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Abstract:

Climate and weather constitute a typical example where high dimensional and complex phenomena meet. The atmospheric
system is the result of highly complex interactions between many degrees of freedom or modes. In order to gain insight in
understanding the dynamical/physical behaviour involved it is useful to attempt to understand their interactions in terms
of a much smaller number of prominent modes of variability. This has led to the development by atmospheric researchers
of methods that give a space display and a time display of large space-time atmospheric data.

Empirical orthogonal functions (EOFs) were first used in meteorology in the late 1940s. The method, which decomposes
a space-time field into spatial patterns and associated time indices, contributed much in advancing our knowledge of the
atmosphere. However, since the atmosphere contains all sorts of features, e.g. stationary and propagating, EOFs are unable
to provide a full picture. For example, EOFs tend, in general, to be difficult to interpret because of their geometric properties,
such as their global feature, and their orthogonality in space and time. To obtain more localised features, modifications,
e.g. rotated EOFs (REOFs), have been introduced. At the same time, because these methods cannot deal with propagating
features, since they only use spatial correlation of the field, it was necessary to use both spatial and time information in
order to identify such features. Extended and complex EOFs were introduced to serve that purpose.

Because of the importance of EOFs and closely related methods in atmospheric science, and because the existing reviews
of the subject are slightly out of date, there seems to be a need to update our knowledge by including new developments
that could not be presented in previous reviews. This review proposes to achieve precisely this goal. The basic theory of
the main types of EOFs is reviewed, and a wide range of applications using various data sets are also provided. Copyright
 2007 Royal Meteorological Society
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INTRODUCTION

Climate is regarded as the aggregation of (random) daily
weather, and as pointed out by Lorenz (1970), climate
may be defined, in mathematical terms, as the collection
of all long-term statistical properties of the atmospheric
state. It is therefore the long-term statistics of weather.
Heinlein (1973) says ‘climate is what we expect but
weather is what we get’ (this quotation is in the section
‘More from the Notebooks of Lazarus Long’ of Robert
A. Heinlein’s novel, but some sources, however, attribute
it to the American writer/lecturer Samuel L. Clemens
known by the pen name Mark Twain (1835–1910)). Cli-
mate variations are also the result of exceedingly com-
plex non-linear interactions between very many degrees
of freedom or modes. Both weather and climate are
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characterised by non-linearity and high dimensionality.
Consequently, a challenging task is to find ways to reduce
the dimensionality of the system to a few modes if possi-
ble. A further, yet challenging, task is to link these modes
to the dynamics/physics of the system.

Empirical orthogonal function (EOF) analysis
(Fukuoka, 1951; Lorenz, 1956) is among the most widely
and extensively used methods in atmospheric science.
The method is in essence an exploratory (i.e. non-model
orientated) tool, which allows a time display and a space
display of the space-time field that may be useful to
the atmospheric scientist. The existence of fast and effi-
cient algorithms also helped its widespread use. EOFs are
multipurpose and have been used for example in dimen-
sionality reduction and patterns extraction.

Since the early review of Kutzbach (1967) on EOFs,
and apart from a few textbooks (Preisendorfer, 1988;
von Storch and Zwiers, 1999; Jolliffe, 2002; Wilks,
2006), the subject has not been systematically reviewed in

Copyright  2007 Royal Meteorological Society



1120 A. HANNACHI, I. T. JOLLIFFE AND D. B. STEPHENSON

the atmospheric science literature to address the various
recent developments in the field. Given the importance of
EOFs and related methods in climate research, we believe
that the limited literature reviews on the subject do not
meet the need of climate researchers. This introductory
review on EOFs is a contribution to fill in this gap,
but is by no means exhaustive. Further references and
more detailed material on the subject will be provided
as we go through the text. The manuscript is intended
for research students and also researchers starting in the
field of weather/climate analysis, and can be used for
educational purpose.

Given any space-time meteorological field, EOF anal-
ysis finds a set of orthogonal spatial patterns along with
a set of associated uncorrelated time series or principal
components (PCs). The geometrical constraints character-
ising EOFs and PCs can be very useful in practice since
the covariance matrix of any subset of retained PCs is
always diagonal. These same constraints, however, can
also be restrictive in other contexts. Take spatial orthog-
onality, for instance. Because it is a global property,
the orthogonality constraint can cause the EOFs to have
structures over most of the domain and with significant
amplitude, when in fact one expects the patterns to be
more localised. Horel (1981), for example, points out that
if the first EOF has a constant sign over its domain then
the second one will generally have both signs with the
zero line going through the maxima of the first EOF. This
also yields the problem of domain-dependence and non-
locality (Horel, 1981; Richman, 1986, 1987). These prob-
lems can cause difficulties in interpreting the obtained
patterns (Ambaum et al., 2001, 2002; Dommenget and
Latif, 2002; Jolliffe et al., 2003) because physical modes
are not necessarily orthogonal. Normal modes derived,
for example, from linearised dynamical/physical models,
such as barotropic models (Simmons et al., 1983) are not
orthogonal since physical processes are not uncorrelated.

The previous prevailing difficulties associated with
interpreting EOFs have led researchers to develop tools
to overcome these difficulties. Linear transformations of
EOFs, based on rotation, have been introduced and yield
the concept of rotated empirical orthogonal functions
(REOFs) (Horel, 1981; Richman, 1981, 1986; Cheng
et al., 1995, Xinhua and Dunkerton 1995). The REOF
method yields in general localised structures by com-
promising some of the EOFs’ geometric properties such
as orthogonality. Rotation attempts to yield simpler pat-
terns than EOFs. In rotation various decisions have to
be made. For instance, the rotation, or simplicity, cri-
terion is not unique. In addition, the number of EOFs
used for rotation cannot be fixed a priori but remains
arbitrary. Other alternatives to rotation have been pro-
posed. A particularly interesting one, simplified EOFs,
is a method based on the least absolute shrinkage and
selection operator (LASSO) approach introduced in the
context of regression by Tibshirani (1996) and adapted
to EOFs by Jolliffe et al. (2003). The method attempts
to achieve simultaneously the desirable property of large
variance and simplicity. The method can yield loadings,

i.e. EOF elements, that are identically zero, resulting in
localised structures without any rotation.

EOFs and REOFs are mainly based on using the spa-
tial correlation of the field, an important feature of cli-
mate data. Auto- and cross-correlation in time between
grid points, however, are ignored in those techniques.
Extended EOF analysis (Weare and Nasstrom, 1982) is a
technique that attempts to incorporate both the spatial and
the temporal correlation. The method has, since its intro-
duction, become a useful tool to extract dynamical struc-
ture, e.g. trends, oscillations, propagating structures, and
to filter data (Broomhead and King, 1986a,b; Fraedrich,
1986a,b; Kimoto et al., 1991; Plaut and Vautard, 1994).

Another related method that attempts to find propa-
gating patterns is complex Hilbert empirical orthogonal
function (HEOF) analysis. The frequency domain empir-
ical orthogonal function (FDEOF) method finds EOFs
based on the cross-spectrum matrix averaged over a
specific small frequency band (Wallace and Dickinson,
1972; Wallace, 1972; Brillinger, 1981). FDEOFs gener-
alise conventional EOFs in the sense that the covariance
matrix used for EOFs is only related to the real part
of the cross-spectrum matrix and hence does not use
the whole information from the complex cross-spectrum
matrix. The HEOF method (Rasmusson et al., 1981; Bar-
nett, 1983; Horel, 1984; von Storch and Zwiers, 1999)
is an alternative to FDEOFs and uses the Hilbert, or
quadrature transform of the field. This transform allows
HEOFs to deal with propagating structures/waves in the
time domain using complexified fields.

The manuscript reviews the exploratory methods men-
tioned above. Various other extensions to EOF/PC anal-
ysis are briefly discussed toward the end, and refer-
ences are provided for further details. Other methods
such as principal oscillation patterns (POPs) and princi-
pal interaction patterns, which are model-orientated, i.e.
non-exploratory, methods are not discussed here. Also,
methods involving covariability between two or more
fields such as in coupled patterns, e.g. canonical correla-
tion analysis (Bretherton et al., 1992), are not presented
here. The manuscript is organised as follows. Section 2
reviews the concept of EOFs with application to win-
ter monthly sea level pressure (SLP) reanalyses. Section
3 presents ways of simplification of EOFs, focussing
mainly on rotated and simplified EOFs, with application
to winter SLP. Extended EOFs with application to outgo-
ing long wave radiation (OLR) are presented in section
4 while section 5 deals with complex EOFs with appli-
cation to the quasi-biennial oscillation (QBO). Section 6
briefly discusses various other extensions to EOF analysis
including very recent ones. A summary and conclusions
are presented in the final section.

EOFS

Historical background

EOFs have been used in atmospheric science since the
late 1940’s by Obukhov (1947, 1960), Fukuoka (1951),
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Lorenz (1956), and Kutzbach (1967). See, for exam-
ple, Craddock (1973) for a discussion of eigenanal-
ysis in meteorology. Since then EOFs have become
popular analysis tools and are widely used in climate
research. EOF techniques have their roots in social sci-
ence, and go back to Pearson (1902), and later to
Hotelling (1933, 1935) who introduced principal com-
ponent analysis (PCA), the more common name for EOF
analysis. EOFs, however, are not restricted to multivariate
statistics or atmospheric sciences. They extend to feature
extraction (Fukunaga and Koontz, 1970) and the anal-
ysis of stochastic fields in the mathematical literature
where they are known under the name Karhunen-Loève
basis functions (Loève, 1978). The original aim of EOFs
(Obukhov, 1947; Fukuoka, 1951; Lorenz, 1956) was to
achieve a decomposition of a continuous space-time field
X(t, s), where t and s denote respectively time and spatial
position, as

X(t, s) =
M∑

k=1

ck(t)uk(s), (1)

where M is the number of modes contained in the field,
using an optimal set of basis functions of space uk(s)
and expansion functions of time ck(t). In practice the
EOF/PCA technique aims at finding a new set of variables
that capture most of the observed variance from the data
through linear combinations of the original variables.

The EOF terminology is due to Lorenz (1956) who
applied it in a forecasting project at the Massachusetts
Institute of Technology. The method, however, had been
applied in meteorology a decade earlier by Obukhov
(1947) for smoothing purposes, and was mentioned by
Fukuoka (1951) in a forecasting context, see Craddock
(1973) for a little further historical account. In addition
to smoothing and prediction, EOFs have also been used to
reduce the large number of variables of the original data
to a few variables, but without compromising much of the
variability of the data (e.g. Hannachi and O’Neill, 2001.)
Recently EOF analysis has been used to extract individual
modes of variability that can be physically relevant such
as the Arctic Oscillation (AO), (Pavan et al., 2000),
known as teleconnections (Angström, 1935; Bjerknes,
1969; Wallace and Gutzler, 1981; Wallace and Thompson
2002, etc.) Today, EOF methods are commonly used in
most meteorological centres to compare observations and
reanalyses to climate model simulations.

EOFs have been extensively studied in the literature,
and for a detailed analysis the reader is referred to the fol-
lowing textbooks, mostly orientated toward atmospheric
science applications: Preisendorfer (1988), von Storch
and Zwiers (1999), and Wilks (2006). For more general
application of PCA analysis, the reader is referred, e.g. to
the textbooks by Seal (1967), Morrison (1976), Ander-
son (1984), Chatfield and Collins (1989), Mardia et al.
(1979), Krzanowski (2000), Jackson (1991), and Jolliffe
(2002) and more references therein.

Data formatting

We suppose that we have a gridded data set composed
of a space-time field X(t, s) representing the value of the
field X, such as SLP, at time t and spatial position s.
The value of the field at discrete time ti and grid point
sj is denoted xij for i = 1, . . . , n and j = 1, . . . p. The
observed field is then represented by the data matrix:

X = (x1, x2, . . . , xn)
T =




x11 x12 . . . x1p

x21 x22 . . . x2p

...
...

...
...

xn1 xn2 . . . xnp


 (2)

where xt = (xt1, xt2, . . . xtp)T , t = 1, . . . n, represents the
map, or the value of the field at time t . Let us denote by
x.i the time average of the field at the i’th spatial grid
point. This time average is given by:

x.i = 1

n

n∑
k=1

xki. (3)

The climatology of the field is defined by

x = (x.1, . . . , x.p) = 1

n
1T

n X (4)

where 1n = (1, . . . 1)T is the (column) vector of length
n containing only ones. The anomaly field, or departure
from the climatology is defined at (t, sk), t = 1, . . . n, and
k = 1, . . . p, by:

x ′
tk = xtk − x.k (5)

or in matrix form:

X′ = X − 1nx =
(
In − 1

n
1n1T

n

)
X = HX (6)

where In is the n × n identity matrix, and H is the
centring matrix of order n (Mardia et al., 1979). To keep
the notation simple, from now on and unless otherwise
stated, the dash in (6) will be dropped and X will simply
denote the anomaly data matrix.

Formulation and computation of EOFs

We present below a description of how to obtain EOFs,
and for more details the reader is referred, for example, to
von Storch (1995), von Storch and Zwiers (1999), Jolliffe
(2002), and Wilks (2006). Once the anomaly data matrix
(6) is determined, the sample covariance matrix is then
defined by:

S = 1

n
XT X, (7)

which contains the covariances sij , i, j = 1, . . . p,
between the time series of the field at any pair of grid
points (si , sj ), i.e.

sij = [S]ij = 1

n

n∑
t=1

xtixtj . (8)
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The aim of EOF analysis/PCA is to find uncorrelated lin-
ear combinations of the different variables that explain
maximum variance, that is to find a unit-length direction
u = (u1, . . . , up)T such that Xu has maximum variabil-
ity. This readily yields:

max(uT Su), s.t. uT u = 1 (9)

The EOFs are therefore obtained as the solution to the
eigenvalue problem:

Su = λ2u (10)

The k’th EOF is simply the k’th eigenvector uk of S. The
corresponding eigenvalue λ2

k , k = 1, . . . p is then

λ2
k = uT

k Suk = 1

n
||Xuk||2 (11)

and hence gives a measure of the variance of the data
accounted for in the direction uk. After finding the
eigen elements of the sample covariance matrix S in
(9), the eigenvalues are normally sorted in decreasing
order as λ2

1 ≥ λ2
2 . . . ≥ λ2

p. It is usual to write the variance
accounted for in percentage as:

100λ2
k

p∑
k=1

λ2
k

%. (12)

The projection of the anomaly field X onto the k’th EOF
uk = (uk1, uk2, . . . , ukp)T , i.e. ak = Xuk is the k’th PC
whose elements atk , t = 1, . . . n, are given by:

atk =
p∑

j=1

xtjukj . (13)

So the k’th eigenvalue λ2
k represents the variance of

the k’th PC ak = (a1k, a2k, . . . ank)
T . The relationship

between Eq (13) and Eq (1) can now be noted. The
time function ck(t) and the space function uk(s) in
(1) are represented by xtj and ukj in (13) respectively.
In various literatures the EOFs are also known as the
PC loadings, and sometimes simply PCs. The PCs on the
other hand are also known as EOF expansion coefficients,
EOF amplitudes, PC time series, and PC scores. In this
manuscript we use the terminology EOFs and PCs for the
spatial and temporal patterns respectively.

In practice we do not need to compute the covariance
matrix (7) and solve the eigenvalue problem (10). We use
a powerful tool from linear algebra namely the singular
value decomposition (SVD), (Golub and van Loan,
1996). Any n × p data matrix X can be decomposed as:

X = A�UT . (14)

In (14) A and U are respectively n × r and r × p unitary
matrices, i.e. UT U = AT A = Ir where r ≤ min(n, p) is
the rank of X and Ir is the identity matrix of order r .

The matrix � is diagonal, i.e. � = Diag(λ1, λ2, . . . , λr).
The diagonal elements λ1 ≥ λ2 ≥ . . . ≥ λr ≥ 0 of � are
the singular values of X. The columns a1, . . . , ar of A,
and u1, . . . , ur of U are respectively the left and right
singular vectors of the data matrix X. There are other
ways to express the SVD but (14) provides a compact
representation because it drops unnecessary zero singular
values.

The application of the SVD to the data matrix
√

nX

yields for the covariance matrix (7) the decomposition:

S = U�2UT , (15)

where �2 = Diag(λ2
1, λ

2
2, . . . , λ

2
r ) and where the singu-

lar values have been sorted in decreasing order. Note
that the constant n has been absorbed by the diagonal
matrix �2. The EOFs u1, . . . ur and the PCs a1, . . . ar

are therefore the right and left singular vectors of the
data matrix anomaly X. Note that for the decomposition
(14) to be efficient in computation the data matrix X has
to be transposed to yield min(n, p) as its first dimension.
The EOFs are therefore orthogonal and the PCs uncor-
related, and this is a major characteristic of conventional
EOFs. The orthogonality is a useful property since it pro-
vides a complete basis for the data matrix. Equation (14)
yields in fact the decomposition:

X =
r∑

k=1

λkakuT
k . (16)

Component-wise, the previous decomposition expresses
the map xt = (xt1, xt2, . . . , xtp)T of the field X at time t

by

xt =
r∑

k=1

λkatkuk (17)

where atk is the element of the k’th PC ak at time t .
Note again the link between Eq (17), which is simply
the vector form of Eq (13), to Eq (1).

Equation (17) is particularly useful when EOFs are
used to reduce the dimensionality of the data. This can
be achieved simply by truncating the above sum by
keeping, say, the first M terms where M is generally
much smaller than the rank r of X. There is no universal
rule, however, for truncation, and the choice of M is in
general arbitrary. In practice the truncation order is often
obtained by fixing the amount of represented variance,
e.g. 80%, and choosing the set of the M leading EOFs
that explain altogether at least this amount of variance.

The spectrum of the covariance matrix S composed of
the eigenvalues λ2

1, . . . , λ
2
r provides information on the

distribution of power (energy) as a function of scale, and
on the separation/degeneracy of the EOF patterns. For
example, high/low power are associated respectively with
low/high frequency variability. Hence low frequency and
large scale patterns tend to capture most of the variance
observed in the system. The non-degeneracy of the eigen-
spectrum is particularly an important property and can be
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very useful when interpreting EOFs. For example, if two
or more eigenvalues are degenerate, i.e. indistinguishable
within their uncertainties, then the corresponding patterns
do mix the population counterparts arbitrarily. Moreover,
their actual structures may not be particularly interesting
since any linear combination of these patterns is as sig-
nificant as each one of them. There are always exceptions
as will become clear in later sections, but the message
should be clear.

The investigation of the degeneracy of the covariance
matrix spectrum requires a measure of uncertainty of each
eigenvalue that reflects sampling and this is quite difficult
to get. This uncertainty is normally based on asymptotic
results of the previous eigenvalue problem (10) in the
limit of large samples (Anderson, 1963). In practice there
are mainly two ways to compute the uncertainty of the
eigenvalues and/or the eigenvectors of S. The first one
is based on asymptotic results (Girshick, 1939; Lawley,
1956) summarised by a rule of thumb (North et al.,
1982):

�λ2
k ∼ λ2

k

√
2

n∗

�uk ∼ �λ2
k

λ2
j − λ2

k

uj (18)

where λ2
j is the closest eigenvalue to λ2

k , and n∗ is
the number of independent observations in the sample,
also known as the effective sample size, or the number
of degrees of freedom (Trenberth, 1984; Thiébaux and
Zwiers, 1984). For example, the 95% confidence interval

of λ2
k is given by λ2

k

(
1 ±

√
2
n∗

)
. The effective sample

size of a time series of length n involves in general
the autocorrelation structure of the series. For example,
the sum of the autocorrelation function, 1 + 2

∑
k≥1 ρ(k),

provides a measure of the decorrelation time, and an
estimate of n∗ is given by (Thiébaux and Zwiers, 1984);

n∗ = n
(

1 + 2
∑n−1

k=1(1 − k/n)ρ(k)
)−1

.
Another alternative is to use Monte Carlo simulations,

(see for example Björnsson and Venegas 1997). This can
be achieved by forming surrogate data by resampling a
part of the data using randomisation. An example would
be to randomly select a subsample and apply EOFs,
then select another subsample etc. This operation, which
can be repeated many times, yields various realisations
of the eigenelements from which one can estimate
the uncertainties. Another example would be to fix a
subset of variables then scramble them by breaking the
chronological order then apply EOFs, and so on. Further
Monte Carlo alternatives exist to assess uncertainty on
the spectrum of the covariance matrix. One could for
example scramble blocks of the data, for example two-
or three-year blocks of monthly data keeping thus some
parts of the autocorrelation structure, (e.g. Peng and Fife
1996). To keep the whole autocorrelation structure of
the data the phase randomisation method (Kaplan and
Glass, 1995) can be used. The method generates data

with the same Fourier spectrum as the original data.
Uncertainties on the data can even be incorporated into
the EOF machinery (e.g. Thacker, 1996.) The uncertainty
in the eigenvalues is useful when attempting to physically
interpret a pattern or in dimension reduction or when
one is looking for a break in the spectrum (Overland
and Preisendorfer, 1982). For example to keep the
leading three EOFs to reduce the dimensionality it is
recommended that the third eigenvalue should not be too
close to the fourth or higher eigenvalues.

Application

We have applied EOFs to winter monthly SLP over the
Northern Hemisphere (NH). The data come from the
National Center for Environmental Prediction/National
Center for Atmospheric Research (NCEP/NCAR) reanal-
yses (Kalnay et al., 1996; Kistler et al., 2001). They are
available on a 2.5° × 2.5° regular grid, and span the
period January 1948 to December 2000. The mean annual
cycle is first calculated by averaging the monthly data
over the years, then subtracted from the data to yield
SLP anomalies. We are only interested in analysing the
winter season defined by December to February (DJF).
The data are therefore obtained by concatenating the win-
ter monthly means for all years. Finally a weighting by
the square root of the cosine of the corresponding lat-
itude is applied to each grid point to account for the
converging longitudes poleward. The data over the NH
north of 20 °N are used to compute EOFs. Note that the
examples presented here have also been used in Hannachi
et al. (2006).

Figure 1 shows the spectrum of the covariance matrix
along with their standard errors as given by the first
equation of (18) with sample size n = 3 × 52 = 156.
The leading two eigenvalues seem nondegenerate and
separated from the rest, but overall the spectrum looks
in general smooth, which makes truncation difficult.
Figure 2 shows the first two EOFs. These EOFs explain
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Figure 1. Spectrum, in percentage, of the covariance matrix of winter
monthly (DJF) SLP. Vertical bars show approximate 95% confidence
limits given by the rule of thumb (18). Only the leading 40 eigenvalues

are shown.
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Figure 2. The first (a) and the second (b) EOFs of DJF monthly mean
SLP. Positive contours solid, negative contours dashed. EOFs have

been multiplied by 100.

respectively 21% and 13% of the total (monthly winter)
variance. EOF 1 (2a) shows a high over the North Pole
and two low centres over the Mediterranean-North East
Atlantic and over the North Pacific. This is the familiar
AO mode (Thompson and Wallace, 1998, 2000; Wallace
and Thompson 2002). EOF2 (2b) shows two separated
centres of opposite signs over the North Pacific and North
East Atlantic respectively. Figure 3 shows the first two
PCs associated with the leading two EOFs. These PCs
are uncorrelated at zero-lag but not at other lags. A trend
signature can be noted in both the PCs. This is again due
to the way EOFs process the data. In fact, EOFs do not
look for trends, and if there is one then it is likely that it
will be spread over more than one PC.

Figure 4 shows the autocorrelations of PC1 (4a) and
PC2 (4b) of DJF SLP. Note that the data are monthly, and
not seasonal means. The autocorrelations indicate a short
memory behaviour with one or two months lag. There
seems to be a small autocorrelation around 24 months lag
in PC1 (Figure 4(a)) and around 17 months lag in PC2
(Figure 4(b)). From this limited sample it is difficult to
know the exact origin of these autocorrelations. However,
it is possible that the previous autocorrelation observed
in PC1 could be due to the effect of El Nino Southern
Oscillation (ENSO) cycle, and that observed in PC2 could
be the effect of the QBO (Trenberth and Shin, 1984).

There is an ongoing debate within the climate com-
munity on whether the Arctic Oscillation (Figure 2(a))
or the North Atlantic Oscillation is the most physically-
relevant mode of variability of the NH SLP. Because of
the nature of the method, this debate cannot be resolved
using EOFs alone. EOFs have a serious difficulty when
it comes to interpretation. For example, because of the
spatial and/or temporal autocorrelation, the coherent-like
large scale EOF patterns obtained only reflect the effect
of the correlations of neighbouring grid-points. Various
methods have been proposed to ease this difficulty and
aid interpretation. In this review we present two alterna-
tives, the first one is familiar to climate researchers and
is based on rotation, and the second one, simplified EOFs
approach, is relatively new and is based on the LASSO
approach.

SIMPLIFICATION METHODS

Rotation of EOFs is perhaps the most used method
in atmospheric science due in part to its simplicity.
Simplified EOFs method provides also another useful
and new way of simplification in addition to its nice
formulation and natural link to EOFs. Both of these
methods are discussed below. See also Hannachi et al.
(2006), which is principally devoted to simplification.
Other less known methods of simplification have been
proposed. These methods will be discussed briefly toward
the end of this section with references provided for the
interested readers.

Rotated EOFs

What is it and why?. Spatial orthogonality and tempo-
ral uncorrelation of EOFs and PCs respectively impose
limits on physical interpretability of EOF patterns.
This is because physical processes are not independent,
and therefore physical modes are expected in general
to be non-orthogonal. As an example, normal modes
derived from linearised physical models, such as the
barotropic vorticity equation (Simmons et al., 1983) are
non-orthogonal. Furthermore, EOFs tend to be depen-
dent on the size and shape of the data domain (Richman,
1986). For instance, the first EOF pattern tends to have
wavenumber one sitting on the whole domain. The sec-
ond EOF, on the other hand, tends to have wavenumber
two and be orthogonal to EOF1 regardless of the nature
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Figure 3. The leading two scaled PCs corresponding to the leading two EOFs of Figure 2.
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Figure 4. Autocorrelation functions of DJF SLP PC1 and PC 2.
Horizontal lines show approximate 95% confidence limits.

of the physical process involved in producing the data,
and this applies in general to subsequent EOFs.

To help overcome these difficulties and gain easy inter-
pretation, a number of methods have been proposed.
Among these methods, REOFs, based simply on rotat-
ing the EOF patterns, seems to be the most widely used
method in atmospheric science mainly because of its rel-
ative simplicity. REOF techniques have been adopted
by atmospheric scientists since the early 1980s (Horel,
1981; Richman, 1981, 1986; Jolliffe, 1987). The tech-
nique, however, is much older and was known in factor
analysis as factor rotation, and has been applied exten-
sively in social science (Carroll, 1953; Kaiser, 1958). The
main objectives of REOFs are to:

• alleviate the strong constraints of EOFs, namely
orthogonality/uncorrelation of EOFs/PCs, and domain
dependence of EOF patterns (see e.g. Dommenget and
Latif, 2002),

• obtain simple structures,
• ease the interpretation of obtained patterns.

Formulation and computation of REOFs

Rotation of the EOF patterns can systematically alter
the structures of EOFs. By constraining the rotation
to maximise a simplicity criterion the REOF patterns
can be made simple. Given a p × m matrix Um =
(u1, u2, . . . um) of the leading m EOFs (or loadings),
the rotation is formally achieved by seeking an m × m

rotation matrix R to construct the REOFs B according
to:

B = UmR, (19)

where R is either R or (RT )−1 depending on the type
of rotation as detailed below. The criterion for choosing
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the rotation matrix R is what constitutes the rotation
algorithm or the simplicity criterion, and is expressed by
the maximisation problem:

max f (UmR) (20)

over a specified subset or class of m × m square rotation
matrices R. The functional f () represents the rotation
criterion. Note that besides rotating the EOFs Um as in
(19), one could equally rotate the EOFs scaled by the
square root of the corresponding eigenvalues, i.e. using
Um�m, where �m = (λ1, . . . , λm) is the diagonal matrix
containing the leading singular values. Alternatively, one
can also rotate PCs instead. Various rotation criteria exist
in the literature (Richman, 1986; Harman, 1976; Reyment
and Jöreskog, 1996). Richman (1986), for example, lists
more than ten simplicity criteria. Broadly speaking there
are two large families of rotation: orthogonal and oblique
rotations.

a. Orthogonal rotation
In orthogonal rotation (Kaiser, 1958; Jennrich, 2001)

the rotation matrix R in (19) is chosen to be orthogonal,
and R = R. The problem is to solve (20) subject to the
condition:

RRT = RT R = Im (21)

where Im is the m × m identity matrix.
The most well-known and used rotation algorithm is

the VARIMAX criterion (Kaiser, 1958). Let us designate
by bij , i = 1, . . . p, and j = 1, . . . m, the elements of
the REOFs matrix B in (19), i.e. bij = [B]ij , then the
VARIMAX orthogonal rotation maximises a simplicity
criterion according to:

max


f (B) =

m∑
k=1


p

p∑
j=1

b4
jk −


 p∑

j=1

b2
jk




2




 (22)

where m is the number of EOFs chosen for rotation. The
quantity inside the square brackets in (22) is proportional
to the (spatial) variance of the square of the rotated vector
bk = (b1k, . . . , bpk)

T . Therefore VARIMAX attempts to
simplify the structure of the patterns by pushing the
loadings coefficients towards zero, or ±1. In some
cases, the loadings of the REOFs B are weighted by
the communalities of the different variables (Walsh and
Richman, 1981). The communalities h2

j , j = 1, . . . p, are
directly proportional to the sum of squares,

∑m
k=1 u2

jk ,
of the loadings for a particular variable. Hence if C =
Diag(UmUT

m)−1/2, then in the weighted or normalised
VARIMAX, the matrix B as used in (22) is simply
replaced by BC. This normalisation is generally used
to reduce the bias toward the first EOF with the largest
eigenvalue.

Another familiar orthogonal rotation method is based
on the QUARTIMAX criterion. It seeks to maximise the
variance of the patterns:

f (B) = 1

mp

m∑
k=1

p∑
j=1


b2

jk − 1

mp

m∑
k=1

p∑
j=1

b2
jk




2

. (23)

Because of the orthogonality property (21) required by
R, the REOFs matrix also satisfies BT B = Im when
the (unscaled) EOFs are rotated, and the sum of the
squared elements of B is constant. Therefore the QUAR-
TIMAX simply boils down to maximising the fourth
order moment of the loadings, hence the term QUAR-
TIMAX:

max


f (B) = 1

mp

m∑
k=1

p∑
j=1

b4
jk


 (24)

Eq (22) or (24) are then to be optimised subject to the
orthogonality constraint (21). VARIMAX is in general
preferred to the QUARTIMAX because it is slightly
less sensitive to changes in the number of variables
(Richman, 1986), although the difference in practice is
not significant.

b. Oblique rotation
Here the rotation matrix R is chosen to be non-

orthogonal (Harman, 1976; Kiers, 1994; Jennrich, 2002)
normalised to have unit-length columns, and where R =
(RT )−1. The oblique rotation matrix is obtained by
solving (20) subject to the previous constraints. Among
the familiar examples of oblique criteria one finds the
QUARTIMIN (Carroll, 1953; Harman, 1976), which
corresponds to the following criterion:

f (B) = 1

4

∑
r �=s

∑
k

b2
krb

2
ks . (25)

Illustration. We have applied both orthogonal and
oblique rotations to the (unscaled) EOFs and the EOFs
scaled by the corresponding singular values. We have
therefore four cases to be discussed: (i) orthogonal rota-
tion of EOFs, (ii) orthogonal rotation of scaled EOFs,
(iii) oblique rotation of EOFs, and (iv) oblique rotation of
scaled EOFs. Various rotation criteria have been applied,
but we focus our discussion on the results obtained from
three criteria, namely VARIMAX, QUARTIMAX, and
QUARTIMIN. The discussion also includes the effect of
changing the number m of EOFs to be rotated, (see also
Hannachi et al. 2006).

The first observation is that orthogonal rotation is
more efficient, computationally, than oblique rotation,
due to matrix inversion in the latter. Using various
rotation criteria and various values of the parameter m,
we have found that case (i) and (iii) give virtually the
same result. Figure 5 shows a scatter plot of rotated
loadings using VARIMAX versus QUARTIMIN for
m = 30. A similar feature has also been obtained with
other criteria (not shown). This seems to indicate that
orthogonal/oblique rotation of (unscaled) EOFs is a
robust feature. Unfortunately, this is not true. The rotated
patterns change as m changes. For example, when we
rotate 3 EOFs, the NAO and the North Pacific patterns
emerge as the most prominent patterns with associated
time series having leading variances. As m increases,
however, these features disappear progressively in favour
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REOFs using m = 30 EOFs. Scatter with negative slopes corresponds

to similar REOFs but with opposite sign.

of other structures with smaller scales. Figures 6 and 7
show examples of VARIMAX REOFs using respectively
m = 6 and m = 20. These patterns have been selected
visually so to be as close as possible to familiar large
scale modes of variability. Note that as m increases the
patterns become more and more localised. This non-
invariance of the leading rotated patterns to changes
in m can be explained by the fact that in the rotation
process, there is no preferential order or varying weights
attached to the EOFs. All the EOFs are equivalent, since
no variance is included, and the final solution is only
dictated by condition (20).

To overcome the previous difficulty, the alternative is
to weigh the EOFs by the square root of the associ-
ated eigenvalues. In this case the norm-squared of each
(scaled) EOF is precisely the variance of the correspond-
ing time series. This automatically yields case (ii) when
the rotation is orthogonal, which we discuss now. As
would be expected, this case produces leading REOFs
that are invariant to changes in m. This is because low
ranked EOFs contribute less to the leading REOFs. Note
also that because of orthogonality the order of rotated
patterns is provided by their squared norms, which play
the role of associated variances. These ‘variances’ are
not, however, additive because the associated time series
XB are not uncorrelated. There is no non-trivial rota-
tion that conserves spatial orthogonality and temporal
uncorrelatedness. Figure 8 shows the leading three VARI-
MAX REOFs using m = 20 identified respectively as
the NAO, the North Pacific pattern, and the Scandina-
vian pattern (Barnston and Livezey, 1987). The same
result is obtained for the leading QUARTIMAX REOFs.
This invariance property breaks down for low-ranked
rotated patterns. For example when m = 30, the lead-
ing 15 REOFs are similar between the two orthogonal
rotations used here.

For the last case (iv) we have found that the algorithm
runs into convergence problems due to bad conditioning
in the matrix inversion process. This does not happen
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in the orthogonal rotation since orthogonal matrices are
easily obtained using SVD.
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Simplified EOFs

Background. REOFs have been introduced mainly to
improve interpretation through obtaining simpler patterns
than EOFs. Building objective simplicity criteria, how-
ever, turns out to be a difficult problem. Jolliffe et al.
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Figure 8. The leading three VARIMAX REOFs obtained using the
leading m = 20 EOFs scaled by the square root of the corresponding

eigenvalues. Loadings have been multiplied by 100 as in Figure 2.

(2002) point out that concentrating the EOF coefficients
close to 0 or ±1 is not the only possible definition
of simplicity. For example a pattern with only ones is
simple though it could rarely by of much interest in
atmospheric science. Although REOFs attempt to achieve
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this using a simple and practical criterion they have a
number of difficulties which make the method quite con-
troversial (Richman, 1986, 1987; Jolliffe, 1987, 1995;
Mestas-Nuñez, 2000).

When we apply the rotation procedure we are usually
faced with the following questions:

• how to fix the number of EOFs or PCs to be rotated?
• what type of rotation, e.g. orthogonal or oblique,

should be used?
• which of the large number of simplicity criteria should

be used? and
• how to chose the normalisation constraint (Jolliffe,

1995)?

Although the results of the previous section shed
some light on which rotation criterion to choose, namely
orthogonal rotation of scaled EOFs, there is still the issue
of non-invariance of the low-ranked rotated patterns for
large m. A simplification technique that retains some
of the useful properties of EOFs has been proposed by
Jolliffe et al. (2003) as an alternative to rotation. This
technique is simplified EOFs and is described next.

LASSO-based simplified EOFs. Various simplification
techniques have been suggested to obtain simple struc-
tures (e.g. Chapter 11 of Jolliffe 2002). Most of these
techniques attempt to reduce the two stages of rotated
PCA into just one step. Here we discuss a particularly
interesting method of simplicity that is rooted in regres-
sion analysis. A common problem that arises in multiple
linear regression is the instability of regression coeffi-
cients because of colinearity or high dimensionality. Tib-
shirani (1996) has investigated this problem and proposed
a technique known as the LASSO. The LASSO approach
attempts to shrink some regression coefficients exactly
to zero, hence implicitly selecting variables. The same
idea was adapted in the PCA context by Jolliffe et al.
(2003) who labelled it ‘Simplified Component Technique-
LASSO’ (SCoTLASS). For brevity we refer to the SCoT-
LASS EOF method as simplified EOFs (SEOFs), but it
should be borne in mind that this is not the only form of
simplicity (see Jolliffe 2002). Jolliffe et al. (2003) applied
the method to a toy example, and Hannachi et al. (2006)
applied it to a moderately large climate dataset, the same
one as here.

The SEOF method attempts to use the main properties
of EOFs and REOFs simultaneously by successively
maximising variance and constraining the patterns to be
orthogonal and simple. Simplicity here means that the
loadings of each pattern have either small, i.e. close
to zero, or large, i.e. close to one, magnitude and
no intermediate values. The objective of SEOFs is to
seek directions uk = (uk1, uk2, . . . , ukp)T , k = 1, . . . , p

maximising:
F(uk) = uT

k Suk (26)

subject to
uT

k ul = δkl . (27)

In addition, to achieve simplicity the lasso technique
requires the following extra constraint to be satisfied
(Jolliffe et al., 2003):

||uk||1 =
d∑

j=1

|ukj | = uT
k sign(uk) ≤ τ (28)

for some tunable threshold parameter τ . In (28)
sign(uk) = (sign(uk1), . . . , sign(ukp))T is the sign of uk.
The following properties can be easily verified:

• No solution exists for the optimisation problem
(26–28) when τ < 1.

• any simplified uk satisfies ||uk|| ≤ √
p

• for τ ≥ √
p, uk , k = 1, . . . , p are simply the EOFs.

The last property indicates that EOFs are a particular case
of simplified EOFs.

The numerical solution to Eqs (26)–(28) is presented
in Trendafilov and Jolliffe (2005) who applied it to a
small problem, and Hannachi et al. (2006) who applied
it to the NH SLP as is done here. The approach of finding
the k’th SEOF uk is based on integrating the following
system of ordinary differential equations (ODEs):

d

dt
uk = (Id − ukuT

k )∇F (k)
µ (uk) (29)

forward in time for “sufficiently” long time interval using
suitably chosen initial conditions (e.g. Hir. and Smale
1974). In Eq (29) the function F (k)

µ is defined by:

Fµ(uk) = 1

2
uT

k Suk − µH(uT
k tanh(γ uk) − τ) (30)

with H(x) = 1
2x(1 + tanh γ x), µ and γ are fixed large

positive numbers, and the matrix Sk given by:

Sk =
(

Id −
k−1∑
l=0

uluT
l

)
S

(
Id −

k−1∑
l=0

uluT
l

)
. (31)

Hence the k’th SEOF uk is the limit, when t → ∞, of
the solution to eq (29), i.e. the stationary solution to the
same equation. In the application section below we follow
Hannachi et al. (2006) to which the reader is referred for
more details and further references.

Application. We have computed the SEOFs of the DJF
monthly NH SLP field for various values of the thresh-
old parameter τ from 8 to 30. For a given value of the
threshold parameter τ the SEOFs are obtained by inte-
grating eq (29) forward in time using MATLAB function
ODES15, which can solve stiff ODEs. The constants γ

and µ are fixed as in Trendafilov and Jolliffe (2005) and
Hannachi et al. (2006) to 1000 and 800 respectively. The
solution is found to be virtually invariant to changes in
those parameters. In fact, these parameters are not part
of the problem, and their role is pretty universal, (see
Hannachi et al. 2006 for computational details). We also
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threshold parameter τ = 8. Regions of zero loadings are shaded. The

patterns have been multiplied by 100 as in Figure 2.

follow Hannachi et al. (2006) by computing the few lead-
ing SEOFs, using only a coarse grid of 5° × 5°, and by
using the same example.

Figure 9 shows the leading SEOF1 (9a) and SEOF2
(9b) for τ = 8. Regions where the loadings are zero are
shaded. Figure 9(a) clearly shows the NAO pattern with
its distinctive dipolar structure (Hurrell, 1996; Thompson
et al., 2000; Hurrell et al., 2003) whereas Figure 9(b)
shows the North Pacific pattern, a monopolar structure
centered over the North mid-Pacific. As τ increases
the shaded regions in Figure 9 shrink and the patterns
become more and more non-local. Figure 10 shows the
leading two SEOFs for τ = 18, where one can still see
the NAO and North Pacific patterns but with structure

(a) SEOF1 (τ=18)

(b) SEOF2 (τ=18)

Figure 10. As in Figure 9 but for τ = 18.

enlargement compared to Figure 9. When τ reaches 26
the leading SEOFs (not shown) start to converge to
the corresponding EOFs patterns. Hannachi et al. (2006)
find that for τ ≤ 1

2
√

p, the variances of the time series
corresponding to the leading two SEOFs are not too
different. This may explain why the simple patterns found
by SEOFs method appear combined in a single pattern
when using EOF analysis (Figure 2(a)).

The third SEOF pattern is found to represent the
Scandinavian pattern for τ smaller than approximately
1
2
√

p. Figure 11 shows SEOF3 for τ = 12 and τ = 16.
For the latter value of the threshold parameter the pattern
becomes nearly hemispheric with the emergence of a
third centre over the North Atlantic basin, and is close
to EOF3 (not shown). Note in particular the resemblance
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SEOF 3 (τ = 16)

SEOF 3 (τ = 12)

Figure 11. SEOF3 for τ = 12 (top) and τ = 16 (bottom). The patterns
have been multiplied by 100 as in Figure 9.

between SEOF3 corresponding to τ = 12 (Figure 11) and
REOF3 shown in Figure 6(c). As τ decreases further,
the patterns seem to keep their structure except that
they become smaller in spatial extent, and of course
lose variance. The loss in variance, however, is justified
by the increase in simplicity. Figure 12 shows the ratio
between the variances of the times series corresponding
to SEOF1 and EOF1 respectively versus the parameter
τ . Figure 12 indicates that convergence to EOFs starts
around τ = 2

3
√

p.
SEOF patterns seem to produce invariant features

vis-a-vis changes in the threshold parameter for τ <
1
2
√

p. Hannachi et al. (2006) propose τ = 1
3
√

p to be
a reasonably good choice, regarding balance between
variance maximisation and locality or simplicity. The
method, however, is more expensive, computationally,
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Figure 12. Variance ratio of SPC1 to that of PC1 versus the simplicity
parameter τ .

compared to EOFs or REOFs when the number of EOFs
selected for rotation is not very large.

Other forms of simplification

Various other methods of simplifications have been
proposed in the PCA literature. Most of these methods
impose extra constraints on the variables in a similar
manner to the SEOF method. In a number of those
techniques the loadings are restricted to be integers taking
the values 0, and ±1 (Hausmann, 1982.) Vines (2000)
also uses a similar procedure that she labels simple
components. The method starts from the natural basis of
the variables-space and proceeds by orthogonally rotating
them pairwise such that the variance of the pair is
increased and simplicity preserved. The latter is achieved
by choosing angles that yield vectors whose components
are proportional to integers. See Sun (2005) for a detailed
analysis of simple component analysis with an account of
the various algorithms used. The SEOF method presented
above is rather an extension of these discrete values
methods in that the coefficients can vary smoothly and
not be restricted to integers. Green (1977), Bibby (1980),
and Jackson (1991) present another way of simplification
based on considering the usual PCs, then proceed to their
‘simplification’ by rounding them to the first digit (Green,
1977; Bibby, 1980) and also to the closest integer (Bibby,
1980; Jackson, 1991).

A different alternative to rotation and simplification
was presented by Van den Dool et al. (2000), which
they label empirical orthogonal teleconnection (EOT).
The method proceeds as follows. The grid point sj is first
obtained that maximises

∑p

k=1 corr2(sj , sk)var(sk). The
first EOT is then obtained as the regression coefficient
between the grid sj and all other grid points. The next
EOT is obtained in a similar way, using the residuals from
the separate regression used for EOT1, and are orthogonal
to the previous EOT. The EOT method is not as simple
as the other methods of simplification, but Van den Dool
et al. (2000) argue that it helps the physical interpretation
of the patterns. Jolliffe (2002) points out that the first
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EOT is a compromise between the first principal variables
obtained using the covariance and correlation matrices.

Although simplification methods have been presented
as a way to overcome the drawbacks of EOFs to yield per-
haps physically relevant patterns, such as teleconnections,
the problem remains, however, whether teleconnections
exist and if they do, how they can be identified (Jolliffe,
2002; Dommenget and Latif, 2002)? Rotation and other
simplification procedures remain after all simple mathe-
matical tools that may or may not speak the language of
nature. Section 6 discusses possible alternatives to evalu-
ate EOFs and to identify possible teleconnection patterns
from observed climate data.

EXTENDED EOFS

Background

The previous sections have dealt with patterns that max-
imise variance using spatial correlation structures pro-
vided by the covariance matrix. The matrix uses only
simultaneous information (in time) between different grid
points, but forgets about any lagged information. Since
lagged correlations constitute an important characteristic
feature of climate data, it is important to incorporate this
information into the analysis. An important method using
such information is based on extended empirical orthog-
onal function (EEOF). EEOFs constitute an extension
of the traditional EOF technique to deal not only with
spatial- but also with temporal correlations observed in
weather/climate data. The method was first introduced by
Weare and Nasstrom (1982) who applied it to the 300-mb
relative vorticity to identify propagating structures.

A similar approach was developed later to deal with
dynamical reconstruction of low order chaotic systems
by Broomhead and King (1986a,b) who called it singular
system analysis (SSA). At the same time Fraedrich (1986)
also used the same approach to compute dimensions
of chaotic attractors from climate data. SSA was also
used to find oscillations from climate records (Vautard
et al., 1992). It was extended to deal with multivariate, or
multichannel, (MSSA) time series (Broomhead and King,
1986a,b) in a way similar to EEOF analysis. MSSA (or
EEOF) was applied later by Kimoto et al. (1991) and
Plaut and Vautard (1994) to find propagating structures
from 500-mb heights reanalyses.

The use of the lagged information from time series,
e.g. lagged auto-covariance matrix, to find propagating or
periodic signals, goes back to the middle of the century
with Whittle (1951) and a few others. The method has
been applied to observed time series first by Basilevsky
and Hum (1979) to find an embedded periodic signal
in the data. In the one-dimensional case the procedure
is as follows. Given a single-channel time series wt ,
t = 1, 2, . . . n, the method consists first in constructing an
M-dimensional time series wt , t = 1, 2, . . . n − M + 1,
using the delay coordinate as

wt = (wt , wt+1, . . . , wt+M−1)
T . (32)

The parameter M in Eq (32) is known as window length
or delay parameter. This parameter is also known as
embedding dimension, a concept that is rooted in the
theory of dynamical systems ( e.g. Takens 1981), and has
to be chosen beforehand. The lagged covariance matrix
C of this newly formed multi-channel time series is given
by:

C = 1

n − m + 1

n−M+1∑
t=1

wtwT
t . (33)

Periodic signals are then identified through the existence
of pairs of degenerate eigenvalues of C, that are separated
from the rest of the spectrum. When the single-channel
time series is stationary the auto-covariance matrix C in
Eq (33) has a Toeplitz structure, that is constant over the
diagonals, and is known to have useful properties (see e.g.
Graybill 1969). The sample estimate, however, will not
have an exactly Toeplitz structure unless it is imposed.
The method can also be applied to nonstationary time
series, (see e.g. Elsner and Tsonis 1996, and Golyandina
et al. 2001) for further details. The multivariate extension
of this method yields the EEOFs or MSSA, and is
detailed next. The next two sections provide a technical
background of EEOFs. In section 4.4 we have chosen
to apply the method to identify the Madden-Julian
oscillation (MJO). This is because the MJO is well
studied and well documented in the literature since it
was first identified by Madden and Julian (1972) using
spectral techniques.

Definition and computation of EEOFs

In EEOF analysis the atmospheric state vector at time
t, i.e. xt = (xt1, . . . xtp), t = 1, . . . , n, used in traditional
EOF, is extended to include temporal information as

xt = (xt1, . . . xt+M−1,1, xt2, . . . xt+M−1,2, . . .

xt,p, . . . xt+M−1,p) (34)

with t = 1, . . . , n − M + 1. The new data matrix now
takes the form

X =




x1

x2
...

xn−M+1


 (35)

It is now clear from (34) that time is incorporated in the
state vector side by side with the spatial dimension. If we
denote by

x s
t = (xts , xt+1,s . . . xt+M−1,s ) (36)

then the extended state vector (34) is written in a similar
form to the conventional state vector, i.e.

xt = (x1
t , x2

t , . . . , xp
t ) (37)
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except that now the elements x k
t , k = 1, . . . p, of this

grand state vector (Equation 37) are themselves temporal-
lagged values. The data matrix X in (36) now takes the
form

X =

 x1

1 x2
1 . . . xp

1
...

...
...

x1
n−M+1 x2

n−M+1 . . . xp

n−M+1


 (38)

which is again similar to the traditional data matrix X in
(2) except that now its elements are (temporal) vectors.

The vector x s
t in (36) is normally referred to as the

delayed vector obtained from the time series (xs
t ), t =

1, . . . n of the field value at grid point s. The new data
matrix (38) is now of order (n − M + 1) × pM which is
significantly larger than the original matrix dimension.

We suppose that X in (38) has been centered and
weighted. The covariance matrix of (37) is:

� = 1

n − M + 1
XT X =




C11 C12 . . . C1p

C21 C22 . . . C2p

...
...

...

Cp1 Cp2 . . . Cpp



(39)

where each Cij , 1 ≤ i, j ≤ p is a lagged covariance
matrix between gridpoint i and gridpoint j , given by:

Cij = 1

n − M + 1

n−M+1∑
t=1

x iT

t x j
t . (40)

Other alternatives to compute Cij also exist and they
are related to the way the lagged covariance between
two time series is computed (see e.g. Priestley 1981 and
Jenkins and Watts 1968). If the multivariate time series
is stationary, then the population version of each block
matrix of (39) is symmetric Toeplitz. The sample version
Cij from (39) is nearly symmetric Toeplitz for large
sample size. The symmetric grand covariance matrix �

is not in general Toeplitz because the different blocs
represent covariances between different pairs of grid
points. An alternative form of the data matrix is provided
by writing the state vector (34) in the form

xt = (xt1, . . . xt,p, xt+1,1, . . . xt+1,p, . . .

xt+M−1,1, . . . xt+M−1,p) (41)

that is
xt = (xt , xt+1, . . . , xt+M−1) (42)

where xt = (xt1, . . . , xtp) is the state vector at time t , t =
1, . . . n − M + 1. Hence the matrix (38) now takes the
following alternative form, used by Weare and Nasstrom
(1982):

X1 =

 x1 x2 . . . xM

...
...

...

xn−M+1 xn−M+2 . . . xn


 (43)

This form is exactly equivalent to (38) since it is obtained
from (38) by a permutation of the columns as

X1 = XP (44)

where P = (pij ), i, j = 1, . . .Mp, is a permutation
matrix (which is orthogonal, i.e. PP T = P T P = I , and
contains exactly 1 in every line and every column and
zeros elsewhere) given by

pij = δi,α (45)

where α is a function of j given by α = rM +
[
j
p

]
+ 1

where j − 1 ≡ r(p), and [x] is the integer part of x.
The covariance matrix (39) represents a conventional

version based on the grand data matrix (38). This is the
trajectory matrix method (Broomhead and King, 1986a,b;
Ghil et al., 2002). One could also compute an alternative
grand block ‘covariance’ matrix T = (Tij ) whose blocks
Tij , i, j, = 1, . . . p represent lagged covariances between
grid points i and j . This version is used by Plaut
and Vautard (1994) who considered the longest possible
segment of each channel (grid point) to compute the
elements of each block Tij . The use of this (Toeplitz)
version to compute EEOFs can result in a big matrix,
which can be computationally expensive to diagonalise.
The conventional (trajectory) version, however, can use
SVD efficiently particularly when the sample size n is
much smaller than the original number of variables p.

EEOFs are the EOFs of the extended data matrix (35)
or (38), i.e. the eigenvectors of the grand covariance
matrix � given in (39). They can be obtained directly by
computing the eigenvalues/eigenvectors of (39). Alterna-
tively, one can use SVD of the grand data matrix X in
(38) in a similar way to (14). Note that now we have
d = MP new variables, i.e. the number of columns of
the grand data matrix. The SVD of (38) yields:

X = V 	UT (46)

where the d × d matrix U = (uij ) = (u1, u2, . . . , ud)

represents the matrix of the Mp extended EOFs or right
singular vectors of X. The diagonal matrix 	 contains the
singular values θ1, . . . θd of X, and V = (v1, v2, . . . , vd)

is the matrix of the left singular vectors or extended PC’s
where the k’th extended PC is vk = (vk(1), . . . , vk(n −
M + 1))T . These extended EOFs and PCs can be used
to filter the data by removing the contribution from
nonsignificant components and also for reconstruction
purposes as detailed below

Data filtering and oscillation reconstruction

The extended EOFs U can be used as a filter exactly like
EOFs. For instance the SVD decomposition (46) yields
the expansion of each row xt of X in (38)

xT
t =

d∑
k=1

θkvk(t)uk (47)
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for t = 1, . . . n − M + 1, or in terms of the original
variables xt , see Eq (42), as

xT
t+j−1 =

d∑
k=1

θkvk(t)u
j

k (48)

for j = 1, . . .M , and where

uj

k = (uj,k, uj+M,k, . . . , u(p−1)M,k)
T . (49)

Note that the expression of the vector uj

k depends on the
form of the data matrix. The one given above corresponds
to (38), whereas when the data matrix X1 is used in (46)
one gets

uj

k = (u(j−1)p+1,k, u(j−1)p+2,k, . . . , ujp,k)
T (50)

Note also that when we filter out higher EEOFs, expres-
sion (48) is to be truncated to the required order d1 < d .

The expansion (48) is exact by construction. However,
very often one wants to truncate it by keeping a much
smaller number of EEOFs for filtering purposes. This
happens for instance when one reconstructs the field
components from a single EEOF, or a pair of EEOFs
corresponding for example to an oscillation. When this
happens, the obtained expansion does not give a complete
picture. This is because when (48) is truncated to a
smaller subset K of EEOFs giving:

yT
t+j−1 =

∑
k in K

θkvk(t)u
j

k , (51)

where yt = (yt,1, . . . , yt,p) is the filtered or reconstructed
state space vector, then one obtains a multivalue function.
For example, for t = 1 and j = 2, one gets one value
of yt,1 and for t = 2 and j = 1 one gets another value
of yt,1. This also occurs with single channel SSA. This
occurs because EEOFs have time lagged components. To
get a single reconstructed value we can simply take the
average of those multiple values, but one could equally
construct a ‘better’ weighted average. The number of
multiple values depends on the value of time t = 1, . . . n

(these numbers can be obtained by constructing an M × n

array A = (ajt ) with entries ajt = t − j + 1, then all
entries that are nonpositive or greater than n − M + 1
are to be equated to zero, and finally for each time t take
all the indices j with positive entries). The reconstructed
variables using a subset K of EEOFs are then easily
obtained from (51) by

yT
t =




1
t

∑t
j=1

∑
K θkvk(t − j + 1)uj

k

for 1 ≤ t ≤ M − 1
1
M

∑M
j=1

∑
K θkvk(t − j + 1)uj

k

for M ≤ t ≤ n − M + 1
1

n − t + 1
∑M

j=t−n+M

∑
K θkvk(t − j + 1)uj

k

for n − M + 2 ≤ t ≤ n
(52)

Note that these reconstructions can also be obtained in
a least square sense (see, e.g. Vautard et al., 1992, and

Ghil et al., 2002). The reconstructed components can also
be restricted to any subset of the eigen elements of the
grand data matrix (38). For example to reconstruct the
time series associated with oscillatory eigen elements,
i.e. a pair of degenerate eigenvalues, the subset K in the
sum (51) is limited to that pair.

The reconstructed multivariate time series yt , t =
1, . . . n, can represent the reconstructed (or filtered)
values of the original field at the original p grid points. In
general, however, the number of grid points is too large
to warrant an eigen-decomposition of the grand data, or
covariance, matrix. In this case a dimension reduction
of the data is first applied by using say the leading p0

PCs and then applying a MSSA to these retained PCs.
In this case the dimension of X becomes (n − M + 1) ×
Mp0, which may be made considerably smaller than the
original dimension. To get the reconstructed space-time
field one can then use the reconstructed PCs (RPCs) in
conjunction with the p0 leading EOFs.

EEOFs can be efficient in detecting propagating struc-
tures. However, there are cases where the interpretation
of individual EEOFs can be difficult and should be done
with care (Chen and Harr, 1993). This happens partic-
ularly when the data contain a strong standing wave.
Monahan et al. (1999) show that if the lag chosen in
EEOF analysis is too close to the first zero of the sample
autocorrelation function of the standing wave time series,
then the wave signal obtained from EEOF can be sub-
stantially degraded and the interpretation can be difficult
and misleading.

Application to outgoing long wave radiation

The EEOF method is applied here to identify the MJO.
The MJO, an eastward propagating planetary-scale wave
of tropical convective anomalies, is a well-established
dominant mode of intra-seasonal tropical variability, and
hence constitutes a convenient test-bed. The oscillation
has a quite broad band with a period between about 40
and 60 days (Knutson and Weickmann, 1987; Hendon
and Salby, 1994; Madden and Julian, 1994). It has been
identified from various fields such as zonal and divergent
wind, SLP, and OLR in the tropics (Madden and Julian,
1972; Kiladis and Weickmann, 1992), and here we
choose to use OLR. For details on the mechanisms
involved in MJO the reader is referred, for example,
to Hendon and Salby (1994), Matthews (2000), and
Krishnamurthi et al. (2003). The OLR data used here
come from NCEP/NCAR reanalyses over the tropical
region from 30 °S to 30 °N. This analysis focuses on a
5-year period of daily data from 1 January, 1996 to 31
December, 2000. Figure 13 shows the OLR field on 25
December 1996. Note the low-value regions particularly
over the warm pool, an area of large and intensive
convection, and to a lesser extent over the Amazonian
and tropical African regions. The OLR data are not very
homogeneous, and have a quite complicated variability
as well as seasonality. To illustrate this complication,
Figure 14 shows the OLR time series at four different
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Figure 13. OLR distribution (w/m2) over the tropics on the 25-Dec-1996.
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Figure 14. Time series of OLR (wm−2) at four different locations.

locations. A clear indication of nonstationarity of the
times series is obvious. Note for example the high values
at the equator and 122.5 °E in northern winter 1997/98.
This period corresponds to a strong El-Niño event where
the convection shifts eastward to the mid-Pacific allowing
more long wave radiation to be lost to space over the
maritime continent. A decrease of OLR accompanied by
a strong variability can also be seen during the same
period at 20 °W on the Equator (Figure 14). This is due
to the lower surface pressure over the Tropical Atlantic
ocean during El-Niño, compared to normal conditions,
see e.g. Webster and Chang (1988) or Holton (1992,
Figure 11.10.) Note also the strong seasonal component
at 30 °N, with a particular stronger variability in the

winter time compared to other seasons. Before applying
EEOF analysis, the data were first subjected to an EOF
analysis to reduce the dimension of the data. The leading
10 EOFs/PCs of the anomaly field with respect to the
long term average (climatology) were retained for the
analysis. Figure 15 shows the leading EOF mode. This
pattern explains about 15% of the total variability and
is associated with the seasonal cycle. Figure 15 clearly
indicates that the seasonal cycle is mostly explained by
the Inter Tropical Convergence Zone (ITCZ) and some
monsoonal activities.

The first 10 EOFs/PCs used for the EEOF/MSSA anal-
ysis together explain about 32% of the total variability.
A window length corresponding to M = 80 days is used
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Figure 15. The leading EOF of OLR anomalies. Units are arbitrary.
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Figure 16. Spectrum of the grand covariance matrix (39). Approximate
standard errors are derived from (18) using an effective sample size of

116.

to construct the grand data matrix (38). This choice was
motivated by the desire to capture the MJO identified first
by Madden and Julian (1971). This choice also avoids the
problem of interpretation in the presence of a standing
wave (Monahan et al., 1999). The extended (grand) data
matrix is then factorised using SVD. Figure 16 shows
the spectrum of the grand covariance matrix � (39). The
standard errors are obtained using (18) with a heuristic
effective sample size of 116, corresponding to a decorre-
lation lag of 15 days.

The first two eigenvalues of the spectrum (Figure 16)
correspond to the oscillation of the seasonal cycle. They
do not look nearly equal and well separated from the rest
of the spectrum, however, and this is due to the choice
of the window length, which is much smaller than the

length of the seasonal cycle. Despite this, the first two
extended PCs (EPCs) show a pair of sine waves perfectly
in quadrature, and represent the seasonal cycle. Figure 17
shows in fact the raw PC1 along with the reconstructed
or smoothed PC1. The reconstruction is based on (52)
using the leading 5 EPCs.

Beside the annual cycle, the (degenerate) fourth and
fifth eigenvalues constitute also another oscillatory pair
corresponding to the semi-annual cycle. This degeneracy
can be seen by using the rule of thumb (18) but without
serial correlation. The left panel of Figure 18 shows
a time plot of EPC4 and EPC5 whereas the phase
diagram of EPC4 versus EPC5 is shown in the right
panel of Figure 18. The figure clearly shows the semi-
annual oscillation (SAO) in OLR. The phase diagram
(right panel) also shows the SAO with slight irregularities
due to interannual variability. The next oscillatory pair
corresponds to the 8th and 9th eigenvalues (Figure 16).
This pair of (nearly) equal eigenvalues corresponds to
the familiar MJO, and corresponds to a period of about
50 days.

Figure 19 shows extended EOF 8 along 10 °N as a
function of time lag. This sort of diagram where the space
and time axes are shown is known as Hövmoller diagram.
Figure 19 shows clearly the eastward moving oscillation
with an average phase speed around 7°/day, making
the wave travel from west to east in roughly 50 days,
i.e. approximately 9 m s−1 as observed in Knutson and
Weickmann (1987). This is also comparable to the speed
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Figure 17. Time series of raw and reconstructed PC1.
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Figure 19. Extended EOF 8 along 10 °N as a function of time lag. Units arbitrary.

of the Kelevin wave, obtained as a radiating response
and propagating away from the convective anomaly, by
Hendon and Salby (1994). Figure 20 shows the time plot
of the extended PCs 8 and 9 along with the phase diagram
of EPC 8 versus EPC 9. The EPCs are oscillating in
quadrature, with a period of about 50 days and with
varying intensity. The power spectrum of EPC8 (not
shown) peaks around 50 days with a slight broad band
structure.

The MJO can be found in the reconstructed PCs
using the extended EOFs/PCs. Figure 21, for example,
shows a time plot of the reconstructed PC2 using the

8th EEOF/EPC. The figure shows clearly the oscillation
with varying amplitude. Note in particular the strong
oscillation during winter 1997 versus the weak oscillation
from winter to early autumn 1998. The same behaviour is
also observed in the phase diagram in the RPC 6 versus
RPC 7 (Figure 22).

Since EOF analysis does not focus on a particular
frequency band, one would expect MJO to project
onto more than one PC. In fact, MJO is found to
project onto various PCs but with differing energies
(amplitudes). For instance SSA analysis of single PCs
reveals that MJO is mostly present in higher PCs, e.g.
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Figure 20. Extended PCs 8 and 9 (left panel) and phase diagram of EPC8 versus EPC9 (right panel).
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PC 7.

PCs 6 and 7. This observation is also revealed from
analysing the reconstructed PC’s using the extended
EOFs/PCs 8 and 9 associated with the oscillation. This
is well illustrated in Figure 23, which shows the first
8 reconstructed PCs. Reconstructed PCs 5–8 are the
most energetic components representing MJO. Note in
particular the weak projection of MJO onto the first PC,
which represents only the seasonal cycle.

The reconstructed or filtered PCs allow a reconstruc-
tion of the original space-time OLR field. Figure 24
shows a Hövmoller diagram of the reconstructed OLR
field from 3 March, 1997 to 14 May, 1997, at 5 °N using
the MJO-related extended EOFs/PCs 8 and 9. The recon-
structed PCs 1–8 (Figure 23) are used in conjunction
with the EOFs as in (17), but with the sum truncated to
the leading 8 EOFs, to get the MJO reconstructed field. It
is very important to note here that a similar diagram, but
using the raw data, does not reveal any feature, and the
picture (not shown) looks noisy and featureless. It is clear
from Figure 24 that MJO is triggered around 25–30 °E
over the African jet region. It reaches its mature stage
over the Indian ocean in the Bay of Bengal and starts
to decay thereafter. The MJO becomes particularly damp
near 150 °E over the convective region in the warm pool.
Figure 24 shows also the dispersive nature of the MJO
with a stronger phase speed during the growth phase com-
pared to that observed during the decay phase.

COMPLEX/HILBERT EOFS

Background

Conventional EOF analysis can be applied to a single
space-time field or a combination of fields. EOF analysis
finds “stationary” patterns in the sense that they are not
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Figure 24. Reconstructed OLR field using reconstructed EOFs/PCs 1 to 8 shown in Figure 23.

evolving. It yields a varying time series for any obtained
EOF pattern, which means that the spatial EOF pattern
will only decrease or increase in magnitude whereas the
spatial structure remains the same. Because EOFs are
based on (simultaneous) covariances, the way time is
arranged is irrelevant. In fact, if xt and yt , t = 1, . . . n,
are two univariate time series then any permutation of xt

and yt will yield the same covariance, i.e.

ρxy = cov(xt , yt ) = cov(xπ(t), yπ(t)) (53)

where π is any permutation of the set of time indices
{1, 2, . . . n}.

This automatically means that any propagating struc-
ture in the field will not be captured by EOFs. We have

Copyright  2007 Royal Meteorological Society Int. J. Climatol. 27: 1119–1152 (2007)
DOI: 10.1002/joc



1140 A. HANNACHI, I. T. JOLLIFFE AND D. B. STEPHENSON

seen in the previous section that EEOFs can extract such
information in the time domain by analysing a relatively
large data matrix. In addition, one has to fix a priori
the lag-window. There are also other ways, such as POP
analysis (e.g. von Storch and Zwiers 1999), that can find
these structures. Here we review another method simi-
lar to EOF analysis but based on the complexified field.
The method does not explicitly involve the lagged infor-
mation, hence avoiding the use of a similar grand data
matrix to that of EEOFs, and also avoiding the problem
of choosing the lag-window.

It is known that any wave can be expressed using
complex representation as:

x(t) = aeiωt+φ (54)

where a is the wave amplitude and ω and φ are respec-
tively its frequency and phase shift (at the origin). Com-
plex empirical orthogonal functions (CEOFs) are based
on this representation. There are, in principle, two ways
to perform complex EOFs, namely ‘conventional’ com-
plex EOFs and ‘Hilbert’ EOFs. When we deal with a pair
of associated climate fields then conventional complex
EOFs are obtained. HEOFs correspond to the case when
we deal with a single variable, i.e. single field, and where
we are interested in finding propagating patterns. In this
case the field has to be complexified by introducing an
imaginary part, which is a transform of the actual field.

Conventional complex EOFs

Pairs of scalar fields. The method is similar to conven-
tional EOFs except that it is applied to the complex
field obtained from a pair of associated variables such
as the zonal and meridional components u and v of the
wind field U = (u, v) (Kundu and Allen, 1976; Hardy and
Walton, 1978; Salstein et al., 1983; Brink and Muench,
1986; von Storch and Zwiers, 1999; Preisendorfer, 1988).
The wind field Ut l = U(t, sl), defined at each location sl ,
l = 1, . . . p, and time t , t = 1, . . . n, can be written using
a compact complex form as:

Ut l = u(t, sl) + iv(t, sl) = utl + ivtl . (55)

The complex covariance matrix is obtained using the data
matrix U = (Ut l), and is given by:

S = 1

n − 1
U∗T U, (56)

The elements skl , k, l = 1, . . . p, of S in (56) are given
by:

skl = 1

n

n∑
t=1

U∗
tkUt l (57)

where (∗) is the complex conjugate operator. The
(complex) covariance matrix (56) is Hermitian, i.e.
S∗T = S, and is therefore diagonalisable. The matrix
has therefore a set of orthonormal complex eigenvectors
U = (u1, . . . up), and a real non-negative eigenspectrum

λ2
1, . . . λ

2
p . The complex amplitude of the kth EOF is the

kth complex principal component (CPC) ek, and is given
by:

ek = Uu∗
k (58)

This immediately yields the non-correlation between the
CPCs:

e∗T
k el = λ2

kδkl . (59)

Complex EOFs and associated complex PCs can also be
obtained using the SVD of U. Any CEOF uk has a pattern
amplitude and phase. The phase and amplitude at each
grid are obtained using the real and imaginary parts of
the loadings.

This method of doing CEOFs seems to have been orig-
inally applied by Kundu and Allen (1976) to the velocity
field of the Oregon coastal current. The conventional
CEOFs are similar to conventional EOFs in the sense
that time ordering is irrelevant, and hence the method
is mostly useful to capture covarying spatial patterns
between the two fields.

Single field. If one is dealing with a single field
xt = (xt1, . . . , xtp)T , t = 1, 2 . . . n, such as sea surface
temperature, and one is interested in propagating patterns
one can still use the conventional complex EOFs applied
to the complexified field obtained from a pair of lagged
variables (xt , xt+τ ) for some chosen lag τ . The complex
field is defined by:

yt = xt + ixt+τ . (60)

This is a natural way to define a homogeneous complex-
ified field using lagged information. The corresponding
complex data matrix defined from (60) is then given at at
each grid point sl and each time t by Ytl = (xtl + ixt+τ,l).
The obtained complex data matrix Y = (Ytl) can then be
submitted to the same complex EOF analysis as in the
previous section.

The obtained CEOFs provide the propagating struc-
tures and the corresponding CPCs provide the phase
information. This procedure is based on the choice of
the lag time τ , which reflects the characteristic time of
the propagating feature. In general, however, this parame-
ter is not precisely known, and requires some experience.
The choice of this parameter remains, in practice, subject
to some arbitrariness. To avoid this difficulty in choosing
the lag in the time domain, the Hilbert transform pro-
vides an alternative, based on phase shift in the frequency
domain. This is presented next.

Complex Hilbert EOFs

Frequency domain EOFs. It appears that the earliest
introduction of complex EOFs in an atmospheric context
dates back to the early seventies with Wallace and
Dickinson on frequency domain EOFs (FDEOFs). Their
work stimulated the introduction later of HEOFs, and we
start by reviewing FDEOFs first. The spectrum gives a
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measure of the contribution to the variance across the
whole frequency range. EOF analysis in the frequency
domain (Wallace and Dickinson, 1972; Wallace, 1972;
Johnson and McPhaden, 1993; see also Brillinger 1981
for details) attempts to analyse propagating disturbances
by concentrating on a specific frequency-band allowing
thus the decomposition of variance in this band while
retaining phase relationships between locations.

FDEOFs are based on performing an eigenanalysis of
the cross-spectrum matrix calculated in a small frequency
band. Let u(ω) be the Fourier transform (FT) of the
(centered) field xt , t = 1, . . . n at frequency ω, i.e.

u(ω) = 1√
n

n∑
t=1

xte
−iωt (61)

The cross-spectral matrix at ω is �xx(ω) = u(ω)u(ω)T ,
and can be written in terms of the lagged covariance
matrix

Sxx(τ ) = 1

n

n−τ∑
t=1

xtxT
t+τ (62)

as:

�xx(ω) =
∑

τ

Sxx(τ )e−iωτ = �R
xx(ω) + �I

xx(ω). (63)

The real part of the cross-spectrum, �R
xx(ω), is the

co-spectrum, and the imaginary part, �I
xx(ω), is the

quadrature spectrum. Note that the covariance matrix of
the field satisfies

S =
∫ ωN

−ωN

�xx(ω)dω = 2
∫ ωN

0
�R

xx(ω)dω, (64)

where ωN = 1
2�t

is the Nyquist frequency and �t is
the time interval between observations. Therefore the
spectrum gives a measure of the contribution to the
variance across the whole frequency range. The average
of the cross-spectral matrix over the frequency band
[ω0, ω1] is given by

C =
∫ ω1

ω0

�xx(ω)dω (65)

and provides a measure of the contribution to the
covariance matrix in that frequency band.

Now since waves are coherent structures with consis-
tent phase relationship at various lags, and given that
FDEOFs represent patterns that are uniform across a
frequency band, the leading FDEOF provides coherent
structures with most wave variance. The FDEOFs are
then obtained as the EOFs of C, (see Brillinger 1981) for
more details. Johnson and McPhaden (1993) have applied
FDEOFs to study the spatial structure of intraseasonal
Kelvin wave structure in the Equatorial Pacific ocean.
They identified coherent wave structures with periods of
59–125 days. Because most spectra of climate data look

reddish, FDEOF analysis may be cumbersome in prac-
tice (Horel, 1984). This is particularly the case if the
power spectrum of an EOF is spread, for example, over
a wide frequency band, requiring an averaging of the
cross-spectrum over this wide frequency range, where the
theory behind FDEOFs is no longer applicable (Wallace
and Dickinson, 1972). This difficulty has resulted in the
method being abandoned in climate research in favour of
HEOFs described next.

Complex Hilbert EOFs. An elegant alternative to
FDEOFs is the complex EOFs in the time domain
introduced into atmospheric science by Rasmusson et al.
(1981) using Hilbert singular decomposition. The method
was refined later by Barnett (1983) and applied to
the monsoon (Barnett, 1984a,b), atmospheric angular
momentum (Anderson and Rosen, 1983), the QBO in
northern hemispheric SLP (Trenberth and Shin, 1984),
and coastal ocean currents (Merrifield and Winant, 1989).
The method is based on the Hilbert transform and is
therefore referred to as HEOF analysis.

Let xt = (xt1, . . . , xtp)T , t = 1, . . . n, be a scalar field,
with Fourier representation:

xt =
∑
ω

a(ω) cos ωt + b(ω) sin ωt (66)

where a(ω) and b(ω) are vector Fourier coefficients.
Since propagating disturbances require complex repre-
sentation as in (54), Eq (66) can be transformed to yield
the general (complex) Fourier decomposition:

yt =
∑
ω

c(ω) e−iωt (67)

where precisely Re(yt ) = xt , and c(ω) = a(ω) + ib(ω).
The new complex field yt = (yt1, . . . ytp)T can therefore
be written as:

yt = xt + iH(xt ). (68)

The imaginary part of yt is given by:

H(xt ) =
∑
ω

b(ω) cos ωt − a(ω) sin ωt, (69)

and is precisely the Hilbert transform, or quadrature
function of the scalar field xt and is seen to represent
a simple phase shift by π

2 in time. In fact, it can be seen
that the Hilbert transform, considered as a filter, removes
the zero frequency without affecting the modulus of all
the others, and is as such a unit gain filter. Note that
if the time series (66) contains only one frequency then
the Hilbert transform is simply proportional to the time
derivative of the time series. Therefore, locally in the
frequency domain H(xt ) provides information about the
rate of change of xt with respect to time t . In formal
terms the Hilbert transform of a continuous time series
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x(t) (Thomas, 1969; Brillinger, 1981) is defined by the
convolution

H(x(t)) = 1

π

∫
x(u)

t − u
du (70)

where the integral is taken to mean the Cauchy principal
value. In the discrete case the Hilbert transform can be
derived, in time domain, by applying a rectangular rule
to (70) to yield (Kress and Martensen, 1970; see also
Weideman, 1995)

H(x(t)) ≈ 2

π

∞∑
k=−∞

x(t + (2k + 1)h))

2k + 1
(71)

where h is the step size. When Eq (71) is applied to a
discrete time series xt , t = 0,±1, . . ., one gets (see also
Bloomfield and Davis, 1994; and von Storch and Zwiers
1999):

H(xt ) = 2

π

∞∑
k=−∞

xt+2k+1

2k + 1

= 2

π

∑
k≥0

1

2k + 1
(xt+2k+1 − xt−2k−1). (72)

In practice, various methods exist to compute the finite
Hilbert transform. For a scalar field xt of finite length
n, the Hilbert transform H(xt ) can be estimated using
the discrete FT (69) in which ω becomes ωk = 2πk

n ,

k = 1, . . .
[
n
2

]
. Alternatively, H(xt ) can be obtained by

truncating the infinite sum in Eq (72). This truncation can
also be written using a convolution or a linear filter as
(see e.g. Hannan, 1970):

H(xt ) =
L∑

k=−L

αkxt−k (73)

with the filter weights

αk = 2

kπ
sin2 πk

2
. (74)

Barnett (1983) found that 7 ≤ L ≤ 25 provides adequate
values for L. For example for L = 23 the frequency
response function is a band pass filter with periods
between 6 and 190 time units with a particular excel-
lent response obtained between 19 and 42 time units
(Trenberth and Shin, 1984). The Hilbert transform has
also been extended to vector fields, i.e. two or more
fields, through concatenation of the respective complexi-
fied fields (Barnett, 1983). Another interesting method to
compute Hilbert transform of a time series is presented
by Weideman (1995), using a series expansion in rational
eigenfunctions of the Hilbert transform operator (70).

The HEOFs uk, k = 1, . . . p, are then obtained as the
eigenvectors of the Hermitian covariance matrix

Syy = 1

n

n∑
k=1

yty∗T
t = 2(Sxx + iSH(x)x), (75)

where SH(x)x is the cross-covariance matrix between
H(xt ) and xt . They can be obtained also as the right
complex singular vectors of the data matrix Y = (ytk).
The uncorrelated complex principal components (CPCs)
zk , for k = 1, . . . p, are then obtained similarly to (58).
From this decomposition we also get the spatial ampli-
tude and phase functions respectively:

ak = uk • u∗
k = Diag(uku∗T

k )

θk = atan
[
Im(uk)

Re(uk)

]
(76)

where the vector product and division are performed
component-wise, and where Re() and Im() represent
respectively the real and imaginary parts. Similarly, one
also gets the temporal amplitude and phase functions as:

bk = zk • z∗
k = Diag(zkz∗T

k )

φk = atan
[
Im(zk)

Re(zk)

]
, (77)

The function θk gives information on the relative phase.
For “simple” fields, its spatial derivative provides a
measure of the local wavenumber. Its interpretation
for moderately complex fileds/waves can be difficult
(Wallace, 1972), and can be made easier by applying a
prior filtering (Barnett, 1983). Also for simple waves, the
time derivative of the temporal phase gives a measure of
the instantaneous frequency. Note that the phase speed
of the wave at time t and position x can be measured by
θk(x)

φk(t)
.

The covariance matrix Syy in (75) can be shown to be
related to the cross spectrum matrix

�yy(ω) = 1

n

∑
τ

n−k∑
t=1

yt+τ y∗T
t eiωτ (78)

according to:

Syy =
∫ ωN

−ωN

�yy(ω)dω = 4
∫ ωN

0
�xx(ω)dω (79)

Because the covariance matrix Sxx is only related to
the co-spectrum �R

xx, it is clear that conventional EOFs
do not take into consideration the quadrature part of
the cross-spectrum matrix. Using therefore the cross-
spectrum matrix, as given by (79), it is seen that HEOFs
generalise conventional EOFs.

It is also clear from (79) that HEOFs are equiva-
lent to FDEOFs with the cross-spectrum integrated over
all frequencies. Note that the frequency band of inter-
est can be controlled by prior smoothing. Horel (1984)
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points out that HEOFs can fail to detect irregularly occur-
ring progressive waves (see also Merrifield and Winant
1989). Merrifield and Guza (1990) have showed that
complex EOF analysis in the time domain HEOFs is not
appropriate for non-dispersive and broad-banded waves
in wavenumber �κ relative to the largest separation mea-
sured (array size �x). In fact Merrifield and Guza (1990)
(see also Johnson and McPhaden 1993), identified �κ�x

as the main parameter causing spread of propagating
variability into more than one HEOF mode, and the larger
the parameter, the smaller the data variance is captured.

Application

In this section we apply HEOFs to the QBO using
stratospheric zonal winds. The section is divided into
two subsections. In the first we describe the data and
the zonal wind, and in the second subsection we present
the application.

Structure of the zonal wind. The data used here are
taken from the European Reanalyses (ERA40), which
come from the European Centre for Medium Range
Weather Forecasting (ECMWF), and consist of tropo-
spheric and stratospheric monthly zonal wind. The data
are provided on a regular 2.5° × 2.5° horizontal grid on
23 vertical pressure levels from 1000 mb to 1 mb. The
data span the period January 1958 to December 2001.
Stratospheric and upper tropospheric zonal winds tend to
be nearly zonally symmetric. We have therefore focussed
only on the zonal-mean zonal wind, which we also refer
to (for simplicity) as zonal wind hereafter.

Zonal wind in the stratosphere has a different pattern
of variability to that in the troposphere for various
reasons, not least the fact that the stratosphere is a
free atmosphere, i.e. far from land/sea influence, e.g.
friction; add to this the smaller density of the stratosphere,
and the forcing effect of vertically propagating Rossby
and gravity waves. Figure 25 shows the climatology
of the zonal wind for January (25a) and July (25b).
Various features can be noted from Figure 25. First, the
tropospheric upper westerly jets can be seen in both
hemispheres around 250 mb. In January, the Northern
Hemispheric (NH) jet is only slightly stronger than
its Southern Hemispheric (SH) counterpart. In July,
however, the NH jet has weakened and the SH jet
becomes much stronger. The SH jet is more active and
stronger than the NH one due in part to the absence of
boundary layer friction caused by land/mountains. In the
stratosphere, however, the flow is entirely different. Here
one can see both the easterly and the westerly flows.
During NH winter, stratospheric westerly flow is over
most extratropical NH and shows basically the polar
vortex whereas SH stratospheric flow is mostly easterly.
During NH summer the picture is reversed. Again,
over the SH, stratospheric westerly reaching 100 m/s is
much stronger than its NH analogue (around 40 m/s).
Stratospheric easterlies, on the other hand, have nearly
the same magnitude, around 50 m/s on both hemispheres.
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(a) January-mean zonal wind (ms−1)
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(b) July-mean zonal wind (ms−1)

Figure 25. Climatology of ECMWF zonal mean zonal wind for January
(a), and July (b). The period of observation spans the years 1958

through to 2001.

These stratospheric winds have been known since the
19th century when the German meteorologist A. Berson
found them in 1908 through balloon measurements, and
were known as Berson westerlies (Baldwin et al., 2001).
It was only in the 1950s that alternating winds were
known to exist (Palmer, 1954; Graystone, 1959). These
changes in stratospheric winds are merely due to seasonal
variations.

To remove the effect of seasonality, we first calculate
the mean annual cycle, which is then subtracted from
the data to give the anomalies. When seasonal variations
are removed, the picture becomes different. Figure 26
shows the variance of the zonal wind anomalies over the
observed period. Most of the variance is concentrated
around a narrow latitudinal band from approximately
15 °S to 15 °N, and extending from around 70 mb up to
the 1 mb level. This region is of great importance to cli-
mate researchers working on the stratosphere. Figure 27
shows a time-height plot of the zonal wind anomalies at
the Equator from January 1994 to December 2001.

A clear downward propagating signal can be seen from
Figure 27. The propagation region is between around
3 mb and 70 mb, which is the approximate height of
the tropopause at the equator. The descent speed is
variable and is roughly between 1 and 1.4 km/month.
The alternating wind region at any given vertical level
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Figure 26. Variance of monthly zonal mean zonal wind anomalies for
the observed period.
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Figure 27. Hövmoller plot of equatorial zonal mean zonal wind anoma-
lies at various vertical levels for the period January 1992–December

2001.

between 3 mb and 70 mb also varies, with a period
between about 24 and 34 months. This quasi-oscillation
has become known as the QBO, a term that was coined
by Angell and Korshover (1964), but the quasi-biennial
periodicity and the downward propagation were only
discovered a little earlier by Ebdon (1960) and Reed et al.
(1961). For reviews of the QBO, see Maruyama (1997)
and Labitzke and van Loon (1999), and Baldwin et al.
(2001) and references therein.

Hilbert EOF analysis of zonal wind. Since most vari-
ability of the QBO is concentrated around the Equator we
have focussed on the mean zonal wind anomalies over
the latitudinal band between 15S and 15N at all pres-
sure levels. The Hilbert transformed data are obtained by
computing the Hilbert transform of the field at each grid
point, then forming the complexified field according to
Eq (68). The Hilbert transform is computed using Eq (69)
via a fast FT, which we found more efficient, in terms of
CPU time, than the time domain transform (Eq 73). The
eigenvalues spectra and corresponding eigenvectors are
computed using the SVD (Eq 14) of the complex data
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Figure 28. Spectrum of the covariance matrix Syy, Equation (75), of
zonal mean zonal wind anomalies. Vertical bars represent approximate
95% limits using the rule of thumb (18) with a heuristic sample size

of 100.

matrix Y obtained from the complexified field (68). The
CEOFs and corresponding CPCs are respectively given
by the left and right complex singular vectors of the com-
plex data matrix Y .

Figure 28 shows the spectrum of the covariance matrix
Syy = 1

nYY ∗T , Eq (75), where only the leading 30 eigen-
values, expressed in percentage represented variance, are
shown. The uncertainties on the eigenvalues are obtained
using the rule of thumb (18) with a heuristic sample size
of 100. It is difficult to talk about the number of degrees
of freedom here because of the strong autocorrelation
due to the presence of the QBO cycle, but the point here
is simply to stress the leading role of the first eigen-
value. It is clear that the first eigenvalue, to which we
restrict our discussion here, is well separated from the
rest of the spectrum and explains a substantial amount of
variance. Figure 29 shows the real (29a) and the imag-
inary (29b) parts of CEOF1 respectively. The leading
CEOF (Figure 29) is composed of a pair of patterns in
quadrature, an indication of the propagating nature of
the patterns as is shown later using the corresponding
complex principal component CPC1. The direction of
propagation is also given by the axis linking the low
and high centers of actions.

Figure 30 shows the real and imaginary parts of the
leading CPC (30a), the phase portrait (30b) of CPC1
and the power spectrum of its real part (30c). The
real and imaginary parts are in quadrature and show
a near periodic signal (Figure 30(a),(b)) reflecting the
propagation of the corresponding pattern. The period is
also shown in the power spectrum (Figure 30(c)) to be
around 30–32 months. Note that, for this particular case,
if a conventional EOF analysis were performed instead, a
degenerate leading pair of eigenvalues would have been
obtained, and whose EOFs would be similar to those
shown in Figure 29, and similarly for the PCs. In general,
however, this might not be the case particularly when the
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(a) CEOF1 (real part) of zonal wind
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(b) CEOF1 (imaginary part) of zonal wind

Figure 29. Real (a) and imaginary (b) parts of complex EOF1 of zonal
mean zonal wind.

scale of the propagating feature is not well separated from
the rest.

Table I shows the percentage of the cumulative vari-
ance accounted for by the leading one to ten eigenvalues
of the EOFs and CEOFs, respectively. This Table can be
used to compare the efficiency of the CEOF method at
reducing the dimension of the data to that of the EOF
method, particularly for the few leading patterns because
of the existence of a propagating structure. One recalls
that the time coefficients of EOFs are uncorrelated but
not at non-zero lags. For example, the first two conven-
tional PCs will be lagged correlated, hence EOFs would
fail at efficiently reducing the data dimension compared
to CEOFs when using the same number of EOFs and
CEOFs, when there is a propagating feature. Note, how-
ever, that the CEOFs are twice as big. So in general, e.g.
with no propagating disturbance, CEOFs would be less
efficient than EOFs unless they carry at least twice the
information on average.

Spatial amplitude and phase of the leading CEOF are
computed following Eq (76). Figure 31 shows the spatial
amplitude (31a) and the spatial phase (31b) of CEOF1.
Figure 31(a) shows a clear indication of the maximum
wave activity around 25 mb on the Equator. It also
shows the asymmetry in the amplitude gradient, which
is stronger in the lower part of the region where the
propagation is inhibited. The spatial phase (Figure 31(b)),

on the other hand, tends to be not very easy to interpret
(Wallace, 1972; Barnett, 1983). Here, however, because
of the unambiguous wave propagation the interpretation
is made easy. Figure 31(b) shows banded structures from
1 mb down to around 50 mb, below which there is no
propagation.

The banded structure between 1 mb and around 50 mb
indicates the direction of propagation of the disturbance
where the phase of the wave changes between −180° and
+180° in the course of a complete cycle. There are two
main regions; the first one is between 1 mb and around
5 mb and corresponds to a first cycle, and the second
one is between 5 mb and 25 mb and also corresponds
to another cycle. These apparent cycles are associated
with small disturbances that can be seen in the raw zonal
wind anomalies (Figure 27) and give the impression that
the wave grows and decays in the first region then grows
and decays again in the second region.

Similarly, the temporal amplitude and phase have also
been computed according to Eq (77). Figure 32 shows
the temporal amplitude (32a) and temporal phase (32b)
of CPC1 for the period January 1992 to December 2001.
The temporal amplitude (Figure 32(a)) gives information
on how the wave amplitude varies with time, see also
the phase portrait (Figure 30(b)). It can be seen, for
example from Figure 32(a) that the amplitude is largest
in the middle of the wave life cycle. The temporal phase
(Figure 32(b)), on the other hand, gives information on
the phase of the wave of the zonal wind anomalies as
a function of time. For nearly every (quasi-biennial) life
cycle the phase is nearly quasi-linear, whose (constant)
slope, or time derivative provides a measure of the
instantaneous frequency.

The first complex EOF/PC can be used to filter the
propagating QBO signal. Figure 33 shows the filtered
anomalies using the leading CEOF/CPC for the period
January 1992 to December 2001. The downward prop-
agating signal is now clear, with a speed of roughly
1 km/month. The wave amplitude varies slightly with
time. One can also note sometimes that the propagat-
ing bands can have more than one maximum, leaving the
impression that the downward propagating disturbance
can grow and decay more than once, a point that has
been noted earlier, and which yields the actual structure
of the spatial phase (Figure 31(b)).

OTHER EXTENSIONS OF EOFS

We have only discussed a relatively small number of
the many techniques related to EOF analysis, but we
have concentrated mainly on those that are most useful
in atmospheric science. The EOF method has also been
extended to deal with cyclostationarity. This is the case
when the data contain for example a seasonal cycle. A
cyclostationary EOF method was presented by Kim and
Huang (1996) and Kim and North (1999). The method
is based on EOFs of concatenated vector amplitudes
obtained from a FT of the data. Jolliffe (2002) points out
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Table I. The cumulative explained variance (explained variance of the EOFs and HEOFs of the zonal mean zonal wind anomalies.

Leading eigenvalues 1 2 3 4 5 6 7 8 9 10

EOFs 39.4 76.8 84.5 90.0 92.3 93.9 95.0 96.0 96.6 97.0
HEOFs 71.32 81.3 89.0 91.8 93.7 94.9 95.8 96.6 97.3 97.8

that the method is less transparent in its justification than
cyclostationary POP analysis (Blumenthal, 1991; von
Storch et al., 1995.) Kim and Wu (1999) describe another
EOF method dealing with periodicity in general, which
they label periodically extended empirical orthogonal
functions (PXEOFs). PXEOFs are the eigenvectors of a
large covariance matrix, which is derived by dividing the
data into a number of periodic segments and treating them
as different variables. The method is akin to extended
EOF analysis, but differs from it in that averages in
PXEOFs are performed over times at the same point
within each block across blocks.

Ordinary EOF analysis can be extended to the case
where the data consist, for example, of two or more
groups, and more layers such as different time periods.
This type of analysis has led to the concept of three-
mode (see, e.g. Magnus and Neudecker, 1995) or multi-
ple group PCA. In the atmospheric science context, the
‘three’ in three-mode refers to the indices spanning the
data, namely spatial locations, times, and set of atmo-
spheric variables respectively. Note also that in the gen-
eral three-mode PCA, time need not be ordered nor be
equally spaced. Spatial locations and atmospheric vari-
ables can be grouped together and ordinary EOF analysis
can be applied. A common approach in weather/climate

analysis is to fix the atmospheric variables and perform
EOF analysis on the other pair. This yields the so-called
S-mode analysis when locations are identified as variables
and times as observations, or the T-mode analysis for the
reverse, (see Jolliffe 2002 for further discussions and ref-
erences). Further extension of EOF/PC analysis has been
proposed for various other types of data. For example
when the data are curves one obtains functional PCA
(Ramsey and Silverman, 1997), and involves solutions to
an eigenvalue problem of integro-differential type.

The EOF method has also been extended to deal
with trends. Recently, Hannachi (2007) has presented an
EOF-based method to identify trends in gridded climate
data. The method is based on an eigenanalysis of the
correlation/covariance matrix of time positions from the
sorted data. Trend EOFs (TEOFs) are then identified
as the EOFs associated with the leading non-degenerate
eigenvalues of the matrix obtained using correlations
between time positions of the sorted data. Because the
TEOFs are not in the data state space, the data are
first projected onto the TEOFs and the obtained time
series are then regressed back onto the data to yield
the trend patterns. The method, which has been applied
to various low-order systems and to reanalyses data,
provides a systematic decomposition of the data into
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Figure 31. Spatial amplitude (a) and spatial phase (b) of complex
EOF1.

a small number of trend patterns and a remaining set
with no trend when at least two grid points contain a
trend. The application to NCEP/NCAR SLP, for example,
clearly yields two trend patterns; the NAO (Hurrell et al.,
2003) and the Siberian High (Panagiotopoulos et al.,
2005.) The Siberian High is particularly interesting; it
was not captured in previous studies using various forms
of conventional EOFs because of its local trend character,
and also because of its confinement to the planetary
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Figure 33. Filtered zonal mean zonal wind anomalies for the period
January 1992–December 2001 using the leading complex EOF and

the corresponding complex PC.

boundary layer (see Hannachi 2007 for more details).
It is mentioned in section 3 that simplification methods,

e.g. rotation, aim to find physically relevant patterns of
which teleconnections are good examples. These telecon-
nections are in general assumed to be the coherent part of
the data. This assumption is implicit in the general inter-
pretation of EOFs based on a factor analysis approach
(Jolliffe, 2002; Dommenget and Latif, 2002.) Further-
more, it has become clear that in many recent investiga-
tions the leading EOF patterns are often interpreted as the
leading teleconnections (Thompson and Wallace, 1998,
2000; Saji et al., 1999; Thompson et al., 2000; Wallace
and Thompson, 2002.) As pointed out in Jolliffe (2002)
and Dommenget and Latif (2002), however, it is unclear
how to identify genuine teleconnections. In addition, sim-
plification procedures like rotation may or may not lead to
teleconnections. In this context stochastic null hypotheses
are perhaps the correct tools for assessing and evaluating
climate modes of variability. Cahalan et al. (1996) pre-
sented a spatial first order autoregressive model, AR(1),
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Figure 32. Temporal amplitude (a) and temporal phase (b) of complex CPC1 between January 1992 through to December 2001.
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as a null hypothesis. The following diffusion model

d

dt
u = −λu + ν∇2u + ft (80)

has been considered by various authors such as Leung
and North (1991) to study the variability of a simplified
atmospheric model, and North (1984) to compare EOFs
and normal modes. In Eq. (80) λ and ν are damping
and diffusion parameters respectively, and ft is a spatial
and temporal white noise forcing. The isotropic diffusion
process (80), which is an extension of the simple AR(1)
model, has recently been used by Dommenget (2007) as
a null hypothesis for climate modes of variability. To
separate possible teleconnections from a homogeneous
diffusive noise background the model is first fitted
to the observed data then the leading EOFs of the
obtained model compared to the EOFs of the data.
Dommenget (2007) applied the test to various observed
fields and showed that the leading Tropical Pacific sea
surface temperature (SST) and most NH large scale
SLP structure are significantly different from an isotropic
diffusion process, whereas the Tropical Indian Ocean SST
variability seems to be well described by such a process.
Other models could also be envisaged to deal with non-
diffusive fields such as SLP, (see e.g. Gerber and Vallis
2005, and Dommenget (2007) for more details and further
references).

The previous EOF/PC methods are linear in the sense
that they involve solving an eigenvalue problem. Non-
linear extensions of EOFs have also been proposed in
the literature. The most well known examples are non-
linear PCA, e.g. Monahan (2001), and Hsieh (2001), and
independent component analysis, e.g. Hyvärinen and Oja
(2000). These methods are computing-power hungry, and
the obtained results depend in general on the descent
algorithm used to minimise the chosen (non-quadratic)
costfunction.

SUMMARY AND CONCLUSION

We presented in this manuscript an introductory review
of the state of the art of using EOFs and closely related
methods as a means to find prominent patterns of vari-
ability, smoothing and reducing the high dimensionality
of large scale climate variables, and reconstructing par-
ticularly revealing patterns. The review has focussed on
five different methods based on EOFs to analyse various
climate data. The methods considered here are conven-
tional EOFs, REOFs, simplified EOFs, extended EOFs,
and complex/Hilbert EOFs.

We began by reviewing the conventional EOFs method.
In particular we have highlighted its benefits, such as
easy computation, efficient data reduction, and useful
geometric properties. We have also presented its major
drawbacks, such as predictable relations between EOFs,
and physical interpretability. The method has been illus-
trated with winter monthly SLP. The leading EOF pattern

shows the familiar and debatable AO pattern. The spec-
trum of the covariance matrix indicates that this EOF
is non-degenerate, but the remaining EOF patterns look
degenerate and yields therefore difficulties in interpreta-
tion.

Next we have reviewed REOFs, which have been
introduced to overcome some of the previous drawbacks
related to orthogonality/uncorrelatedness of EOFs/PCs
respectively and also interpretation. The method attempts
to rotate a fixed number of EOF patterns using either
an orthogonal or oblique rotation matrix subject to max-
imising a simplicity criterion. The EOFs can be either
unscaled or scaled by the square root of the associ-
ated eigenvalues. Various criteria exist in the literature,
but the overall result is that all rotations can be classi-
fied into four classes: (i) orthogonal rotation of EOFs,
(ii) orthogonal rotation of EOFs scaled by the square
root of the associated eigenvalues, (iii) oblique rotation
of EOFs, and (iv) oblique rotation of scaled EOFs. In
this study we have applied various rotation types/criteria,
but the discussion was mainly focussed on three crite-
ria, namely orthogonal VARIMAX, QUARTIMAX, and
oblique QUARTIMIN. The results of rotation applied to
SLP EOFs indicate that (i) and (iii) give similar results,
but the rotated patterns are sensitively dependent on the
number m of EOFs selected for rotation. Case (ii) is
found to give similar results across a range of criteria,
but for large m the similarity between the low ranked
REOFs across the various criteria cannot be guaranteed.
Finally, case (iv) is found to be the most unstable. There-
fore orthogonal rotation of scaled EOFs seems to offer
the most robust rotation.

Simplified EOFs, a competitor to the REOF approach,
has also been reviewed. The method makes use of some
useful properties of EOFs and REOFs simultaneously. It
attempts to achieve simultaneously successive variance
maximisation, spatial orthogonality of EOFs, and sim-
plicity of REOFs. This is achieved by solving the same
eigenvalue problem of EOFs but with an extra constraint
of simplicity that depends on a threshold parameter. The
obtained optimisation is non-quadratic and involves using
advanced numerical methods based on numerical solu-
tions of ODEs. A threshold parameter of the order of√

p
3 , where p is the number of variables, is found to pro-

vide a reasonable balance between variance maximisation
and simplicity of the patterns. The leading three SEOF
patterns are identified respectively as the NAO, the North
Pacific, and the Scandinavian patterns. The obtained pat-
terns have invariant structures vis-a-vis changes in the
threshold parameter. For example when this parameter
gets smaller the patterns keep their structures but their
spatial extension gets reduced. The method, however, is
computationally intensive but can still be very useful to
gain insight if we are particularly interested in the leading
few patterns for interpretation.

Extended EOFs (or MSSA) are presented as a way to
overcome some of the shortcomings of EOFs, namely
the use of only spatial correlation. MSSA makes use of
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spatial as well as temporal correlation by extending the
familiar state vector by including explicitly the time infor-
mation after choosing the delay parameter. The method
can be used as a tool to filter the data, isolate a trend,
or even separate an oscillatory component buried in the
noisy data. We have illustrated the approach with 5 years
of daily OLR data. We have in particular identified the
seasonal cycle and the semi-annual oscillation. The MJO
was also identified from the spectrum of the extended
data matrix. Various characteristics of MJO have also
been identified such as the most active region of growth
and decay phase, approximate period, and phase speed.

The complex EOFs method constitutes another
approach used to identify propagating disturbances.
Unlike EEOFs, complex EOFs use complex formulation
of propagating waves and involve the Hilbert transform of
the field to form the complexified field with no parameter
to fix. Complex HEOFs of ECMWF monthly zonal-mean
zonal wind from January 1958 to December 2001 have
been calculated. Complex EOFs/PCs have been used to
filter the data and reduce their dimension. The QBO
propagating signal has been filtered out using the leading
complex EOF/PC. Spatial as well as temporal amplitude
and phase associated with CEOF1/CPC1 have also
been computed and help in interpreting the downward
propagating QBO signal.

We have discussed briefly some other extensions of
EOFs including cyclostationary, PXEOFs, the S-mode
EOF analysis, trend EOFs, and nonlinear extensions of
PCA. We have also discussed the methods used to sepa-
rate possible teleconnections from the mere homogeneous
diffusion process background. These extensions are not
treated in detail, but we have provided references for
interested readers.
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