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ABSTRACT

Verification is an important part of any forecasting system. It is usually achieved by computing the value
of some measure or score that indicates how good the forecasts are. Many possible verification measures
have been proposed, and to choose between them a number of desirable properties have been defined. For
probability forecasts of a binary event, two of the best known of these properties are propriety and
equitability. A proof that the two properties are incompatible for a wide class of verification measures is
given in this paper, after briefly reviewing the two properties and some recent attempts to improve prop-
erties for the well-known Brier skill score.

1. Introduction

Forecast verification is a crucial aspect of any predic-
tion system. It is important to assess the quality of fore-
casts if improvements are to be made. A large number
of verification measures have been suggested (Jolliffe
and Stephenson 2003). To narrow the range of possible
measures, a number of desirable properties of measures
have been proposed and generally accepted (Murphy
1993; Mason 2003). For probability forecasts of a binary
event, the two most frequently cited properties are pro-
priety (Winkler and Murphy 1968) and equitability
(Gandin and Murphy 1992). A score is proper if it is
optimized only when a forecaster predicts according to
his/her true beliefs and is equitable if the same expected
score is achieved for all unskilled forecasts of a certain
type—for example, constant forecasts.

The widely used Brier score (Brier 1950) is proper
but not equitable (Mason 2004), and recent research
has attempted to adapt the score to circumvent this
“nonequitability” (Mason 2004; Müller et al. 2005; Wei-
gel et al. 2007). It does not seem to have been noted in
previous studies that propriety and equitability are in-
compatible. A proof that it is not possible for a verifi-
cation score to simultaneously possess both properties
is given in section 4 of this paper. Before that, Brier

score, propriety, and equitability are defined in section
2, and recent attempts to alleviate or remove the non-
equitability of the Brier skill score are briefly discussed
in section 3.

2. Definitions

a. Probability forecasts of binary events

Suppose that a set of probability forecasts is made of
n binary events of interest such as “precipitation tomor-
row” or “damaging frost next month.” Denote the n
forecasts by {p1, p2, . . . , pn}, where each pi is a prob-
ability between 0 and 1. The corresponding observa-
tions {x1, x2, . . . , xn} are coded as 1 if the event occurs
and 0 if it does not. To assess the quality of the fore-
casts, various measures or scores can be constructed
that quantify the difference between the set of forecasts
and the corresponding set of observations.

The best known of these scores, and one of the sim-
plest, is the Brier score (Brier 1950), which is based on
the sum of squared differences between the forecasts
and observations:

B �
1
n �

i�1

n

�pi � xi�
2. �1�

There are many other possibilities, such as the linear
score or logarithmic score, defined in Table 1. To
choose between the wide variety of possible scores,
some desirable properties have been proposed. This
idea of assessing the verification measures themselves is
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sometimes known as metaverification (Murphy 1996).
Two such properties that are particularly relevant to
probability forecasts are propriety and equitability.

b. Proper scores and hedging

The concept of proper scores dates back at least as
far as Winkler and Murphy (1968). Suppose that, as
above, a forecaster makes forecasts {p1, p2, . . . , pn}. On
these n forecast occasions, the forecaster’s true beliefs
of the probability of the event are {q1, q2, . . . , qn}. If any
qi is different from pi, then the forecaster is said to be
hedging the forecast (Murphy and Epstein 1967). Hedg-
ing is beneficial to the forecaster if using it improves the
expected (long-term average) value of the score that is
being used to assess his or her forecasts. A score is
proper if the forecaster’s expected value for the score is
optimized by taking pi � qi. In other words, the fore-
caster cannot benefit from hedging, that is, by making a
forecast other than his or her true belief. If the expected
value is uniquely optimized by pi � qi, the score is
strictly proper. It is generally accepted that propriety (a
score being proper) is highly desirable—it is undesir-
able for a score to allow forecasters to benefit from
hedging their forecasts.

The topic of proper scores has been discussed in
some detail in both the meteorological and statistical
literature (see, e.g., Winkler and Murphy 1968; Savage
1971; Gneiting and Raftery 2007). The latter authors,
among others, discuss the characterization of proper
scoring rules. There exists an infinite number of such
rules, but only a few have been explicitly described. The
Brier score is by far the best known of these, but the
logarithmic score in Table 1 is also proper.

Each of these scores is often represented as a skill
score, which measures the skill of forecasts relative to a
baseline or reference forecasting system. Transforming
a score into a skill score often loses propriety. For ex-
ample, the Brier skill score may be written:

Bs � 1 �
B

Bref
, �2�

where Bref is the value of B for some unskilled refer-
ence forecasting system; Bs has the property that it
takes the value 0 for the reference forecasting system
and is 1 for perfect forecasts. Reference forecasts can
be chosen in a number of ways (Jolliffe and Stephenson
2003). One possibility is to issue forecasts according to
a random mechanism that is unrelated to any previous
observations. Such forecasts are clearly unskillful. A
second possibility is to use persistence, for which the
forecast for the next time period is identical to what is
currently observed. Strictly this is not unskillful in most
situations but it is represents a simple strategy that any
forecasting system should improve upon. The most
common reference forecast is “climatology,” in which
the forecast is always the long-term probability of the
event of interest, �, sometimes known as the base rate.
The Bref for climatology is often taken as �(1 � �), the
value of B achieved in the long run if � is always fore-
cast (Toth et al. 2003). If � is based on data different
from those used to assess the forecasts, then Bref is a
constant, not depending on the forecasts or observa-
tions. Hence Bs shares the properties of B and is
proper. In practice � is usually estimated by “sample
climatology,” x, the proportion of times that forecasted
event occurs in the sample and, in this case, the score is
no longer proper (Murphy 1973), except asymptoti-
cally, though Mason (2004) erroneously claims that it is.

c. Equitable scores

Another widely known desirable property is equita-
bility. This was first defined by Gandin and Murphy
(1992), though the concept was used many years earlier
in devising a verification measure for forecasts of cat-
egorical events (Jolliffe and Foord 1975). It is based on
the idea that all unskillful forecasts of a certain type
should have the same expected score. Specifically, con-
stant forecasts that are always the same (pi � p, i � 1,
2, . . . , n) are clearly unskillful, as are forecasts that
randomly choose a forecast from some distribution on
the interval [0, 1] (constant forecasts are a special case
in which all the probability in the interval is concen-

TABLE 1. Three scores for probability forecasts and associated functions of the scores.

Score Definition S0(p) S1(p) S�0 /S�1

Linear 1
n �

i�1

n

|xi � pi |
p (1 � p) �1

Brier 1
n �

i�1

n

�xi � pi�
2

p2 (1 � p)2 �p

�1 � p�

Logarithmic
�

1
n �

i�1

n

log� |xi � pi � 1 | �
�log(1 � p) �log(p) �p

�1 � p�
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trated at a single point). It would seem odd if two dif-
ferent forecasting strategies from this class have differ-
ent expected scores, as all such strategies are “equally
unskillful.” Hence equitability is considered desirable.

3. Nonequitability of the Brier skill score

None of the proper scores that have been suggested
in the literature are equitable (see section 4). In par-
ticular, with climatology as a reference forecast, Bs can
be negative for other unskillful (potential reference)
forecasts. This is undesirable in its own right, but from
a practical point of view it also means that forecasting
systems with skill may have values of Bs close to zero
and hence look distinctly unimpressive. This is referred
to in the literature as a negative bias in Bs. Both Mason
(2004) and Müller et al. (2005) have suggested modifi-
cations of Bs to alleviate or circumvent such negative
bias.

Müller et al. (2005) discuss the situation in which an
ensemble of m forecasts is generated and the probabil-
ity forecast for the event of interest is the proportion of
ensemble members for which the event occurs. They
consider the ranked probability skill score (RPSS),
which extends the Brier skill score to more than two
categories. To reduce the negative bias in this skill
score, Müller et al. (2005) replace the usual reference
score by one based on resampling of the climatology.
This turns out to be equivalent to using a reference
forecasting strategy in which a binomial random vari-
able is generated with m trials and probability of suc-
cess �, where m is the number of ensemble members
and � the climatological probability or base rate (Wei-
gel et al. 2007; see also Ferro et al. 2008). This alleviates
the problem of negative bias of the RPSS (and, as a
special case, the Brier skill score) for ensemble fore-
casts although as will be reported elsewhere, there may
be advantages in slightly adjusting the probability of
success in the reference forecast away from �.

Mason (2004) proposes a different approach. One of
his objectives is to ensure that all unskillful forecasts
have a nonnegative expected score. This addresses the
problem of negative bias, though it now has the oppo-
site problem that positive values of the score do not
necessarily imply skill. His reference forecast is differ-
ent from those proposed previously in that it depends
on the forecasts themselves, so the reference forecast
changes as the set of forecasts being assessed changes.
By allowing this dependence on forecasts, Mason
(2004) derives a variant of the Brier skill score that he
claims is equitable.

4. A no-go theorem for propriety and equitability

Many scores are additive and so can be written as the
mean “loss” over all n forecast times:

S �
1
n �

i�1

n

S�pi, xi�.

For example, the Brier score is additive and can be
written in this way with loss S(p, x) � (p � x)2. For
each forecast time, the loss can either be S1(p) � S(p,
1) when the observed event occurs, or S0(p) � S(p, 0)
when it does not. The two functions S0(p) and S1(p)
fully define the loss: S(p, x) � (1 � x)S0(p) � xS1(p).
Examples of S0(p) and S1(p) for three scores are given
in Table 1.

Most scores are additive since one generally assumes
that the two loss functions at any particular time do not
depend on the values of x and p at the other times.
However, this is not the case for skill scores in which
the reference forecast depends on the other values of
either x or p. For example, the Brier skill score based
on climatological mean forecasts has a denominator
that depends on the sample variance x(1 � x) of all the
x values and so depends on x in both the numerator and
denominator; it cannot therefore be written as a mean
loss over all previous forecast times. In the asymptotic
limit of large sample size, the denominator in the skill
score tends to a constant, so the skill score then tends to
an additive sum. This leads to the interesting result that,
although the Brier score is proper, the Brier skill score
is only proper in the asymptotic limit of large sample
size. In what follows, we will assume that a score can be
written additively, although this is generally only true in
the asymptotic limit for skill scores.

If the forecaster believes the probability Pr(x � 1) of
a future event at a certain time is q, which is strictly
between 0 and 1, then the expected value of the score
when p is forecast is

S�p, q� � �1 � q�S0�p� � qS1�p�, �3�

where expectation here is with respect to the forecast-
er’s belief. Probability q is a subjective probability in
that it reflects the belief of a forecaster and so can be
different for different forecasters. It is sometimes mis-
leadingly referred to as the true probability of the event;
however, it is not unique and is only true for a particular
forecaster for an event at a certain time.

For propriety, we require that this expected score is
minimized when p � q, in other words, when the fore-
caster issues a forecast that matches his or her belief.
For fixed q, either the expected score is a monotonic
function of p between 0 and 1, in which case the score
cannot be proper because hedging to 0 or 1 is beneficial,
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or it has a minimum strictly between 0 and 1. In the
latter case, the derivative of the expected score in Eq.
(3) with respect to p must be 0 at the minimum. Hence,

�S

�p
� �1 � q�

�S0

�p
� q

�S1

�p
� 0, �4�

so, for propriety:

S�0
S�1
�

p�q
�

�q

�1 � q�
�

�p

�1 � p�
, �5�

where the prime denotes a derivative with respect to p.
For strict propriety the ratio of derivatives on the left is
equal to the ratio on the right only when p � q.

Now consider equitability. For a score to be equi-
table, any forecast of the form “always issue the same
forecast p” should have the same climatological time-
mean score for any p. The expected score is

S�p, �� � �1 � ��S0�p� � �S1�p�, �6�

where � is the base rate, and expectation is now with
respect to climatology (i.e., the average score in the
long run if p is always forecast). Hence, for equitability,
the derivative of S(p, �) must be 0 for all p between 0
and 1. Therefore,

S�0
S�1

�
��

�1 � ��
�7�

for all p between 0 and 1, where � is a single fixed value.
Equations (5) and (7) are clearly incompatible. Equa-
tion (7) states that the ratio of derivatives is constant

for all possible forecasts p, whereas Eq. (5) says that the
ratio varies as p varies. Hence, it is impossible to
achieve both equitability and propriety.

Examples

Table 1 and Figs. 1–3 illustrate the ideas of propriety
and equitability for three scores: a linear score, a loga-
rithmic score, and the Brier (quadratic) score.

The first column of the table presents the definition
of each score, given a set of n forecasts {p1, p2, . . . , pn}

FIG. 1. Contour plot of S(p, q) in Eq. (3) for the linear score. FIG. 2. As in Fig. 1, but for the Brier score.

FIG. 3. As in Fig. 1, but for the logarithmic score.

1508 M O N T H L Y W E A T H E R R E V I E W VOLUME 136



and corresponding observations {x1, x2, . . . , xn}. The
next three columns give the form of S0(p), S1(p), and
the ratio of derivatives S�0 /S�1 for each measure. The
figures show the form of S(p, q) for the three scores and
illustrate geometrically the necessary conditions for eq-
uitability and propriety, that is, where S(p, q) � S(p, �).

Figure 1 displays S(p, q) for the linear score, for
which S0(p) � p and S1(p) � (1 � p). Here the function
is constant for all p when q � � � 1⁄2. Hence, for this
value of the base rate, but for no other, the linear score
is equitable. For any value of q, the minimum value of
S(p, q) is achieved when p is zero or unity, depending
on whether q is less than or greater than 1⁄2. Thus it is
always advantageous to hedge forecasts to 0 or 1, and
the score is not proper.

Figure 2 shows S(p, q) for the Brier score, for which
S0(p) � p2 and S1(p) � (1 � p)2. Here there is no value
of � for which S(p, �) is constant for all p, so the score
is never equitable. However, the minimum value of
S(p, q) is achieved on the 45° line in Fig. 2, and only on
that line for every value of q, so that the score is strictly
proper. Although Fig. 3, for the logarithmic score with
S0(p) � �log(1 � p), S1(p) � �log(p), looks less
simple than Fig. 2, its underlying structure is the same,
illustrating propriety and nonequitability.

For both Figs. 2 and 3, if the figures are considered as
contours on a topographical map, then walking from
west to east is uphill until the 45° line and downhill
thereafter, demonstrating propriety. There is no west–
east traverse that is flat, so equitability is impossible.
However, in Fig. 1, the west–east traverse is flat for q �
0.5, demonstrating equitability in this case. For any
other value of q, the traverse will be either all uphill
(for q 	 0.5) or all downhill (q 
 0.5), ruling out pro-
priety.

At this point, it should be noted again that our no-go
theorem is restricted to a certain class of verification
measures, namely those where the measure for a set of
n forecasts can be written as the sum or average of
scores for each individual forecast. Using the notation
of section 4, the overall score S can be written as

S �
1
n �

i�1

n

S�i
�pi�, �8�

where pi is the ith probability forecast and �i � 1 if the
event occurs for the ith forecast and equals 0 otherwise.
Furthermore, the score for any individual forecast must
not depend on any of the other (n � 1) forecasts in the
set or their corresponding observations.

Many well-known verification measures fall into this
class, as demonstrated by Table 1, but their skill score
versions often do not. This is because, as discussed

above, the transformation used to convert a measure
into a skill score often involves all the data, as when
sample climatology is used as a reference forecast.

Our intuition is that propriety and equitability are
incompatible for all verification measures, including
such skill scores, and this view is reinforced by the work
described in section 3. However, demonstration of the
wider result awaits further research.

5. Discussion

It would be ideal to have a verification score that is
both proper and equitable, but the previous section
shows, for a large class of measures, that this is impos-
sible for probability forecasts of a binary event. Both
properties have their appeal, but our view is that pro-
priety is the more fundamental requirement. The im-
plication is that equitability is a largely irrelevant prop-
erty for probabilistic forecasts. However, it should not
be forgotten that, unlike propriety, equitability can also
be defined for deterministic forecasts and is highly rel-
evant for such forecasts. Indeed, the idea of equitability
was first introduced for deterministic categorical fore-
casts (Gandin and Murphy 1992) and later, perhaps
mistakenly, adopted for probabilistic forecasts.

The loss of equitability for probability forecasts has
important implications for how one interprets whether
or not a forecasting system has skill. Nonequitability
means that different unskillful forecasts can give differ-
ent scores and hence there is no unique absolute bench-
mark against which to measure skill. For example, the
skill of a forecasting system may have negative skill
when compared with a constant probability climatologi-
cal forecast and yet have positive skill when compared
with random probability forecasts (Mason 2004; Müller
et al. 2005; Weigel et al. 2007). How should one then
decide whether the forecasting system really has skill?
Perhaps the most rational approach is to demand that
the score is better than the best score of all possible
unskillful forecasts. To be able to do this, one needs to
think carefully about how best to optimize the score
using unskillful forecasts. For scores where the loss
functions S0(p) and S1(p) are convex functions of p, the
best unskillful forecasts are those that issue constant
probability values, albeit not necessarily the base rate.
Alternatively, one can avoid some of these difficulties
by eschewing any mention of the word “skill” and sim-
ply present scores for different forecasting systems: it is
still possible to order forecasting systems based on pair-
wise comparison of scores.
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