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ABSTRACT: Research and development of new verification strategies and reassessment of traditional forecast
verification methods has received a great deal of attention from the scientific community in the last decade. This
scientific effort has arisen from the need to respond to changes encompassing several aspects of the verification
process, such as the evolution of forecasting systems, or the desire for more meaningful verification approaches
that address specific forecast user requirements. Verification techniques that account for the spatial structure and
the presence of features in forecast fields, and which are designed specifically for high-resolution forecasts have
been developed. The advent of ensemble forecasts has motivated the re-evaluation of some of the traditional scores
and the development of new verification methods for probability forecasts. The expected climatological increase of
extreme events and their potential socio-economical impacts have revitalized research studies addressing the challenges
concerning extreme event verification. Verification issues encountered in the operational forecasting environment have
been widely discussed, verification needs for different user communities have been identified, and models to assess
the forecast value for specific users have been proposed. Proper verification practice and correct interpretation of
verification statistics has been extensively promoted with recent publications and books, tutorials and workshops,
and the development of open-source software and verification tools. This paper addresses some of the current
issues in forecast verification, reviews some of the most recently developed verification techniques, and provides
recommendations for future research. Copyright  2008 Royal Meteorological Society and Crown in the right of
Canada.
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1. Introduction

Verification is an indispensable part of meteorological
research and operational forecasting activities. If the
methodology is properly designed, verification results
can effectively meet the needs of many diverse groups,
including modellers, forecasters, and users of forecast
information. It can be used to direct research, to help
determine where research funding is most needed, to
check that forecasts are improving with time, to help
operational modelling centres select model upgrades, or
to help power companies make decisions on the purchase
and distribution of power to their customers, to name just
a few.

* Correspondence to: Dr B. Casati, Visiting Fellow, 2121 Trans-Canada
Highway, 5th floor, Dorval, H9P 1J3, QC, Canada.
E-mail: barbara.casati@ec.gc.ca

In general, the vast majority of verification efforts over
the past decades have focused on the calculation of one
or more verification scores over a forecast-observation
dataset, where the observations usually consist of surface
or upper air point observations or analyses onto grids.
These methods are sometimes referred to as ‘traditional
verification’ to contrast them with more recent devel-
opments in verification methodology (see Stanski et al.,
1989; Jolliffe and Stephenson, 2003; and Wilks, 2006,
for reviews of traditional verification methods). Research
and development of new approaches to verification has
increased greatly over the last 10 years or so, and has
been motivated by several factors, including the avail-
ability of new sources of data such as satellite and radar,
the desire to generate verification results which are more
meaningful to specific users or user groups, the advent
of new modelling strategies such as ensembles, and the
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evolution of models and forecasts to higher spatial and
temporal resolution.

The foci of recent research projects in verification
methodology are many and varied. For example, much
work has been done on spatial techniques, which are
designed to account for the spatial structures and features
characterizing weather maps, both for large scale and
for high-resolution regional models. Verification methods
for ensemble forecasts have also received considerable
attention, leading to new methods for the evaluation of
forecast probability distributions, and further investiga-
tion into the properties of traditional verification mea-
sures for probability forecasts. The need for estimates of
confidence in verification statistics, long known in the
research community, is finally being addressed, spurred
on by increased interest in verification of extreme and rare
events, where sample sizes are often too small to permit
a high degree of confidence in the results obtained. Ver-
ification research and development is also beginning to
focus more toward users, to provide the information they
would need to make optimal decisions and to assess the
value of the forecast for their specific weather-sensitive
operation.

Various international research projects such as the
Sydney 2000 and Beijing 2008 Olympic Forecast and
Research Demonstration Projects (FDP/RDP) (Keenan
et al., 2002; Ebert et al., 2004; Yu, 2005), and later
the Mesoscale Alpine Programme (MAP) project (Volk-
ert, 2005), and other test beds, provide ideal frame-
works to analyse and address some of the current
issues in verification, and develop and test new ver-
ification strategies. The scientific verification commu-
nity has been very active in trying to respond to ver-
ification user needs with new techniques, in spread-
ing the knowledge of verification methods and trying
to unify the verification terminology (e.g. Jolliffe and
Stephenson, 2003, glossary). A Joint Working Group
on Verification (JWGV) under the World Meteorological
Organization (WMO)/World Weather Research Program
(WWRP) and the WMO Working Group on Numeri-
cal Experimentation (WGNE) was constituted in January
2003. In addition to promoting verification practice and
research, the JWGV maintains a verification web-page
(http://www.bom.gov.au/bmrc/wefor/staff/eee/verif/verif
web page.html) which outlines basic verification score
and techniques, reviews the most recent research, runs
a discussion group, and organizes workshops and tuto-
rials. Three international verification workshops have
been organized (Boulder, USA, August 2002; Montreal,
Canada, September 2004; and Reading, UK, January
2007; see the JWGV web-page for web-links to the work-
shop agendas and presentations).

Through the lens of the Third International Verification
Methods Workshop in Reading, this paper aims to review
recent developments, discuss some of the unsolved issues,
and suggest future research directions in verification. The
paper is organized approximately according to the ses-
sions of the workshop, as follows: Section 2 reviews ver-
ification techniques developed for forecasts defined over

spatial domains and for high-resolution forecasts. Section
3 reviews methods for probabilistic forecasts and ensem-
ble forecasts. Section 4 addresses the issues related to the
verification of extreme events. Section 5 addresses some
of the verification strategies relevant in an operational
forecasting environment. Section 6 provides a review of
available verification tools. Section 7 introduces some of
the issues related to user-oriented verification, followed
in Section 8 by a discussion of strategies for linking the
forecast quality to its actual value. Finally, some con-
cluding remarks on the state-of-the art of verification
research and future recommendations are given in Sec-
tion 9. While identified as an important verification issue
in this paper, the methods used to estimate confidence
in verification statistics are discussed in another paper in
this issue (Mason, 2008).

2. Spatial verification methods

Weather variables are often predicted as fields defined
over a spatial domain. Spatial fields are characterized by
a coherent spatial structure and often by the presence of
features, such as precipitation features. Standard verifica-
tion methods based on a point by point comparison (e.g.
Mean Squared Error, MSE) often do not account for the
intrinsic spatial correlation existing within these fields.
The results from such standard verification methods are
often difficult to interpret in meaningful physical terms.
Some new approaches that specifically address the verifi-
cation of forecasts defined over spatial domains have been
developed in the last decade. These approaches account
for the spatial nature of forecast fields, and aim to pro-
vide feedback on the physical nature of the forecast error,
adding new and complementary information to the tradi-
tional categorical and continuous verification methods.

The study by Hoffman et al. (1995) introduced the first
verification technique based on an optical flow concept.
The technique decomposes the forecast error into dis-
placement, amplitude and residual errors. Displacement
and amplitude errors correspond to two transformations
of the forecast field, obtained by applying a velocity field
and a scalar field, until the transformed forecast satisfies
a best-fit criterion (e.g. maximization of spatial corre-
lation) to the observation field. This feature calibration
and alignment (FCA) approach sets a milestone in spa-
tial forecast verification by measuring the error directly
in physical units (e.g. displacement in km): verification
results are therefore easily interpretable and address spe-
cific physical aspects of the forecast (e.g. the advection
scheme). The technique inspired some further studies:
for example, the technique has been applied to different
weather variables (Du et al., 2000). In addition, differ-
ent formulations of the error decomposition have been
developed (Douglas, 2000). Brill (2002) introduced a
similar technique which evaluates the east–west phase
(displacement) error and amplitude error in mean sea-
level pressure forecasts by using cosine series trigono-
metric approximations. Nehrkorn et al. (2003) extend
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the error-decomposition approach by using spherical har-
monics and subsequently the method developed into a
spectral-based variational analysis technique which was
used for data assimilation (Brewster, 2003). Germann
and Zawadzki (2002, 2004), and Turner et al. (2004) use
a similar error-decomposition approach for the MAPLE
nowcasting system and study the scale-dependence of
precipitation predictability by using wavelets. Note that
all the techniques based on the Hoffman et al. (1995)
approach are performed over the whole field. Most of the
recently developed FCA techniques are combined with a
scale-decomposition approach, and are used mainly for
data assimilation or nowcasting applications.

Feature-based approaches identify features in the fore-
cast and observation fields and then assess different
attributes associated with each individual pair of forecast-
observed features (such as position, size, and intensity).
The techniques differ according to the algorithms chosen
to identify the features: Ebert and McBride (2000) used
a simple thresholding, whereas Davis et al. (2006a,b)
used a threshold after filtering by cylindrical convo-
lution; Baldwin et al. (2002) used some data mining
and image processing algorithms; Nachamkin (2004)
and Nachamkin et al. (2005) used composites of sev-
eral events; Marzban and Sandgathe (2006) used cluster
analysis. The verification approach also varies with the
different studies: Ebert and McBride (2000) were inspired
by Hoffman et al. (1995) and assess displacement, vol-
ume and pattern errors for pairs of forecast and observed
features. Grams et al. (2006) improved the technique of
Ebert and McBride (2000) by re-formulating the error
decomposition in terms of traditional continuous statis-
tics (observation and forecast variance, bias, correlation,
and MSE). They then applied the verification by stratify-
ing the features within a convective system classification.
Davis et al. (2006a) identified and verified attributes (e.g.
intensity, area centroid location) associated with pairs of
forecast and observed ‘objects’. Baldwin et al. (2002)
measure the overall forecast performance by a single
statistic obtained by a weighted combination of errors
for different event attributes. In some cases, contingency
tables based on feature-displacement criteria and asso-
ciated categorical scores are also computed (e.g. Ebert
and McBride, 2000; Davis et al., 2006a,b; Marzban and
Sandgathe, 2006; Nurmi et al., 2007). Verification may
be presented as a function of the feature size (e.g. Davis
et al., 2006a,b; Marzban and Sandgathe, 2006), so that
feature-based verification can be interpreted within a
scale-oriented context. Davis et al. (2006b) consider the
time dimension, in addition to spatial coordinates, and
use an object-based approach to assess rainfall systems
of different time duration, evaluating timing error, as
well as displacement errors. Wernli et al. (2006) intro-
duced the SAL technique, which assesses the struc-
ture–area–location error for objects, without matching
requirements.

Scale-decomposition approaches, in general, decom-
pose forecast and observation fields into the sum of spa-
tial components on different scales by using spatial filters,

and then perform the verification on each scale com-
ponent, separately. Verification on different scales can
provide useful insight into Numerical Weather Predic-
tion (NWP) model representation of the different physical
processes associated with phenomena on different scales.
Scale-verification approaches aim to assess quality and
skill of the forecasts for different spatial scales, analyse
the scale-dependency of the forecast predictability (e.g.
evaluate the no skill – skill transition scale), and assess
the forecast ability to reproduce scale spatial structure of
observed precipitation fields. Briggs and Levine (1997)
introduced a wavelet-based verification method on dif-
ferent spatial scales which uses continuous verification
statistics (e.g. the MSE). Casati et al. (2004) developed
an intensity-scale verification technique based again on
2D wavelet decomposition and on a categorical verifi-
cation approach. A 2D wavelet filter was again used by
Casati and Wilson (2007) to decompose the Brier score
and Brier skill score, reliability and resolution on dif-
ferent scales, for the verification of probability forecasts
defined over a spatial domain. Zepeda-Arce et al. (2000),
Harris et al. (2001) and Tustison et al. (2003) assess the
capability of forecasts to reproduce the observed spatio-
temporal and multi-scale spatial structure of precipitation
fields by the evaluation of scale-invariant parameters. De
Elia et al. (2002) and Denis et al. (2003) evaluate the
forecast time-scale predictability limits as a function of
the scale for high-resolution regional climate models.

Neighbourhood-based (fuzzy) verification approaches
consider values nearby in space and time in the forecast-
observation matching process, and so relax the require-
ments for perfect time-space matching (see Ebert, 2008,
for a review of neighbourhood-based approaches). These
approaches enable one to account for the forecast and
observation intrinsic time-space uncertainty by examin-
ing performance in a range of neighbourhood sizes, so
that these approaches are particularly suitable for ver-
ifying high-resolution forecasts. Tremblay et al. (1996)
evaluate categorical scores as a function of the allowance
distance within which two grid-point values are consid-
ered a match. Atger (2001) verified and compared deter-
ministic and Ensemble Prediction System (EPS) fore-
casts by evaluating spatial multi-event contingency tables
and the corresponding relative operating characteristic
(ROC) curves. Theis et al. (2005) transformed determin-
istic forecasts into probabilities by using neighbourhood
grid-point values and then verify by using probabilistic
verification approaches. Marsigli et al. (2006, 2008) ver-
ified the parameters describing the distributions of fore-
cast and observations within neighbourhood square areas.
Rezacova and Sokol (2005) verified high-resolution pre-
cipitation forecasts by using rank Root Mean Squared
Error (RMSE) over grid-point neighbourhoods of dif-
ferent areas. Roberts and Lean (2007) consider within
a grid-point neighbourhood the fraction of precipitation
values exceeding some set thresholds, and define a ‘Frac-
tions Skill Score’ with which the forecast is assessed for
different intensities and scales. Note that the size of the
neighbourhood naturally defines a ‘scale’, associated with
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the verification: as the size of the neighbourhood (scale)
is increased, forecast and observation fields are subjected
to a filtering process and the time-space matching require-
ment becomes more and more relaxed. The scale of the
neighbourhood-based approaches is therefore related to
the resolution of the forecast and observation fields and
to the looseness of the matching criteria, whereas the
scale in the scale-oriented approaches relates to the scale
of the features and error.

Metrics measuring the distance between binary images
include ‘detection performance (statistical) measures’
(e.g. traditional categorical scores), ‘localization perfor-
mance (distance) measures’ (e.g. the average distance),
Pratt’s figure of merit, Hausdorff metrics and the Badde-
ley metric (see Baddeley, 1992, and references therein).
These metrics are sensitive to the distance and shape of
forecast and observed features. A few verification meth-
ods are starting to make use of these metrics: Venugopal
et al. (2005) define a new forecast quality index obtained
by combining the Hausdorff distance with an amplitude-
based error measure. Gilleland et al. (2008) use the Bad-
deley metric to match and merge features within their
object-oriented technique.

Most of the spatial verification approaches need obser-
vations defined continuously over a spatial domain. Such
methods rely, therefore, on a dense observation network
and radar or satellite-based observations, which are often
merged to produce an analysis. Exceptions are some
neighbourhood verification approaches, which consider
the neighbourhood of forecast grid points surrounding
an observation at a specific location (e.g. Atger, 2001;
Theis et al., 2005; see also Ebert, 2008, and classification
therein). Moreover, most of these methods do not allow
missing values in the observations, except the Nachamkin
(2004) and Nachamkin et al. (2005) composite approach.
Future research could address the issues of missing values
and sparse observation networks when applying spatial
verification approaches.

3. Probabilistic forecasts and ensemble verification

Verification measures for probability forecasts were
developed and studied many years ago for application to
forecasts from statistical methods such as Model Output
Statistics. The advent of ensemble forecasts in the early
1990s has given a strong impetus to the re-evaluation of
existing verification methods for probability forecasts and
to the development of new ones.

These methods are of three general types. Methods
used to verify the distribution of an ensemble as the
sample from a probability distribution function (pdf)
include the rank histogram (Anderson, 1996; Hamill,
2001), the continuous rank probability score (CRPS) (e.g.
Hersbach, 2000) and related skill score, the minimum
spanning tree (MST) (Smith, 2001; Smith and Hansen,
2004; Wilks, 2004), and Bounding Boxes (Weisheimer
et al., 2004). Methods which evaluate the pdf of a generic
probability forecast are the ignorance score (Good, 1952;

Roulston and Smith, 2002) and the Wilson et al. (1999)
probability score. Finally, forecasts of the probability
of an event are evaluated using the Brier Score (Brier,
1950) and its decomposition (Murphy, 1973), the Brier
skill score, reliability (‘attributes’) diagrams (Hsu and
Murphy, 1986; Smith, 1997; Bröcker and Smith, 2007a),
the ROC (Mason, 1982; Swets and Pickett, 1982), the
rank probability score (Epstein, 1969) and related rank
probability skill score.

The first category contains methods recently devel-
oped specifically for application to the verification of
ensemble pdfs. The first four measures listed under the
third category apply to forecasts of dichotomous vari-
ables (‘yes/no’), while the last two apply to probability
forecasts of multiple category variables. This is not an
exhaustive list, but most of the commonly used methods
are described here.

3.1. Verification of the ensemble pdf

Of the three pdf scoring methods which received some
attention at the workshop, the CRPS has tended to
become the method of first choice for the verification
of operational ensemble forecasts, although the rank
histogram is often used to evaluate the spread of the
ensemble. Both the rank histogram and the MST are
often presented graphically, but are also associated with
summary measures of performance. The CRPS score
summarizes the verification information into a single
value.

The rank histogram (Talagrand diagram) is used to
determine the extent to which the ensemble dispersion
matches the dispersion of the distribution of verifying
observations. It does not give meaningful results unless
computed on a relatively large sample, and, as Hamill
(2001) points out, it can obscure systematic biases in
the forecast. The rank histogram and its interpretation is
straightforward for continuous well-behaved (near nor-
mally distributed) variables, but its use and interpretation
become more complicated for variables such as precipi-
tation amount, which have highly skewed, bounded dis-
tributions. Hamill and Colucci (1997) describe a method
for construction of a rank histogram which accounts for
the frequent occurrence of zero in precipitation distribu-
tions, and this method was followed in results presented
by Denhard et al. (2007). The interpretation of the rank
histogram for precipitation amounts is difficult because
observed precipitation amounts typically follow a gamma
distribution which may have a variety of shapes. The dis-
persion of a Gamma distribution is highly dependent on
the mean; thus, the average spread taken over a given
set of observations will depend on the mean precipita-
tion over the sample. Bimodal forms can also occur, for
example, when some ensemble members predict no pre-
cipitation while others predict measurable precipitation.
Thus, rank histograms for precipitation and other vari-
ables which follow a non-Gaussian distribution have a
higher potential to be misleading. Rank histograms for
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precipitation require additional evaluation on subsamples
conditioned on the mean precipitation value.

Candille and Talagrand (2005) proposed an useful
formula which allows quantitative assessment of the
‘departure from flatness’ of a rank histogram (see also
Smith, 2001). This formula is a function of the ensemble
size (number of bins) and the verification sample size, and
takes into account the expected variations from flatness
due only to random variation. This formula is useful for
comparing rank histograms from different ensembles.

The CRPS essentially measures the difference between
the cumulative distribution function (cdf) of the ensemble
and the observation, also expressed as a cdf. Since the
observation is a point value, its corresponding cdf is
a Heaviside function with the step at the value of the
observation. The CRPS has the nice property that it
reduces to the mean absolute error for a deterministic
forecast, which means that it can be used directly to
compare the accuracy of an ensemble forecast with
respect to the accuracy of a deterministic forecast.

The MST is a form of multidimensional rank his-
togram. Ensemble predictions and the corresponding
observations are represented as points in a M-dimensional
space, where M is the number of variables of interest.
The trees are formed by computing the distance span-
ning all the points over the N + 1 ensembles formed by
leaving out in turn each of the N -ensemble members and
the observation. The minimum of these distances (the
MST) is then tallied with respect to the left-out member
to which it corresponds. The interpretation is similar as
for the rank histogram: If the tree spanning the ensem-
ble alone is smaller than all the trees spanning N − 1
ensemble members plus the observation more often than
1/(N + 1) proportion of the time, then the observation
lies outside the cluster of ensemble points more often
than expected by chance and the ensemble is underdisper-
sive. The MST has not yet been widely used in practice.
It has significant potential for the spatial verification of
structures such as low centres, tropical storm positions, or
precipitation maxima. In that case M = 2, and the metric
would be the actual distance on the earth’s surface.

3.2. Verification measures for pdfs of generic
probability forecasts

Measures of this type are not specific for ensembles, as
are the previous methods, and are not sensitive to the
whole ensemble pdf. Instead, both the methods discussed
below are local, evaluating the pdf at the observation
value. Both methods reward sharp distributions which
are also accurate. Smoothing the distribution (increasing
the predicted uncertainty) results in limiting the ‘best’
attainable score, while predicting sharply (low spread)
but with inaccurate placement of the pdf with respect to
the observation leads to a heavy penalty.

The linear probability score proposed by Wilson et al.
(1999) is easy to understand and can be computed
meaningfully on a single case, but it was shown by
Wilson and Gneiting (2007) that it is not strictly proper,

confirming the theoretical presentation of Gneiting and
Raftery (2007). This may not be an important limitation
for this score since Wilson and Gneiting (2007) showed
a potential improvement of only about 5% or so in the
score value, by systematically predicting the ensemble
mean. A proper linear score is discussed in the context
of other p-scores in Bröcker and Smith (2007b).

The ignorance score (Good, 1952; Roulston and Smith,
2002) is a logarithmic score formulated in the same way
as the Wilson et al. (1999) score. The ignorance score
has been proven to be strictly proper (Good, 1952) and
is the only proper local score for continuous variables
(see Bröcker and Smith, 2007b for discussion). The
ignorance score becomes infinite for forecast probabilities
of zero, which has created problems in its application to
ensemble forecasts (Gneiting and Raftery, 2007; Wilson
and Gneiting, 2007). In the latter case, the problem was
avoided by setting zero probability forecasts to a suitably
small value (0.0001). One could argue that a probability
forecast of 0 should never be assigned to an outcome
which is known to be within the range of possible
values. However, in practice, the forecast system, whether
from an ensemble or other source, cannot distinguish
between 0 and small probability values. Application of
the ignorance score requires that this limiting value be
selected. This choice can influence the score obtained,
and it could be argued that this in effect renders the
score improper, because the forecaster knows in advance
the effect the choice of minimum value will have on
his/her score. This drawback may be one reason why the
ignorance score has not been widely used yet in ensemble
verification.

3.3. Verification of forecasts of the probability of an
event

The Brier score (Brier, 1950) probably the most com-
monly used score for verification of probability forecasts
of dichotomous variables, has been subject to recent
examination and some re-interpretation. An update to the
Murphy (1973) three-way partition of the Brier score was
proposed by Stephenson et al. (2008b), who pointed out
that extra terms are needed in the partition to render the
decomposition exact because of the effects of binning
of the probabilities in the original decomposition. Ferro
(2007a) and Ferro et al. (2008) evaluated the effect of the
ensemble size on the Brier score and ranked probability
score. They found that one needs to know the ensem-
ble size to properly interpret Brier score results, and that
it may be hazardous to compare Brier scores computed
with different ensemble sizes. However, we note that this
issue is really related to how the probability forecast is
defined from the ensemble system: once the forecast is
made, the Brier score will correctly reflect the accuracy
of the forecast. In addition, it is possible to use bootstrap
confidence intervals to generalize Brier score estimates
over different sample sizes.

The ROC was brought from signal detection theory
into meteorology by Mason (1982). Essentially the ROC
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is a measure of the likelihood that probability forecasts
for an event are higher for occurrences than for non-
occurrences of the event. The ROC and its associated
measure, the area under the curve, are indications of
the ability of the forecast system to ‘discriminate’ occur-
rences and non-occurrences of the event (Murphy, 1993).

Some issues remain to be resolved concerning the
method of computation of the ROC area and its interpre-
tation. First, the trapezoidal rule often is not an appropri-
ate method for estimating the ROC area. As shown by
Wilson (2000), the trapezoidal rule may lead to underes-
timation of the ROC area by an amount which depends
on the location of the points from which the ROC is
estimated. For the sample sizes that are usually avail-
able in meteorological verification practice, the bi-normal
method (Mason, 1982; Swets, 1986) is often the most
appropriate approach, and its accuracy has been empir-
ically validated in many different fields (Swets, 1986).
When verification samples are small, specifically when
the number of occurrences of the event is small, the trape-
zoidal rule is a correct method to compute the area. A
general rule of thumb is that there should be more than
10 occurrences of the event in the sample if the bi-normal
method is to be used.

Second, a clarification is needed regarding the roles
of ensemble and sample sizes in the computation and
interpretation of the ROC. For instance, Bowler et al.
(2007) show that the fitted ROC represents the potential
discrimination for an unlimited ensemble size, to support
the use of the trapezoidal rule for real ensembles.
Granularity in the forecast probabilities that arises with
small ensembles may lead to fewer points from which
to estimate the ROC, but this is a matter of sampling
variation; the points still lie on a convex curve rather
than on a set of trapezoids.

Third, the interpretation of the ROC becomes more
complicated when rare events are considered. Wilson
(2000) and others show a tendency for the points on
the ROC to cluster toward the lower left corner of the
graph for rare events. One solution to this problem is
to subdivide the lowest-valued forecast probability bins.
The verification sample can usually support subdividing
the lower-valued probability bins when fitting the ROC
for low base rates. Another issue concerning rare events
and the ROC is that models can quite happily predict any
probability value in the range (0, 1), but forecasters may
experience more difficulty in discerning small differences
in probabilities. It is clear that further research is needed
into the application of the ROC to ensemble verification.

A shortcoming in verification practice as applied to
probability forecasts has been given renewed attention
recently: there is a tendency to overstate skill levels
in summary verification results. This problem arises
in verification scores which are referenced explicitly
or implicitly to climatology, such as the Brier skill
score and the ROC, and when the samples are drawn
from inhomogeneous datasets (e.g. when summer and
winter data are included in the same sample). This
issue is discussed by Hamill and Juras (2006). This

unrepresentative estimate of skill is best avoided by
computing skill scores on stratified samples, by season
and for single stations or homogeneous regions. If the
sample size is not sufficient, then the score computation
should use anomalies to remove the climatological signal
before compositing over space and time; alternatively,
climatological quantiles can be used to define the forecast
events instead of actual values of the weather variable.

The reliability diagram (or ‘attributes’ diagram in its
full version as described by Hsu and Murphy, 1986) has
been and continues to be widely used in verification prac-
tice. Embodied in this one verification tool are measures
of several attributes of probability forecasts: reliability,
resolution, sharpness (when the forecast probability dis-
tribution is shown), and skill (Murphy, 1993). The consis-
tency between observed frequencies and predicted prob-
abilities can be included in the visual presentation of the
graph (Smith, 1997; Bröcker and Smith, 2007a). Atger
(2004) illustrates the tendency toward overestimation of
the reliability component of the Brier score (underesti-
mating the reliability) because of sampling variability
when samples within the bins are small, or when the num-
ber of bins is large. Atger (2004) proposes the use of the
ROC fitted by the bi-normal model, which involves unre-
strictive assumptions, as an aid to offsetting the effects
of sampling variability in the reliability table. This issue
was also discussed by Weigel et al. (2007) in the context
of the rank probability skill score and small ensemble
sizes.

Discussion of the attributes of probability forecasts and
their meaning has also increased in recent years. The most
comprehensive discussion is that of Murphy (1993), who
identifies nine attributes which apply not only to proba-
bility forecasts but also forecasts of continuous variables.
These attributes can be related to the joint distribution of
forecasts and observations and its factorizations (Mur-
phy and Winkler, 1987), to define a complete general
framework for forecast verification. A more recent gen-
eral review of forecast verification methods (Toth et al.,
2006) would seem to be less comprehensive, present-
ing only the two attributes reliability and resolution as
important to the evaluation of forecasts. Four of Mur-
phy’s (1993) attributes are important for a full diagnostic
verification of probability forecasts. These are reliability,
resolution, discrimination and sharpness. The first two
are obtainable from the reliability table or the decom-
position of the Brier score, the third is measured by the
ROC area, and the fourth is determined by the forecast
strategy alone.

There would seem to be some confusion between reso-
lution and discrimination. While they are not independent
attributes, they are not the same. The former is the condi-
tional distribution of the observations given the forecasts
while the latter is the conditional distribution of the fore-
casts given the observations (Murphy, 1993). Contrary to
Toth et al. (2006), it is more important to measure the dis-
crimination via the ROC area than the resolution, since
the ROC and the reliability are independent diagnostic
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measures of forecast performance, and express both fac-
torizations of the joint distribution (Murphy and Winkler,
1987). The reliability table with its associated summary
measures and the sharpness graph, and the ROC, with
its associated skill measure, the ROC area, together form
a reasonably complete basis for the diagnostic verifica-
tion of probability forecasts. Moreover, the four attributes
evaluated by these two tools can be translated to corre-
sponding tools for other forecast types.

3.4. Other probabilistic verification issues considered
at the workshop

As part of an evaluation of time-lagged ensembles
of high-resolution precipitation forecasts, Mittermaier
(2007) suggested that the distance between the two fore-
cast probability distributions conditional on occurrences
and non-occurrences might be a more useful measure of
discrimination than the more often used ROC area.

Mason (2007) suggested that instead of using the
contingency table to obtain one point on the ROC curve,
it is fairer to rank the forecasts in the sample, assign
equal probability to each interval, then compute hit rates
and false alarm rates for each probability threshold in the
sample. In such a way, one obtains a full ROC curve,
which takes into account forecasts which are nearer to
the threshold compared to those which are further away.

Hopson et al. (2007) argue that the ‘standard’ spread-
skill correlation measure may be a misleading measure of
the utility of ensemble dispersion forecasts. As alterna-
tives, Hopson proposed normalizing the correlation using
a constant climatological forecast, binning the spread-
skill correlation, or computing a binned rank histogram.

4. Verification of extreme events

One of the important goals of weather prediction is
to help forewarn society about severe or high-impact
events that can incur large damages and losses. The
loss caused by severe events depends in a complex
manner on attributes of the event (e.g. the magnitude
of the meteorological variables), the vulnerability of
infrastructure, and the amount of exposure (Stephenson,
2008). In order that the mean loss is sustainable, severe
events also have to be rare events, hence, the use of
the term rare severe event (RSE ) by Murphy (1991).
Such events are also loosely referred to as extreme
events in atmospheric science. The urge to develop
some new verification approaches for extreme events
has grown strongly in the last decade, partially due to
the development of high-resolution models, which are
capable of resolving the spatial and time-scale of extreme
events, and because of the increased frequency of extreme
events expected from anthropogenic climate change, as
well as the increased vulnerability of societies to the
occurrence of extremes (e.g. European heat wave in the
summer 2003).

A simple and rather naı̈ve way to consider an
extreme event is to examine only its occurrence or

non-occurrence. Examples include the occurrence of tor-
nadoes in the widely debated Finley’s (1884) tornado
forecast verification (see Murphy, 1996 and references
therein), or the IPCC (2001) definition of simple extreme
events to be ‘individual local variable exceeding critical
levels on a continuous scale’. Performance of determin-
istic forecasts of such events is typically assessed using
traditional categorical scores for binary events (see Jol-
liffe and Stephenson, 2003, chapter 3). In particular, the
threat score (also known as the Critical Success Index)
has been widely used for rare events because of its abil-
ity to be defined even if one does not know the number
of correct no-event forecasts (Gilbert, 1884; Donaldson
et al., 1975). Several studies have analysed the categori-
cal verification score limits for increasingly rare events.
Schaefer (1990) showed that the Equitable Threat Score
(also known as the Gilbert Skill core) converges to the
threat score as the events become rarer. Doswell et al.
(1990) showed that the Peirce Skill Score (also known
as the Hanssen-Kuipers score or the True Skill Statis-
tic) converges to the Hit Rate as the number of correct
rejections becomes larger with respect to the other entries
of the contingency table. Marzban (1998) also presented
rare event limits of scores but noted that there was some
ambiguity in how the limits of the cell counts could
be taken. Stephenson et al. (2008a) avoided this prob-
lem by developing a simple asymptotic model for rare
binary event forecasts, and then used it to show that these
results depend on how the hit rate decreases as a function
of increasing event rarity. Using this model, Stephenson
et al. (2008a) demonstrated that all the traditional scores
tend to non-informative limits such as 0 or 1 for increas-
ingly rare events.

The trivial limit of scores can be avoided by using
more appropriate association measures for extremes. For
example, Göber et al. (2004) found that the skill as
judged by association measures such as the odds ratio can
actually increase for rarer events. Inspired by recent work
in bivariate extreme value theory (Coles et al., 1999),
Stephenson et al. (2008a) have proposed a new score,
known as the Extreme Dependency Score (EDS), for
the assessment of skill in deterministic forecasts of rare
binary events. The EDS has no explicit dependence on
the bias of the forecasting system and so has the desirable
property that it cannot be improved by hedging the
forecasts (i.e. under- or over-forecasting the occurrence
of the event). EDS is a measure of association for extreme
events that is insensitive to the choice of threshold.
Ferro (2007b) developed these ideas further by using a
probability model from extreme value theory to model the
bivariate probability distribution between the forecasts
and observations. This distribution-oriented approach to
verification, based on a parametric model, allows one
to use the data at all thresholds to smoothly interpolate
between thresholds and to make formal inference about
the true skill of the system (e.g. confidence intervals on
the scores).

The rarity of extreme events poses some specific chal-
lenges for verification. Firstly, rarity of sample events can

Copyright  2008 Royal Meteorological Society and Crown in the right of Canada. Meteorol. Appl. 15: 3–18 (2008)
DOI: 10.1002/met



10 B. CASATI ET AL.

lead to large sampling uncertainty in verification statis-
tics. This problem can be partially alleviated by calculat-
ing verification scores obtained by pooling observations
and forecasts over larger space-time domains. However,
larger domains can also bring with them potential prob-
lems of inhomogeneity and non-stationarity. When per-
forming data pooling, one should take account of the
possible variations within either the spatial domain or
time-period. As mentioned earlier, pooling over inho-
mogeneous data can lead to unrepresentative estimates
of skill (Hamill and Juras, 2006). To address this issue,
statistical models that have spatio-temporal explanatory
variables are required. Secondly, rarity can lead to small
or zero counts when stratifying events into categories
(e.g. contingency table cells or bins for reliability dia-
grams). Various methods exist in the statistical literature
for dealing with such sparseness problems (see section
9.8 of Agresti, 2002). Thirdly, small sample sizes can be
unduly influenced by outlier values that can corrupt the
verification of extreme event forecasts. The effect of such
outliers can be reduced by fitting appropriate extreme
value models to all the available data (e.g. Ferro, 2007b).

Extreme value modelling approaches use a subset of
large values from the data sample to infer the extreme
properties of the underlying process that generated the
data (e.g. Coles, 2001; Beirlant et al., 2004). Large
values are selected in various ways, for example, peaks-
over-threshold (e.g. values which exceed a pre-defined
threshold), block maxima (e.g. annual maxima), or the
r-largest values (e.g. the five largest events in the year).
The large values are used to infer behaviour about the tail
of the distribution rather than provide an absolute binary
definition of what is an extreme event. Extremeness is
a relative concept rather than an absolute dichotomy.
However, regularity assumptions are not always valid,
for example, for variables related to physical phenomena
that do not exist in less extreme forms (e.g. tornadoes),
or that are qualitatively different because of non-linear
feedbacks (e.g. heat waves, fog). Nevertheless, extreme
value theory concepts and models are highly relevant for
the verification of extreme event forecasts.

Inference of skill for the higher thresholds, by issuing
and assessing forecasts at lower thresholds, can provide
forecasters with useful experience and feedback in fore-
casting and interpreting more extreme events (personal
communication, Dr K. Kok at KNMI). For example,
to have sufficient numbers of events for longer range
forecasting systems such as current operational seasonal
forecasting systems, forecasts are issued for (moderate)
extreme events that are not very rare: tercile categories
defined by the 0.15 and 0.85 empirical cumulative proba-
bilities are currently used at the Met Office and European
Centre for Medium-Range Weather Forecasts (ECMWF)
for defining such events as extremes in summer mean
temperatures (personal communication, Dr F.J. Doblas-
Reyes at ECMWF).

Deterministic forecasts are often hedged to avoid miss-
ing warnings of severe events and this often leads to

a large frequency bias. For extreme events it is there-
fore desirable to issue probability forecasts that can-
not be as easily hedged (Murphy, 1991). Furthermore,
probabilistic forecasts provide useful information on the
forecast uncertainty, which is desirable to communicate
for events that can incur large losses. Probabilistic fore-
casts can also be used to quantitatively assess risk using
a cost–loss model (for example) and help in optimal
decision-making for specific users. However, communi-
cation, understanding and perception of probability fore-
casts encounters more difficulties than for a deterministic
single-value point forecast, and some users prefer fore-
casters to make a definitive statement, rather than being
themselves involved in making an optimal decision. (For
example, the aviation industry has resisted the use of
probabilities in terminal area forecasts.) In fact, proba-
bilistic forecasts push the decision for action away from
the forecast community towards the user community and
reacting agencies. Resistance to the use of probabilistic
forecasts is sometimes due to the awareness that a better
understanding of the forecast meaning and ownership of
the problem would be required from such community and
agencies. Extreme event verification is partially driven
by the need for understanding and informing on the con-
sequences and possibly elevated risks in responding to
extreme event forecasts. One other important aspect is
that the probability for an event should be expressed rel-
ative to climatological probabilities (Murphy, 1991), as
has been recently implemented in operational warning
systems for extreme events (Lalaurette, 2003). Very lit-
tle published work has focused on methods specifically
suited to the verification of probability forecasts of rare
events.

It should be noted that real-world weather events
are complex phenomena consisting of many complexly
related attributes. For example, they can be character-
ized by variable temporal durations and spatial scales,
and they often involve more than one non-independent
weather variables (e.g. hurricanes that cause damage due
to extreme wind speeds and precipitation). Forecasts of
complex extreme events can involve the definition of
probability indices obtained from the combination of
probabilities of occurrence of extreme events for many
different variables, with different weights. Verification of
such forecasts should take care in matching the forecast
with an ‘observation’ that is coherent with the defini-
tion of the extreme event being forecast. As an example
of complex extreme event verification, Roy and Turcotte
(2007) evaluated the average distance between observed
and forecast extreme events for hail, gusts, torrential
rain and tornados, and then evaluated categorical scores
by defining the contingency table entries with respect
to increasing radius distances, for each weather ele-
ment. They also computed a severe weather probability
index, as a weighted average of the different weather ele-
ment extreme events, and verified it with a Brier score,
again for increasing radius distances, where the obser-
vation probability was computed with the same weight
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used to compute the forecast probability index. Fore-
cast–observation pairing for extreme event verification
purposes can allow a certain tolerance in time and space,
as for the neighbourhood verification approaches (Sec-
tion 3).

Despite increasing concerns about extreme weather
events, few studies have focussed on extreme events
verification. Much work remains to be done to address the
challenges facing verification of extreme event forecasts.

5. Operational verification

Forecast verification is an integral element in the
operational forecasting environment. Developments in
all forecasting, such as advancements in NWP mod-
els or improvements of end-forecasts produced by
human forecasters, can be monitored and evaluated
through verification. This evaluation process can pro-
vide valuable feedback to all stakeholders in the long
research–development–production chain, when associ-
ated with a functional, properly designed operational
verification system. The forecasters themselves, like-
wise model developers, research scientists, forecast office
administration, end customers of the weather service, and
the general public can be served by output from such an
operational verification system. It can provide means for
an active feedback and dialogue process for developers,
forecasters, end users and decision makers. On the other
hand, owing to the quite many different types of potential
users of the system, it has to be constructed in a modular
fashion to serve the various user needs and requirements.

Regardless of its acknowledged importance, state-of-
the-art operational forecast verification systems are still
rather rare within operational weather services. Maybe
one reason is the aforementioned difficulty to serve (too)
many prerequisites and the complexity of developing a
functional but yet user-oriented package. Moreover, most
of the recently developed verification methods presented
in the previous sections of this paper are missing from the
existing operational verification systems. This is partially
due to the complexity of some of these methods. In
addition, interpretation of the results from some of the
methods is not always intuitive for some users, such
as operational forecasters or some model developers,
who are not dealing with verification issues within their
normal duties, and are not involved in the development
of new verification techniques. The verification research
community needs to account for these issues while
developing new methods; otherwise these new techniques
risk to remain just theoretical studies confined to the
(small) verification research community itself. It is quite
rare for a new verification method to become commonly
accepted: the ROC may be the only ‘new’ score to
become a standard during recent years.

It is, however, highly possible to construct a func-
tional operational verification framework even based on
the more traditional verification methods. Standard cat-
egorical and continuous scores, as recommended by the

WMO (2000), are evaluated daily in most National Mete-
orological Services (NMS). The quality of the forecasts
is usually monitored for specified time steps, regions and
time periods. Confidence intervals and statistical signif-
icance of the evaluated scores, which have been far too
often neglected, have recently started appearing aside ver-
ification statistics.

Despite addressing in a basic fashion the many differ-
ent requirements dictated by the wide user community of
operational verification, traditional verification methods
are familiar to many and can provide much valuable
information, when their pros and cons are acknowl-
edged and they are interpreted properly. However, even
the more common measures and their features are not
necessarily well understood within the meteorological
community, especially so among the operational fore-
casters. A knowledge gap clearly exists between the ver-
ification research community and the operational mete-
orologists who are, after all, some of the most impor-
tant users of feedback from the verification undertak-
ing. Training in both traditional and recently developed
verification methods is a major need in operational cen-
tres. A high-quality verification system should have a
comprehensive training module attached to it in a form
that facilitates a self-learning approach. As an example,
P. Nurmi and L. Wilson have developed a computer-
aided self-learning package, available from EUMETCAL
(http://www.eumetcal.org). This comprehensive package
includes tutorials covering the verification of continuous,
categorical and probabilistic variables, and has particular
emphasis on the interpretation of the verification results
for meteorologists.

Surveys concerning operational verification activities
have occasionally been conducted within the meteoro-
logical community. A somewhat outdated 1997 WMO
(2000) global survey of member states’ public weather
services programmes suggested that 57% of NMSs had a
formal verification programme. All NMSs who responded
indicated that they passed the results to staff and about
a quarter submitted them to government authorities and
other users. Bougeault (2002) conducted a survey about
activities on the verification of weather elements per-
formed at a selection of operational NWP centres. More
recently, the Royal Meteorological Society commissioned
a survey (Mailier et al., 2006) on quality assessment of
commercial weather forecasts in the UK, which high-
lighted the deficiencies and lack of standardized pro-
cedures for forecast quality assessment. The difficulty
of engaging the whole market place in an open debate
around issues of forecast quality was one of the interest-
ing results of the survey. Moreover, the survey suggested
promoting awareness of the importance of weather fore-
cast quality and an open culture that would favour the
raising of quality standards and public awareness of qual-
ity issues.

The ECMWF has the practice of conducting annual
inquiries about their member states’ verification activ-
ities which are then reported in the Centre’s internal
documents. All member states are requested to provide
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details on the major highlights of their verification activ-
ities and most relevant verification results. The feedback
is expected to be based on the guidance provided as a set
of common verification recommendations (Nurmi, 2003).
While the technical report by Nurmi (2003) was prepared,
five out of 24 ECMWF member states indicated they were
running an on-line operational verification system. An
additional three member states stated that they produce
periodical verification summaries. To summarize, there
is presently no clear widespread understanding about the
status and features of operational verification systems that
are operating within the weather services. It might be
fruitful to launch a comprehensive survey to investigate
the present situation.

In order to verify model output, it is necessary to have
a description of what we believe is the true state of the
atmosphere. Only a small fraction of surface observa-
tions, which describe the state of the atmosphere affecting
activities of the general public, are currently used in the
verification methods at NWP centres. Numerous difficul-
ties are involved in the routine acquisition, quality control
and processing of surface observation data, which often
lead centres to use analyses based on the model’s data
assimilation system as ‘truth data’ for operational verifi-
cation, instead of ‘raw’ observation data. Analyses have
the advantage of retaining the model physical coherence,
and are characterized therefore by a temporal and spatial
structure. Moreover, analyses are already defined over
the model domain, usually at the same locations as the
model forecast being verified. However, analyses tend
to filter and smooth observation data, both through the
quality control and through the data assimilation itself.
In fact, the observations are checked against and merged
to a short-range background forecast from the model. An
accurate observation may then be rejected (or rescaled)
by the quality control (and merging procedure) because
it contains information on small scales which the model
cannot resolve; or it can be rejected because of, say, a
position error in the short-range model forecast against
which it is compared. Moreover, model-based analyses
produced in areas with none or sparse observations will
tend to resemble the model background field. This leads
to an incestuous verification where the verification data
have been processed to resemble the characteristics of the
model being verified. As an example, verification could
become unnaturally favourable, in the context of a com-
parison of different NWP forecasts, to the model used
to produce the analysis. Operational meteorological ser-
vices can often be tempted to use the model analysis
for verification, since it is practical, handy, and leads to
more positive scores. Despite being an easy short-term
solution, this approach can affect decisions on the model
development and could eventually lead to a long-term
deterioration of forecast quality, since the model could
slowly depart from reality. Within the verification strat-
egy, the choice of the reference data representing the
true state of the atmosphere can dramatically affect the
verification results. Therefore, such choices should be
made with awareness and caution. Moreover, the source

and characteristics of reference verification data should
always be clearly described, not only for operational ver-
ification systems but also in research-oriented verification
activities.

When constructing an operational verification system,
most of the workload is spent on data management issues
(extracting the data from the archives, performing quality
control, pairing forecasts with observations, stratifying or
pooling the data), and relatively small effort is dedicated
to the statistics computation. Operational verification sys-
tems are designed around the need for quick evaluation
and display of statistics. Since the most time consuming
process is data management, this issue is sometimes
addressed by building a database of observation-forecast
pairs. However, this solution is impractical because of
space issues (it is a second archive of data), and because
the algorithms to perform Quality Control (QC) and pair-
ing are likely affected by changes with time, so that
the archive needs to be rebuilt every time there is an
algorithm update. A more efficient way of addressing
this issue is by evaluating and archiving some basic
summary statistics (e.g. contingency table counts), from
which most of the verification statistics can be evaluated
and aggregated, rapidly, over the desired time-period and
region of interest.

During the Third International Workshop on Verifica-
tion Methods examples were provided of new verification
methods applied in an operational setting to assess vari-
ous aspects of model performance from a new perspec-
tive. Schubiger et al. (2007) showed how new verification
techniques can be integrated in existing verification suites
to provide additional information on model performance
on different spatial scales. Zingerle and Nurmi (2008)
and Marsigli et al. (2008) have applied new verification
methodologies in the operational environment to provide
instant information on model behaviour to the forecast-
ers. They have used high-resolution surface observations
for precipitation and re-sampled satellite images to ver-
ify pseudo-satellite images produced by NWP models.
A real time forecast verification (RTFV) system is being
developed by E. Ebert for the Forecast Demonstration
Project associated with the Beijing 2008 Olympic Games.
The RTFV system is designed to produce and display
real-time verification products to guide forecasters in for-
mulating their final forecast. Both traditional scores and
new feature-oriented and scale-verification techniques are
included in the RTFV console.

Operational centres are encouraged to adopt some of
the new verification approaches (in a parallel running
framework), alongside the traditional techniques, both to
gain from the added information about forecast quality
that can be provided by these techniques, and to pro-
vide feedback to the verification developers for further
improvement/tuning of the techniques. On the other side,
the research community should try to develop their tech-
niques with fast and efficient algorithms, to enable their
use within operational verification systems. A dialogue
and exchange between the two communities is necessary
to achieve an optimal verification product.
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6. Verification packages and open sources

The desire to share and promote the use of new more
advanced verification approaches and the need for ver-
ification capabilities by many members of the meteoro-
logical community has led the verification community to
develop several new verification packages (e.g. Holland
et al., 2007). Desirable properties of a package are that
it is easily sharable (both in terms of code availability
and data handling) and well documented. Demargne et al.
(2007) underlined that, prior to building a verification
package, it is important to define goals, customers, com-
ponents, and desired capabilities of the system. Holland
et al. (2007) extended the requirements further to include
modularity, configurability, and flexibility. These charac-
teristics are needed to appeal to a vast audience of diverse
customers. Both authors insisted on concentrating efforts
toward easily understandable informative metrics sup-
ported by customized graphical displays that help viewing
and understanding the results.

The R statistical computing software (http://www.r-
project.org/) is a well-documented, free and open-source
programming language which includes the most robust
and advanced (but well established) tools for statistical
analysis. It operates on most operating systems (Win-
dows, Linux and Apple OS) and it can incorporate codes
from other languages (e.g. FORTRAN and C++). Since
it is based on a user-interactive concept, R is suitable
as research tool. On the other hand R codes can be
run in batch-mode from shell scripts. However, R might
encounter issues related to the size of large data sets and
might not meet the efficiency requirements demanded in
operational verification. Few packages related to verifi-
cation have been developed in the R language.

The R Verification Package (Pocernich, 2007) includes
many of the basic verification statistics outlined in Wilks
(2006) and in Jolliffe and Stephenson (2003), such as
traditional continuous and categorical verification scores
and skill scores, conditional quantile plots, verification
statistics for probability forecasts, ROC plots and relia-
bility diagrams. In addition, some of the new verification
techniques have been included in the package, such as
the evaluation of skill scores which include measurement
errors (Briggs and Ruppert, 2004), the intensity-scale
technique (Casati et al., 2004), and the circular CRPS
(Grimit et al., 2006). Recent updates have focused on
calculating confidence intervals for skill scores, display-
ing intervals on attribute and ROC plots, and additional
tools for statistical inference. Some other R packages (e.g.
Carstensen et al., 2007; Sing et al., 2007), developed by
the medical research community, include some advanced
verification routines for the calculation of statistics related
to the ROC curve.

In addition to the R package, software to run some
of the new verification techniques is available for use
by researchers, forecasters, or users who are interested
in testing these methods with their data. The IDL code
accompanying Ebert’s (2008) article on the compar-
ison of neighbourhood (fuzzy) verification techniques

is available at http://www.bom.gov.au/bmrc/wefor/staff/
eee/beth ebert.htm, as is the code for the Ebert and
McBride (2000) features-based technique. The C++
code for the MODE (Davis et al., 2006a,b) object-based
technique is available as a component of the model eval-
uation tools (Holland et al., 2007) at http://www.dtcenter.
org/met/users/. The R and FORTRAN code for the
intensity-scale verification approach (Casati et al., 2004)
is available at http://www.met.rdg.ac.uk/∼swr00bc/IS.
verif.html. The R code for the Extreme Dependency
Score of Ferro (2007b) is available at http://www.met.
rdg.ac.uk/∼sws02caf. A toolbox for the translation of
ensembles of model runs into probabilistic weather fore-
casts (Roulston and Smith, 2003; Bröcker and Smith,
2008) and their evaluation (Roulston and Smith, 2002;
Bröcker and Smith, 2007a,b) and value (Smith, 2003)
can be found at http://www.lsecats.org. The verification
community is strongly promoting algorithm sharing, to
allow a more dynamic exchange of research tools and
experiences, and a faster improvement and dissemination
of new verification techniques.

7. User-oriented verification strategies

Different forecast users have many different needs with
respect to forecast verification information. As an exam-
ple, information on forecast quality can be used to learn
about specific forecast deficiencies and refine particular
aspects of NWP models, or to help define the post-
processing needed to correct NWP forecast errors. Infor-
mation on forecast performance can affect some meteoro-
logical services’ administrative decisions. Finally, infor-
mation on forecast quality can also be used by specific
forecast users to interpret the forecast itself, to assess its
level of trustworthiness (or uncertainty), to help make
decisions regarding whether to take particular actions,
and to estimate the value gained from the use of a fore-
cast product for a specific purpose. Different verification
strategies need to be tailored to the interests of spe-
cific users. The following paragraphs identify some user
needs and illustrate how these needs affect the design and
choice of verification strategies.

Model developers might need information about the
behaviour of operational models both in a monitoring
sense and in a scientific/development sense. For monitor-
ing purposes, time series of accuracy measures and skill
scores can be evaluated, and can be used as a baseline
to evaluate the impact of proposed changes to the model.
Spatial and temporal aggregation should be performed
on regions characterized by similar weather regimes,
seasonally or monthly, and for individual forecast lead
times. Some of the new spatial verification techniques
can be used to assess systematic displacement error or
the scale-dependency of the forecast performance. Some-
times a conditional verification study can provide specific
feedback on forecast quality for particular forecast or
observed weather situations. Despite the fact that it is
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often ignored, information about the statistical signifi-
cance of differences in verification results between older
and new model versions is usually desirable.

Forecasters need to be aware of systematic model defi-
ciencies in order to formulate their final forecasts and/or
to issue warnings. Moreover, they might want to know
about the capabilities of their own forecasts: optimally,
each forecaster should be provided with feedback on
his/her own performance. Forecasters can use the same
type of verification information used by the modellers,
in order to correct, as an example, systematic biases or
errors in NWP model output related to specific weather
conditions. Forecasters, however, are likely to require
their verification information earlier, perhaps while their
most recent forecast situation is still fresh in their minds.
Thus, real-time verification systems which bring infor-
mation to the forecasters based on the latest verification
results could be appealing, for example, to use as a tool
to choose the best-performing model among several can-
didate models.

The management of meteorological services may wish
to know that their investment in research and develop-
ment is indeed leading to improvements in the quality of
weather forecasts. A few representative verification statis-
tics providing information about overall forecast perfor-
mance and long-term trends would normally meet this
need. Aggregation of verification data is typically per-
formed over large (administrative) regions (e.g. country
boundaries, rather than regions characterized by similar
weather regimes) and long periods.

Increasingly, owners or managers of businesses
affected by the weather and who need guidance for their
decisions have become users of weather and climate fore-
casts. These users all have an economic stake in the
quality of the forecasts, to the extent that the weather sen-
sitivity of such users can be defined in monetary terms.
Verification information becomes an essential ingredient
in the assessment of economic benefit (if any) of the fore-
cast to them. Weather-sensitive business groups encom-
pass a wide variety of social and economical sectors to
individual decision makers, including, for example, the
agricultural sector, transport and aviation, managers of
electricity companies, operators of wind farms, managers
of hydrological agencies, individual farmers, and retail-
ers who might want to be sure to stock umbrellas when
significant rain is forecast (see Smith et al., 2001). Those
users need information about the quality of forecasts in
terms of the specific weather elements and categories of
relevance for their application.

All this diversity in the user community for forecasts
and verification information suggests a need for some
sort of hierarchy of forecast verification methods, which
reflects varying levels of needs to ensure user relevance
of results. In general, it could be argued that the greater
the tuning of the design of verification methods to
specific users, the smaller the user group for which those
results will be valid. The tendency has been to try to
satisfy the largest number of potential forecast users
with specific verification systems. Unfortunately, this can

lead to verification efforts which really are of little use
to anyone. The time has come to diversify verification
methodology to match the diverse needs of users more
closely, even if those user groups are relatively small.
This goal also means the scientific community will need
to work more closely with the user community in the
design of new verification strategies.

8. Forecast value

The value of a forecast depends not only on how well
it foreshadows future meteorological events but also
upon its communication to decision makers and their
ability to use information to mitigate impacts of the
weather. From a user’s perspective, it is usually those
verification measures that tend to evaluate the accuracy
and skill of a forecast in predicting the future paths
of the weather, which are of most use. However, it is
useful to distinguish the value of a forecast to a particular
user from the verification of the quality of the weather
forecast itself (Murphy, 1993). It is quite reasonable
for a user to evaluate a forecast in terms of expected
economic benefit. This cannot be done by using a skill
score, but must be determined by evaluating whether
or not the investment required to apply the information
provided by the forecast is justified for that user. While
forecast system improvement should be based on proper
verification measures, a user’s evaluation of forecast
value should reflect the expected benefits gained from
the use of the forecast, for that specific user.

The economic value of weather and climate forecasts
has been of concern for more than a century (e.g. Lil-
jas and Murphy, 1994; Katz and Murphy, 1997; Murphy,
1998). A common approach for estimating forecast value
is based on the cost/loss decision model. This model
assesses the forecast value by combining financial infor-
mation from the user with verification results, generally
framed in a contingency table format. The user’s finan-
cial sensitivity to weather is generally quantified by the
costs and losses to be faced if action or no-action is
taken with respect a certain forecast. As an example,
Richardson (2000) describes a method to estimate the
value of the ECMWF ensemble prediction system with
respect to a deterministic forecast, which depends on the
user’s cost and loss ratio. As noted by Zhu et al. (2002),
such a model provides a relationship between value and
the ROC curve. Rollins and Shaykewich (2003) pro-
posed an alternative to the cost-avoidance approach, and
assess the weather forecast value via a demand-based (or
willingness-to-pay) approach. While the cost–loss model
provides a straightforward approach for estimating value,
and has been widely applied to meteorological forecasts
(e.g., Katz and Murphy, 1997), this approach typically
is overly simplistic and is difficult to apply to prob-
lems involving complex-decision situations or multiple-
decision makers. Other methods that can be applied to
this problem include survey techniques and econometric
models (Katz and Murphy, 1997). Much more effort is
needed to develop this area of forecast evaluation.
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A parallel to the distinction between quality and value
also exists in the context of public safety and severe
weather: in particular, issuing statements to motivate
action is quite distinct from issuing information to inform.
The effectiveness of warning and evacuation orders
depend on much more than the probability of the event,
even when that can be forecast precisely (Roulston and
Smith, 2004), and thus the value of the forecast in terms
of public safety will also depend on more than the
meteorological accuracy of the forecast system.

While the meteorological community tends to focus
on severe weather, there is significant value in forecast-
ing relatively boring weather with significant economic
impact which can, in fact, be mitigated (Roulston et al.,
2003; Altalo and Hale, 2004; Altalo and Smith, 2004;
Roulston et al., 2005). Information from ensemble fore-
casts is used every day by companies around the world.
In sectors such as energy generation and financial mar-
kets, the utility of the forecasts for non-severe weather
can have very large impacts.

9. Conclusions

This paper has presented a survey of the ‘state of the
art’ in verification practice, research and development,
through the eyes of the Third International Verification
Methods Workshop, Reading, UK, January 2007. The
workshop and a survey of the recent literature reveals
that forecast verification has been a very active field of
research in the last decade or so. The field has been broad-
ened with the development of new techniques; further-
more, existing techniques, particularly those relating to
verification of extreme events and probability forecasts,
have been re-evaluated and extended to new applications.
Efforts to promote verification and the proper interpre-
tation of verification output have been made through
recent books (Wilks, 2006 and Jolliffe and Stephenson,
2003), through the series of workshops organized by the
Joint Working Group on Verification, and through the
verification efforts associated with international Forecast
Demonstration Projects, such as those organized for the
Sydney and Beijing Olympics.

Some general trends can be identified, for example,
toward the development of techniques which account for
the spatial structure and presence of features in meteo-
rological fields, and toward the inclusion of confidence
limits and consistency bounds in verification results. The
last of these is long overdue, and unfortunately still incip-
ient. Such a trend must continue. A renewed emphasis on
user-oriented verification is evident, but it is also clear
that much remains to be done before it can be said that
most verification efforts really meet the needs of specific,
identified user communities. Finally, the standardization
of verification practice is being encouraged through the
generation and dissemination of open-source code such
as the ‘R’ verification package.

Specific issues have been identified for further research
and development. These include the need to extend spa-
tial verification methods to sparse observation networks;

the importance of properness of scores in verification sys-
tems; issues surrounding the computation of the ROC
area; the development of methods which are more appro-
priate than standard scores for extreme event verification;
the need for operational verification systems which use
truth datasets that are quality controlled independently of
the model or models being verified; and last, but certainly
not least, the need to tune verification efforts to a user or
user community which is defined and consulted a priori.

With the increasing availability of open-source, well-
documented, user-friendly codes for verification, it is
becoming easier to carry out meaningful verification
studies. Furthermore, the results of verification research
and development are being made available to the wider
research and operations community more quickly than
ever before. These are excellent trends which will
enhance the accessibility of verification methods and
results for all users in the future.
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