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SUMMARY

In this paper we focus on the one year ahead prediction of the electricity peak-demand daily trajectory
during the winter season in Central England and Wales. We define a Bayesian hierarchical model for
predicting the winter trajectories and present results based on the past observed weather. Thanks to the
flexibility of the Bayesian approach, we are able to produce the marginal posterior distributions of all the
predictands of interest. This is a fundamental progress with respect to the classical methods. The results are
encouraging in both skill and representation of uncertainty. Further extensions are straightforward at least
in principle. The main two of those consist in conditioning the weather generator model with respect to
additional information like the knowledge of the first part of the winter and/or the seasonal weather
forecast. Copyright © 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In Central England and Wales, winter peak-demand of electricity usually occurs between
5.00 pm and 5.30 pm. These data, among others, are routinely collected and investigated
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by the National Grid Trasco group (NGT), operating the high-voltage electricity transmission
system.

NGT operates the high voltage network and is responsible for residual short term system
balancing 24 hours a day. To this aim, demand’s prediction is essential. In particular the
seasonal prediction, that is the forecast from one month up to one year ahead, is crucial for
medium-term planning of energy production and trade. In collaboration with NGT, in this
paper we focus on the one-year ahead prediction of the peak-demand daily trajectory of the
winter season.

Different approach have been taken for electricity demand (or load) forecasting, including
time-varying splines (see, e.g. Reference [1]), artificial neural networks [2] and multiple regres-
sion models [3,4]. Most of the literature concerns short term forecasting, in which many dif-
ferent methods have been attempted (see, e.g. Reference [5]). The Bayesian approach [6, 7] has
been used much less frequently and at our knowledge for short term forecast only.

The standard NGT seasonal model regresses the demand against a calendar cycle, three
weather transforms and the Service sector index, a main component of the National Gross
Product which is issued quarterly by the National Statistical Office. Obviously, services and
weather series are unknown explanatory variables in extrapolating the demand prediction. One
year ahead, the standard NGT seasonal forecast assumes an average (climatological) weather
and the last year services. Later on, until six months ahead, a constant value is periodically
added to the estimated demand’s trajectory in order to take account of the expected growth of
the services and of other economical factors.

A main drawback of this method is that the resulting forecasts cannot express the uncertainty
on weather and services. For this aim, we define a Bayesian hierarchy as a generalization of the
NGT regression model. For the weather, we assume a probability model based on past data: the
climatological weather generator described in Section 3.1. For the Service series, finally, because
it grows approximately linearly in time, we avoid the explicit use of the explanatory variable by
including a random effect following a linear pattern (as shown in Section 3). In summary, the
posterior distribution for next winter load trajectory is the mixture of the predictive of the mixed
model averaged over the climatological weather distribution.

While for day-to-day prediction the engineering constraints produce a quadratic loss
function, the NGT long-term forecasting, instead, is much more complex and subjected to
change from year to year. The general aim is multipurpose. Several predictands can be relevant
to the planner. The most important ones are the general level of the winter trajectory, the
highest demand’s value and its location in time. Thanks to the flexibility of the Bayesian
approach, we are able to produce the marginal posterior distributions of those predictands.
This is a fundamental progress achieved by the Bayesian procedure with respect to the
classical methods. In other words, the primary aim of this paper is not to improve the per-
formances of the NGT method. This is because the operational NGT model has been proven
successful in several years of usage, so that the Bayesian model introduced here is based on
essentially the same likelihood and the same climatological data. Rather, the aim is to show how
the Bayesian approach can be used to include all the sources of uncertainty into the same
framework, and to give a realistic representation of uncertainty in all the predictions needed for
decision making.

After introducing the standard NGT regression model in the next section, we define,
in Section 3, the Bayesian model. Results and conclusions are in Sections 4 and 5,
respectively.
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2. THE STANDARD NGT PREDICTION METHOD

2.1. The data

The available data include the daily peak demand fluxes (in MW) collected by NGT for k = 17
consecutive winters, from 1986-1987 to 2002-2003. Those trajectories start from about the last
Sunday of October to the last Saturday of March. The last observed trajectory is represented in
Figure 1(a). A weekly cycle can be clearly spotted, with less demand on the weekend due to less
industrial activity. For the same reason there is a low during Christmas holidays.
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Figure 1. (a) The 2002-2003 winter trajectory of the daily peak electricity demand (MW); and
(b) all the winter trajectories (used data only).
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Because high demand is more important, weekends, bank holidays, Christmas holidays
and other special days are omitted from the fitting process. Some anomalous day, like in case
of severe storms causing network interruptions, and consumption fall, is also excluded in
order to avoid erroneous contaminations of the results. The data actually used correspond to
the bold part of the curve in Figure 1(a). These are also represented in Figure 1(b) for all
available winters. Here, the general growth of the winter peak demand can be clearly
observed.

On the other hand, even the form of the seasonal trajectory has changed in the last decades.
Electricity demand is subjected to fast structural changes in time, because the consumer can
choose different options within the energy sources. The weekly cycle is also changing because of
the increasing activity of the service sector during the weekends. Therefore, the fitting process is
usually restricted to four consecutive winters only.

2.2. The NGT model
The NGT model is a linear model whose explanatory variables are divided into 3 groups:

(1) the calendar component C: including dummies for Thursday and Friday and a winter
cycle described by a cubic polynomial.
(ii) the economic component S: that is the series of the Service Sector Index.
(iii) the weather component W: including three opportune transforms of ground temper-
ature, wind speed and ground solar radiation.

The original weather variables, provided by the UK Met Office, are weighted averages at few

selected stations. The transforms are called effective temperature: TE; cooling power of the
wind: CP; and (solar) effective illumination: EI. These transforms aim to depict how the external
weather can affect the energy needs inside the buildings. The effective temperature, TE, is an
exponentially smoothed form of another variable, TO, which is the mean spot temperature
during the 4 hours before the peak time. The wind’s cooling power, CP, is a non-linear trans-
form of TO and wind speed. Finally, the effective illumination, EI, was originally a complex
function of visibility, number and type of cloud and type of precipitation, but recently it has
been replaced by a cubic function of the ground solar radiation. Calling:

d;(t) electricity demand
Th;(f) dummy for thursday
Fr;(f) dummy for friday
TE;(¢) effective temperature
CP;(¢) cooling power of the wind
EIi(r) effective illumination

fordayt=1,2,...,T (T = 183), of winter j = 1,2, ...,k (k = 17), the NGT model has the form
di(t) =ag + art + ot + o3t + og Thy(t) + asFri(t) + pSi(t)

+ 71 TEj (1) + 9,CPi(1) + p3ELi(2) + w(1) (1)

=0y + o' Ci(1) + BS;(0) + ¥Y'W;(1) + u;(0) (2)

where Cj(1) = (¢,1%, 1, Thy(1), Fr(¢)) is the cycle vector, S;(r) is the Service Index, and

W;(7) = (TE;(2), CP;(2), EI;(z))’ is the weather vector; o, o= (o1,00,...,05), B, and
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Y= (y1,72,73) are the regression coefficients; and u;(r) is an ARMA modelled ‘error’
variable.

2.3. NGT basic and shifted forecasts

The basic NGT forecast is produced in late March, when the previous winter is just finishing.
At that moment, not only weather and services are unknown for the next year, but the latter are
unknown even for the current winter. In fact, the winter services series are issued in May by the
Statistical Office. In order to solve this additional problem, the basic (one year ahead) forecast
uses a simple trick that manages to use approximately the weather average and the last winter
services as follows.

Let TE(¢), CP(¢) and EI(¢) be the average-trajectories of the weather variables for the winter
day t. Any statistical measure of location can in principle be chosen, like the daily means or
medians. Here we prefer the cubic splines shown in the next section.

Let W(7) = (TE(¢), CP(¢), EI(¢)). If k is the current winter and ¥ is the current estimate of the
weather coefficient y (fitted on the winters from k — 1 to k — 4), let us consider the estimator of
dic11(1)

Dir1(1) = die(t) + 7' (W(1) — Wi(1) (3)
Assuming model 1 and ¥ = v, should be
Dy 1(1) ~ o9 + o' Ci(t) + BSi(t) + Y W) + ui(?)

Thus Dy is based on Si(7) although that series is unknown. Moreover, the weather component
is fixed to the climatology and the last year error term replaces the next year error. Also, both
the cyclic and economic coefficients enter (3) with their true coefficient values, that is a quite
appealing property for an estimator.

Note, finally, that the winter cycle is aligned with the last winter, instead of the (k + 1)th. In
other words, there is Ci(¢) instead of Cy,((z). However, this is only a minor drawback because
Dj.11(?) can be shifted for few days in order to align the weekdays in Cj to the next year
calendar. This final re-alignment gives the basic forecast: NGTO, say. It approximately assumes
no economical growth, that is persistence (or stagnation) of economy, and average weather
conditions. Then the inter-annual growth of the demand is periodically estimated by separate
econometric modelling. More precisely, a constant inter-annual shift is predicted and summed
up to the basic forecast.

Here we will consider the basic forecast NGTO and the last shifted forecast, NGT1 say,
which is computed just before the start of the winter, that is 6 month ahead in our terminology.
Thus we retain the NGT standard methods under the worst and the best possible information
states.

Pezzulli et al. [8] review the standard NGT procedure, where the ARMA modelling of the
error term was not found much relevant. This motivates the following model.

3. THE BAYESIAN HIERARCHICAL MODEL
As shown in Figure 2, the Service index growth is approximately linearly in time. Therefore the
linear part of the calendar cycle can adjust for the S contribution to the demand and makes S

itself become redundant. This will be achieved by means of a random winter effect og; in our
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Figure 2. The Service Index trajectories for the last 9 observed winters (broken lines) versus
an interpolating line (continuous line).

model. Therefore we assume:
(di(010;(1), 5) ~ N(0;(1); %) “4)
with
0,(t) = agj + &' Ci(t) + v'W,(1)
and where o, represents the random effect for winter j
(etojl 20, 41, 60) ~ N(io + 41 - j, 63)

For the computations we used WinBUGS (v. 1.4, Imperial College and Medical Research
Council (U.K.)) software. As well known, WinBUGS requires proper priors [9], which invar-
iably produces proper posteriors.

For stable numerical computations we worked on standardized variables. For the prior dis-
tribution, the regression coefficients e, v and A were assumed to follow independent Normal
vague distribution (i.e. with zero mean and with variance 1000).

Moreover, the vector (62, 03) were modelled independently from the regression coefficients by
using the following specification. Let t = 1/¢? and 79 = 1/d3. We fixed t ~ G(1,0.1) which is a
rather flat distribution with mean 10 and variance 100, and (to|t) ~ G(1,1/7), having condi-
tional mean and variance 7 and 72, so that marginal mean and variance are 10 and 300. Thus, the
resulting joint distribution reflects the vague prior belief that the two variance components have
the same order of magnitude. The robustness of the results has been checked when the prior for
718 G(0.1,0.1) or even the most conventional G(0.001,0.001).

By the previous settings we can infer on all the unknown parameters and hyperparameters of
the model. However, in order to predict the electricity demand for the next year (e.g. for year
k + 1) we need to define a (multivariate) probability distribution for the three weather vectors
TE).1, CP;., El;; which are currently unknown. This weather distribution is an informative
proper distribution depending on all the past available winters and is defined in the next sub-
section. The predictive distribution for the next winter trajectory is then evaluated by averaging
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the demand formula (4) for year k + 1 over all the unknown quantities, that is the parameters,
the hyperparameters and the weather vectors.

3.1. The climatological weather generator

First, define the 37-dimensional composite-weather vector W; such that
W) = (TE;, CP, EIL)

We assume the W; exchangeable for all j = 1,2,...,k + 1. This means, for example, that the
effect of climate change is ignorable in such a short period of time, which is quite reasonable.
Secondly, we assume the W; to be multivariate normally distributed

W; ~ N(p, X)

The normality assumption is forced by the computational burdens, but it is also in agreement
with our previous investigations [3]. This allows for a very complex structure in terms of means,
variances and correlations. In fact, the number of parameters is so huge p=3T+
3T(3T + 1)/2 = 151 524 that the probabilistic structure is even too much complex. Since we
have observed just 17 winters, the maximum likelihood estimate of p and X is strongly ill-
conditioned. Moreover, this great flexibility of the multivariate normal family is against our
prior knowledge. For example, it allows very different mean and variances for the same weather
transform (e.g. TE) on two consecutive days. It also supports very different correlations when
moving from the pair (7, #') of days to the pair (z + 1,7 + 1). We know, instead, that some sort of
quasi stationarity in the mean, in the variances and correlations should hold. Thus, in order to
take account of the temporal structure of the weather trajectories, we used the following
smoothed approach.

For the mean vector p, we compose the 3 smoothing splines of the daily mean trajectories
(with subjective choice of the smoothing parameters). The result is shown in Figure 3, where the
raw daily means (e.g. the maximum likelihood solutions) can be compared to the smoothed
estimates. Of course we have prior reasons to believe much more in the latter. The same method
has been used for the variances. For the correlations, working separately on each of the 6
variance-blocks TE vs TE, TE vs CP, .. ., EI vs EI, the same smoothing spline estimation is used
to ‘correct’ the empirical correlations of lag 1, then the lag 2 correlations and so on. At the end
of this rather extensive process, positive definiteness is achieved by the Higham algorithm on the
estimated correlation matrix [10].

In conclusion, we found that smoothing improves greatly the definiteness of the variance
matrix. While the raw estimate has k = 17 positive eigenvalues out of 37 = 459 dimensions of
the matrix, the smoothed estimate identify more than 300 dimensions. The eigenvectors inter-
pretation (not shown here) is also more clear and credible in the latter case. A comparison
between raw and smoothed approaches is shown in Figures 4(a) and (b), respectively, for the TE
vs TE correlation block. As shown in Reference [11], the assumption of continuity of the
covariance kernel is essential for the predictability of the stochastic process. This is equivalent to
impose regularity conditions on the weather trajectories (see, e.g. Reference [12]).

For simplicity, the weather generator has been fitted by means of all the available winters and
then used to evaluate either the standard NGT and the Bayesian models in forecasting some of
the last observed trajectories. This is not completely correct because we should use the weather
observed in the previous winters only, excluding of course the targeted one. However, there are
two main reasons for accepting this procedure. First, the (smoothed) weather generator does not
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Figure 3. Observed daily means of effective temperature (TE), cooling power of the wind
(CP) and effective illumination (EI), denoted by points, in comparison with the
corresponding smoothing splines (lines).

sensibly change if we exclude the last few winters. Secondly, we are comparing the models under
the same conditions, so that the relative performances are likely unchanged. The model
parameters, on the other hand, are estimated over the last four winters that precede the targeted
trajectory, either for the standard NGT methods and the Bayesian forecast.

Note that in order to forecast the next winter trajectory, the climatological weather generator
enters the Bayesian model as a known distribution. However, we could also model our un-
certainty about the parameters p and X thus depicting a more realistic position. This is com-
putationally very expensive, however, and probably will have only a minor effect on the results
and for these reasons it is not implemented in this paper. Finally, it is worth to mention that an
alternative approach for constructing the weather generator could be based on dynamic linear
modelling as in Reference [13].

4. RESULTS

We compared standard and Bayesian models on the last 6 winters. For each one, we used Splus
(Insightful Corp.) software for computing the standard NGT predictions and WinBUGS for the
Bayesian one. For the latter, we checked the convergence of the MCMC algorithm by the
ANOVA based-method running in WinBUGS [14]. After this, a posterior sample of 1000
predicted trajectories has been collected and compared to the actual observations. The expected
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Figure 4. Raw correlation surface: (a) smooth correlation surface; and (b) for winter effective temperature
(TE). Winter days on X and Y axes.

trajectory (composed by the daily averages of the posterior sample) has been used as the
Bayesian forecast.

In Table I, we compare the Bayesian forecast with the basic NGT forecast (NGTO0) and the
shifted one (NGT1) over the last six observed winters. The bias error corresponds to the error in
guessing the average winter demand. To this aim, we conclude from the table that both the
Bayesian and the shifted-NGT methods are slightly improving the basic NGT forecast. Fur-
thermore, all the methods provide an estimate whose error is less than 2% of the realized average
winter load. This error percentage for the mean winter load is similar to short term errors for
single day loads, while of course long term predictions can be worse on single days.

From Table I, the performances of NGT1 and Bayes seems rather close in terms of mean
square error. Although relative efficiencies find some differences, those are very small in term of
MW, which is likely due to the similarity between the underlying models. An important dif-
ference, however, is that the Bayesian forecast is available at the end of the previous winter while
NGT1 is given just before the starting of the targeted season.

Copyright © 2006 John Wiley & Sons, Ltd. Appl. Stochastic Models Bus. Ind., 2006; 22:113-125
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Table I. Forecasting performances of NGT0, NGT1 and Bayesian models. Bias and root mean square
error (RMSE) units in GW. Efficiencies Eff0 and Effl of the Bayesian model versus NGT0 and NGT1
models are ratios of the form NGT-RMSE/Bayesian-RMSE in percent values.

NGTO NGTI1 Bayes
Winter Bias RMSE Bias RMSE Bias RMSE Eff0 Eff1
1997-1998 0.3 1.1 0.0 1.1 —-0.4 1.1 96 93
1998-1999 -0.2 1.0 -0.6 1.2 —-0.7 1.2 82 93
1999-2000 0.5 0.9 0.6 1.0 -0.2 0.9 97 103
2000-2001 1.3 1.8 0.9 1.5 0.8 1.5 124 106
2001-2002 0.7 1.2 0.3 1.0 0.3 1.0 115 97
2002-2003 0.9 1.4 0.4 1.1 0.3 1.2 117 96
2002-2003 demand (points) Quatrtile

posterior expected line
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Figure 5. Bayes forecast and 50, 90 and 98% credibility bands (lines) against actual
trajectory (points). Units in 10 GW.

A motivating improvement over the standard procedure is that we can assess the uncertainty
around the expected trajectory by taking account of both uncertainty in the parameters and in
the weather. In order to check the calibration of such a probabilistic forecast, we computed
some reference quantile trajectories and then checked the observed coverage. For example, for
any day we compute a 50% credibility interval and trace the upper and lower line for all the
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Figure 6. Kernel density representations of the marginal posterior distributions of the: (a) maximum
winter demand intensity; and (b) time, compared to the occurred values. In (a), the horizontal
line indicate the 95% credibility interval (10 GW units).

days of the winter, thus obtaining a 50% credibility band. Then the model is validated if
the observations included in the band are about 50%. In Figure 5, for the year 2002-2003
we show the expected trajectory and the 50, 90 and 98 per cent bands (lines). The actual per cent
of observations (points) inside those bands are 55.5, 90.0 and 98.2, respectively. Thus the
predicted fractions are quite similar to the observed ones, and we can conclude that the spread
of the posterior sample is reasonable. This is not so if we assume a fixed climatological weather,
that essentially corresponds to use the confidence intervals on the standard NGT models.
The 98% credibility band (not shown here) is about halved in size and contains less than 60% of
the data.
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A further gain of the Bayesian approach is that we can obtain posterior summaries for any
function of the targeted load trajectory. Two important predictands for NGT regard the max-
imum of the trajectory. These are the intensity and the time of the winter maximum, which are
useful for planning the peak production load. The marginal posterior densities for winter
2002-2003 are shown in Figures 6(a) and (b) for intensity and time, respectively. In order to
improve the exposition we used the Rosenblat’s kernel density method [15]. As shown by the
circles, the predictions are rather accurate for that winter. Although on the edge, the load
maximum is included in the 95% credibility interval. This happens for all the years considered.
Those pictures are rather straightforward to present to the decision maker, who can probably
make sensible use of the conveyed information.

5. CONCLUSIONS

We propose a Bayesian hierarchy with normal likelihood, vague priors on the parameters and
hyperparameters and a weather generator probability model based on climatology.

The results are encouraging in both skill and representation of posterior uncertainty. The
credible intervals for the demand trajectory show to cover a percentage of observations that is
close enough to the expected percentage. Compared with the standard operative methods we do
not need either the Service Index series and the separate econometric modelling that is used to
update the basic NGT-operational forecast.

Also, the Bayesian forecast is available as soon as the previous winter is finished, that is one-
year ahead, and can easily provide sensible predictions regarding any functional of the targeted
trajectories, like the maximum value and its location in time.

The Bayesian approach is also extremely flexible for using new information. For example,
after the starting of the winter, the weather generator can easily be modified in order to con-
dition on the observed part of the weather trajectories.

A further development of our project is to find the opportune modification of the weather
generator for conditioning on the seasonal forecast of the weather variables.
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