, whereas the
variance of SPC2 (Figure 11(b)) is 2.67 × 103 hPa2. For larger τ , the difference between the two variances
increases until they reach the respective variances of the PCs, i.e. 7.28 × 103 hPa2 and 2.6 × 103 hPa2 (a
ratio of nearly 3) and this is obtained when τ is around 26. For smaller τ , however, the difference between
both the variances becomes smaller. So, for thresholds less than 1

2

√
p the variances of both the time series

are not too different and this may explain why the simple patterns found by SEOFs appear to be combined
in a single pattern using EOF analysis (Figure 1(a)). For example, when τ = 10 the variance associated with
the first pattern (NAO) is 2.61 × 103 hPa2, whereas for the second pattern (North Pacific Centre) one gets
2.33 × 103 hPa2, i.e. with a variance ratio of the order 0.89. This also implies that the first two local maxima
corresponding to SEOFs 1 and 2 are close to each other in state space and, therefore, it is quite difficult to
separate them using EOFs alone. For comparison, the third SEOF obtained for τ = 12 (not shown) is similar
to the Scandinavian pattern (Figure 6(c)).

The SEOF method has several advantages. In SEOFs simplicity, maximum variance, and orthogonality
of spatial patterns are all addressed simultaneously. In addition, whereas REOFs depend in a fundamental
way on the normalisation chosen, there is no secondary operation, like rotation, on the SEOFs, so no real
dependence on the normalisation.

The method, however, has, like any other technique, some potential disadvantages. The method relies on
the choice of the threshold parameter τ . There is currently no objective way of making this choice. However,
this is no more of a problem than choosing the number of EOFs to rotate, and the simplicity criterion, in
REOFs. In our example, leading SEOFs are reasonably invariant to changes in the threshold parameters for
a wide range of values, except that the spatial extension of the patterns gets reduced with the threshold
parameter. Another disadvantage is the potential loss of variance compared to the same number of EOFs or
REOFs. However, our experience is that the simplicity gained is often worth the small loss of variance. Also,
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(a) SEOF1 (τ=8)

(b) SEOF2 (τ=8)

Figure 8. The leading two simplified EOFs; SEOF1 (a) and SEOF2 (b) obtained for a threshold parameter τ = 8. The shaded area
shows the grid points with ‘exactly’ zero loadings. As for EOFs and REOFs, the SEOFs have been multiplied by 100

compared to EOFs, SEOFs lose one of the space and time orthogonality properties, but this is also true of
REOFs.

Finally, the method is more expensive computationally compared to EOFs or REOFs when rotating a
relatively small number of EOFs. However, when rotating a large number of EOFs, using, e.g. oblique rotation,
the computation can also be quite expensive, and other recently proposed dimension-reducing techniques, such
as nonlinear PCA, are even more computationally expensive.

The non-differentiability of the L1-norm constraint does not pose a serious problem with regard to the
smoothness of SEOFs because the atmosphere already contains examples of sharp gradients such as fronts or
jet streams. Note also that the problem we solve is a smoothed version of the original one. Furthermore, the
L1-norm constraint (17) is not of equality type, so the field can still be smooth while satisfying the constraint.

4.3. Summary

Rotation achieves simpler structures than EOFs. To apply rotation, however, one has to decide the type of
rotation, the criterion to be minimised, and whether EOFs need to be scaled. Rotation of (unscaled) EOFs
seems to be robust with regard to changes in the type of rotation and the rotation criteria, but not to changes
in the number m of EOFs. On the other hand, scaled EOFs seem to be better off with orthogonal rotation,
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(a) SEOF1 (τ=18)

(b) SEOF2 (τ=18)

Figure 9. As in Figure 8, but for τ = 18

with regard to consistency of the leading rotated patterns. It is clear, however, that such rotation of scaled
EOFs excludes contribution to the leading modes from low-ranked EOFs, with small eigenvalues, but which
can be physically relevant. So here the question is: which way to go? We argue that SEOFs offer a possible
answer.

In SEOFs, the simplicity is controlled by the threshold parameter, which is the only parameter required.
The other parameters, e.g. µ and γ , are introduced for numerical purposes, and the final solutions are almost
invariant to changes in these parameters. In our example, the structure of the leading SEOF patterns is also
largely invariant vis-a-vis changes to the threshold parameter, as long as the latter is not too close to its
upper bound. For example, we obtain the NAO, the North Pacific pattern, and the Scandinavian pattern for
a wide range of values of τ . Furthermore, as this parameter gets smaller, the spatial extension of the SEOFs
gets smaller but the structure is similar. As the threshold parameter is decreased, the variance of the leading
SEOFs decreases as expected. This is illustrated in Figure 12, which shows the ratio between the variance of
SEOF1 to that of EOF1 versus the simplicity parameter τ . For this example, the convergence toward EOFs
is obtained about the value τ = 2

3

√
p. The loss in variance is justified by the increased simplicity. From

a comparison between SEOFs and physically relevant teleconnection patterns, the results suggest the value
τ = 1

3

√
p to be a reasonably good choice.
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(a) SEOF1 (τ=24)

(b) SEOF2 (τ=24)

Figure 10. As in Figure 8, but for τ = 24

The method is computationally intensive, but can still be very useful to gain insights if we are interested in
the leading few patterns for interpretation. In our example, the method seems to give comparable results
for the (simplified) leading modes of variability compared to orthogonal rotation of scaled EOFs. For
higher order modes, however, since there is no consistent correspondence between the rotated modes of
one orthogonal rotation with another orthogonal rotation, SEOFs can be used as an alternative to interpret
high order (simplified) modes of variability.

5. CONCLUSIONS

Finding patterns from climate data with moderately large dimensions is, and will remain, a challenging task.
The task is even more challenging when it comes to physical interpretation. The EOF technique has been
around for more than five decades in climate research and is widely used because it allows a useful space
display and time display, and it is easy to solve using a number of known matrix algorithms, such as the QR
algorithm or SVD. The method, however, displays a number of drawbacks when it comes to interpretation
because of the strong geometric constraints imposed upon EOFs, such as orthogonality, uncorrelatedness, and
domain dependence.
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Figure 11. The scaled time series of the first two simplified PC1 (a), and PC2 (b) corresponding to Figure 6, i.e. τ = 18
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Figure 12. The ratio of variance of SPC1 to that of PC1 versus the simplicity parameter τ

Rotation of the loadings (EOFs) helps alleviate some of the problems encountered with EOFs and yields
simpler structures. Rotation, however, raises more issues that need to be addressed, such as choice of the type
and criterion of rotation, as well as deciding whether to scale the EOFs. The analyses show that orthogonal
and oblique rotations of (unscaled) EOFs produce similar results. The obtained REOFs, however, are not
robust to changes in the number of EOFs chosen for rotation. Orthogonal rotations of EOFs scaled by the
square root of the corresponding eigenvalues produce leading rotated patterns that are almost invariant to
changes in the rotation criteria or the number of EOFs chosen for rotation. Higher order REOFs, however,
are not invariant. Also, oblique rotation of scaled EOFs can easily run into convergence problems because of
bad conditioning.
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We have presented a SEOF technique that is able to identify patterns with simple structures. The method is
formulated in a similar manner to EOFs and, thus, keeps some of the EOF’s useful properties, but also uses
the simplicity property of REOFs simultaneously. Variance maximisation, spatial orthogonality, and simplicity
are all addressed simultaneously; hence, the shortcoming in REOFs of the requirement to choose the number
of EOFs to be rotated is overcome.

The SEOF method finds orthogonal patterns that maximise variance subject to an extra constraint that
induces simplicity, namely, that the sum of the absolute value of the loadings is to be less than a chosen
threshold τ . This threshold parameter τ chosen from within [1,

√
p] is essentially the only parameter for

SEOFs. The remaining parameters are only introduced for numerical purposes, but do not change the structure
of the final solutions. The results in our example are not overly sensitive to the choice of the threshold. The
non-differentiability of the L1-norm constraint does not pose a serious problem since there are sharp gradients
in the atmosphere. The algorithm is more expensive computationally than EOFs and REOFs combined, when
rotating a relatively small number of EOFs. We have applied the method to winter monthly mean SLP using
NCAR/NCEP reanalyses from January 1948 to December 2000 using December through to February data
and have compared the results of the leading patterns with those obtained using REOFs. A recommended
choice for the threshold parameter corresponds approximately to the first third of the interval, i.e. τ ≈ 1

3

√
p.

In general, however, the choice of τ may be a difficult problem, and it could be necessary to examine
several values before giving a final answer. In our example, the SEOF patterns retain their structure, but with
decreasing extent because of the increasing number of zero-grid points, as the threshold decreases. The NAO
pattern is particularly robust to changes in the threshold. The Pacific pattern, a monopolar structure, and the
Scandinavian pattern were obtained as second and third SEOFs respectively for most thresholds.

We have also shown that for large values of the simplicity parameter the variances of the leading SPCs
tend toward those of their PC counterparts. For smaller τ than about 1

2

√
p, the variances explained by the

first two SEOFs in our example are close to each other. The two patterns form two local maxima of the
function that are to be maximised and are close to each other in state space. This may be one reason why
conventional EOF analysis is unable to pick them individually, but combine them yielding the AO pattern
observed in Figure 1.

To conclude, we argue that the SCoTLASS method of simplicity provides a good alternative to rotated EOFs
and yields robust SEOFs. The SEOFs still explain a large amount of variance and yield simple versions of the
NAO, the North Pacific pattern, and the Scandinavian pattern as leading modes of variability. The increase in
simplicity yields, as expected, a decrease in variance. We argue, however, that this loss of variance is justified
by the increased simplicity.
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