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ABSTRACT

The Brier score is widely used for the verification of probability forecasts. It also forms the basis of other
frequently used probability scores such as the rank probability score. By conditioning (stratifying) on the
issued forecast probabilities, the Brier score can be decomposed into the sum of three components: uncer-
tainty, reliability, and resolution. This Brier score decomposition can provide useful information to the
forecast provider about how the forecasts can be improved.

Rather than stratify on all values of issued probability, it is common practice to calculate the Brier score
components by first partitioning the issued probabilities into a small set of bins. This note shows that for
such a procedure, an additional two within-bin components are needed in addition to the three traditional
components of the Brier score. The two new components can be combined with the resolution component
to make a generalized resolution component that is less sensitive to choice of bin width than is the
traditional resolution component. The difference between the generalized resolution term and the conven-
tional resolution term also quantifies how forecast skill is degraded when issuing categorized probabilities
to users. The ideas are illustrated using an example of multimodel ensemble seasonal forecasts of equatorial
sea surface temperatures.

1. Introduction

The Brier score is the mean squared difference be-
tween issued forecast probabilities and observed binary
outcomes (Brier 1950; Jolliffe and Stephenson 2003). It
is one of the oldest and most commonly used scores for
assessing the skill of probability forecasts of binary
events (e.g., rain or no rain) and it forms the basis of
other widely used probability scores such as the ranked
probability score (Epstein 1969).

It can be revealing to decompose the Brier and

ranked probability scores into the sum of three compo-
nents: forecast reliability (bias of conditional means),
forecast resolution (variance of conditional means),
and observational uncertainty (Sanders 1963; Murphy
1971, 1973, 1986). To do this, it is necessary to calculate
the mean of the observations (the relative frequency of
the observed event) stratified/conditioned on the dif-
ferent forecast probabilities. One can do this either by
dividing the data into a finite set of categories (bins) of
forecast probability or by directly stratifying on each of
the distinct probability values that have been issued.
The early studies such as Murphy (1971) and others
used the latter unbinned approach and stratified di-
rectly on each of the issued probability values (e.g., f �
0.1, 0.2, . . . , 0.9 for subjective probability forecasts).
The Brier score decomposition assumed such direct
stratification.
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However, it is now common practice to calculate the
components by stratifying over bins of probabilities
such as those used to produce reliability diagrams (e.g.,
Atger 2003). This widespread usage has even led to the
misconception that “estimating reliability and resolu-
tion requires a categorization of probabilistic forecasts”
(Atger 2004, p. 628). Nevertheless, the effects of bin-
ning need to be considered since categorized probabil-
ity forecasts are often what are finally issued to the
forecast user. For example, the recent System 3 sea-
sonal forecasting system at the European Centre for
Medium-Range Weather Forecasts (ECMWF) issues
probabilities for temperature terciles in seven distinct
unequal-width categories: 0–0.1, 0.1–0.2, 0.2–0.4, 0.4–
0.5, 0.5–0.6, 0.6–0.7, and 0.7–1.0 (Dr. F. J. Doblas-Reyes
2007, personal communication). The reliability and
resolution calculated from these binned probabilities
are not guaranteed to be the same as the reliability and
resolution components calculated using the uncatego-
rized probabilities produced by the forecasting system.

In addition to simplifying the probability forecasts
for users, binning can have several advantages. First, it
acts as a crude form of smoothing thereby making the
conditional means less uncertain and the reliability
curve less noisy (Atger 2003). Second, larger bins can
avoid sparseness problems that can occur when prob-
abilities are rarely or never issued within smaller bins,
for example, for a small sample of probability forecasts
from a large ensemble system (Atger 2004). Third, it
can allow cleaner comparison of Brier score compo-
nents for forecasting systems having different numbers
of ensemble forecasts (Mullen and Buizza 2002; Ferro
2007).

This study has mathematically investigated the de-
composition of the Brier score in these more general
situations where observations are stratified into bins of
forecast probabilities rather than directly on the issued
probability values. Section 2 of this paper shows that
the Brier score is no longer identical to a sum of just
three components but also has two additional compo-
nents that account for within-bin variations. Section 3
illustrates this with a multimodel ensemble forecasting
example. Section 4 presents some concluding remarks
and possible ideas for future work.

2. The Brier score decomposition

a. Basic definitions

This section will introduce the mathematical defini-
tions needed to calculate the decomposition of the
Brier score defined for a historical sample of paired
binary observations (o) and probability forecasts ( f ).

First, consider a partition of the probability unit in-

terval [0, 1] into m mutually exclusive subintervals
(bins) labeled by the index k � 1, 2, . . . , m. Denote the
nk probability forecasts that have fallen in the kth bin
by fkj where j � 1, 2, . . . , nk. The total number of fore-
casts in all bins is n � �m

k�1nk. The overbar symbol will
be used to denote averages within a particular bin; for
example, the average probability of all the probability
forecasts in the kth bin is given by fk � (1/nk)�nk

j�1fkj.
Let the variable okj denote the binary outcome (0 or 1)
of the observed event associated with the jth probabil-
ity forecast in the kth bin (i.e., the one whose probabil-
ity forecast is fkj). Note that sufficiently narrow bins
overlapping the issued probability values can always be
chosen so that only one probability value (yet perhaps
several forecasts) occurs within each bin.

The forecast error for the jth forecast in the kth bin is
then given by fkj � okj and so the mean squared forecast
error is

BS �
1
n �

k�1

m

�
j�1

nk

�fkj � okj�
2, �1�

which is known as the Brier score (Brier 1950). The
Brier score is a negatively oriented score that gives
smaller values for better forecasts.

b. Brier score decomposition

The Brier score can be rewritten as a nested mean of
within-bin averages:

BS �
1
n �

k�1

m

nk� 1
nk

�
j�1

nk

�fkj � okj�
2�. �2�

The expression inside the brackets is the mean of a
squared quantity and so can be written as the sum of
the square of the mean quantity plus the variance of the
quantity. In other words, the within-bin mean of the
squared forecast error is equal to the sum of the
squared mean forecast error and the within-bin vari-
ance of the forecast error, fkj � okj:

BS �
1
n �

k�1

m

nk�� fk � ok�2 �
1
nk

�
j�1

nk

�fkj � okj � fk � ok�2�,

�3�

where

ok �
1
nk

�
j�1

nk

okj

is the relative frequency that the observed event oc-
curred at times when forecast probabilities were in the
interval [pk, pk�1]. Expanding the square in the final
summation of (3) gives two sums of squares terms (vari-
ances) and a cross-product (covariance) term, so that
the Brier score becomes
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BS �
1
n �

k�1

m

nk�� fk � ok�2 �
1
nk

�
j�1

nk

�okj � ok�2 �
1
nk

�
j�1

nk

� fkj � fk�2 �
2
nk

�
j�1

nk

�okj � ok�� fkj � fk��. �4�

The first two terms in this expression are the traditional
components of the Brier score. The first term

1
n �

k�1

m

nk� fk � ok�2

in (4) summarizes the unconditional and conditional
bias in the forecasts and is known as the reliability of
the forecasts (REL). In principle, it can be reduced by
good calibration of the forecasts (Murphy 1986). The
second term in (4) can be written as the total variance
minus the variance of the within-bin means of the ob-
served variable:

1
n �

k�1

m

�
j�1

nk

nk�okj � ok�2 �
1
n �

k�1

m

�
j�1

nk

nk�okj � o�2

�
1
n �

k�1

m

nk�ok � o�2, �5�

where

o �
1
n �

k�1

m

nkok

is the climatological base rate (mean probability) for
the event to occur. The first term on the right-hand side
of (5) can be shown to be o(1 � o) by expanding the
square and noting that o2

kj � okj, for binary variables.
Hence, the second term in (4) is given by

1
n �

k�1

m

�
j�1

nk

�okj � ok�2 � o�1 � o� �
1
n �

k�1

m

nk�ok � o�2,

�6�

that is, the observational uncertainty o(1 � o) (UNC)
minus the forecast resolution (RES). Therefore, the

first two terms in (4) give the traditional REL � RES �
UNC components of the Brier score.

The third and fourth terms in (4) are pooled averages
of the within-bin variance (WBV) of the forecasts mi-
nus the within-bin covariance (WBC) between forecasts
and observations. Both terms vanish if only one value
of probability is forecast for each bin (fkj � fk for all j).
In other words, when there is no within-bin variation
among the forecast probabilities (e.g., when stratifying
on unbinned forecast values), then only the first two
terms in (4) need to be considered in the decomposition
of the Brier score; the Brier score is then simply equal
to the well-known decomposition REL � RES � UNC.
However, whenever there is any variation in forecast
probabilities within any of the bins, then the Brier score
becomes

BS �
1
n �

k�1

m

nk� fk � ok�2 �
1
n �

k�1

m

nk�ok � o�2

� o�1 � o� �
1
n �

k�1

m

�
j�1

nk

� fkj � fk�2

�
2
n �

k�1

m

�
j�1

nk

�okj � ok�� fkj � fk�. �7�

The Brier score has five rather than three components:
BS � REL � RES � UNC � WBV � WBC.

c. Generalized resolution

The two within-bin terms help compensate the de-
creasing resolution component when the bin size is in-
creased. The three-component decomposition of the
Brier score can be maintained by generalizing the reso-
lution term to include the two within-bin terms:

1
n �

k�1

m

nk�ok � o�2 �
1
n �

k�1

m

nk� 1
nk

�
j�1

nk

� fkj � fk�2 �
2
nk

�
j�1

nk

�okj � ok�� fkj � fk��.

In other words, by using the generalized resolution
defined by GRES � RES � WBV � WBC, the Brier
score becomes REL � GRES � UNC. As illustrated in
the following section, the resulting generalized resolu-
tion component is less sensitive to the choice of bin size
than is the classic definition of resolution.

We prefer to include these terms in the resolution

term since unlike the reliability term, the within-bin
terms cannot be easily transformed to zero by one-to-
one recalibration of the probability forecasts. However,
the within-bin terms can be made to vanish by mapping
the forecast probabilities to a smaller number of bin
location values as is often done when simplifying fore-
cast probabilities for dissemination to forecast users.
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This could be considered to be a recalibration of the
probabilities using a staircase function with a finite
number of discrete steps. The Brier score REL � RES
� UNC is what the user would obtain with the simpli-
fied probabilities compared to the full Brier score REL
� GRES � UNC that would be obtained by the fore-
caster before simplification. The difference between
GRES and RES therefore measures how much the sim-
plification has degraded the Brier score of the forecast
product.

3. Example: Multimodel ensemble SST forecasts

This section illustrates the Brier score decomposition
using an example of multimodel ensemble forecasts of
sea surface temperatures in the tropical equatorial Pa-
cific produced by the coupled multimodel ensemble
system as part of the European Union’s Development
of a European Multimodel Ensemble System for Sea-
sonal-to-Interannual Prediction (DEMETER) project
(Palmer et al. 2004). The example is the same as that
described in detail in Stephenson et al. (2005). The bi-
nary event was defined by whether a sea surface tem-
perature (SST) anomaly was greater than zero. The
probability forecasts were constructed parametrically
by fitting a normal (Gaussian) distribution to the seven
ensemble mean anomaly forecasts from the seven
DEMETER coupled models, and then calculating the
area under the normal density for values greater than
zero. The forecasts can take any value between 0 and 1.
The forecasts were issued a total of 88 times at 0000
UTC on the first day of February, May, August, and
November from 1980 to 2001. A time–longitude section

of forecasts at 56 gridpoint locations from 140°E to
82.5°W along the equator is shown in Fig. 3f of
Stephenson et al. (2005).

Figure 1 shows an example of the observed binary
event (the crosses; right-hand scale) and the probability
forecasts (solid line; right-hand scale) for one grid point
at 150°W in the central equatorial Pacific. The prob-
ability values were obtained by fitting normal distribu-
tions to the ensemble mean anomaly forecasts of the
seven models (solid dots; left-hand scale). The mean of
this distribution is given by the mean of the seven
model forecasts (dashed line; left-hand scale). It can be
noted that there is generally a good positive association
between the probability forecasts and the observations.

The Brier score and its components were calculated
by pooling events over all 56 gridpoint locations and the
88 different dates resulting in a total of 4928 binary
observed events: 2472 zeros and 2456 ones. The overall
Brier score computed without any binning was found to
be 0.19, which is less than the expected Brier score, BS
� s2

o � o(1 � o) � 0.25, one would obtain if one had
issued a constant climatological probability of f � 0.5
for random events with a relative frequency of o � 0.5.
The multimodel forecasts are therefore more skillful
for this sample of events than are climatology forecasts.

The components of the Brier score were computed
by partitioning the probability forecasts into sets of
equally spaced probability bins covering the unit inter-
val with decreasing bin widths of 1.0, 0.5, 0.2, and 0.1 for
increasing number of bins of 1, 2, 5, and 10, respec-
tively. Figure 2 shows how these components vary with
the number of bins. The sum of the three components
(dashed line) exceeds the unbinned Brier score of 0.19

FIG. 1. Example of the ensemble forecasts and binary observations at one grid point
located at 150°W in the central equatorial Pacific.
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(the solid line) by up to 25% when calculated using a
small number of bins. Unlike the uncertainty compo-
nent (the dotted line) that depends solely on the fre-
quency of the observed event, the negated resolution
component (the line with asterisks) and the reliability
component (the dotted–dashed line) of the Brier score
both depend on the number of bins. The resolution
component is zero when partitioning into only into one
bin (by definition) but then increases to a larger value
as the number of bins is increased. The reliability com-
ponent is zero for one bin (no unconditional bias in this
particular anomaly example) but then also increases to
a larger value as the number of bins increases. The
increase in the reliability component with more bins
was also demonstrated in Fig. 2 of Atger (2004) and is
to be expected from general mathematical consider-
ations (Candille and Talagrand 2005). It should be
noted, however, that the increases do not have to be
strictly monotonic due to the presence of random sam-
pling variations. The rate of increase in the components
will depend on details such as the number of forecasts
in each bin. The overestimation of the Brier score for
small numbers of bins is due to the overestimation in
the negated resolution component being greater than
the overestimation in the reliability component. It is
not mathematically clear yet whether this overestima-
tion is a universal characteristic valid for all examples.
However, for unconditionally unbiased forecasts both
the reliability and the resolution components become
zero when the number of bins equals unity, and hence
the estimated Brier score reduces to the uncertainty
term, which is greater than the unbinned Brier score
providing the forecasts have some skill.

Figure 3 shows the negated WBV (the dotted–dashed
line) and the WBC (the dashed line) components as a
function of the number of bins. Both terms tend to zero
with an increasing number of bins and would be exactly
zero if one had stratified on the probability values that
had been issued. In this example where there are many
rather skillful forecasts, the within-bin terms are sub-
stantial compared to the reliability and resolution terms
when five or fewer bins are used. However, for systems
with less skill and fewer forecasts, the terms could re-
main substantial even when using more bins. The im-
portance of the within-bin terms can be seen in Fig. 3,
which compares the new generalized resolution com-
ponent (the solid line) to the traditional resolution
component (the dotted line). The generalized reso-
lution component is much less sensitive to the choice
of bin size than is the traditional definition of resolu-
tion.

4. Conclusions

This study has shown that the three-component Brier
score decomposition is only valid if one stratifies on all
issued values of forecast probability. If one first parti-
tions the probabilities into bins before stratifying (as is
often done to produce reliability diagrams), then it is
necessary to consider a further two components to ac-
count for within-bin variation and covariation. The two
within-bin components can be added to the resolution
component to define a generalized resolution compo-
nent that is less sensitive to the choice of bin width.
However, because the Brier score and uncertainty
terms are independent of bin width, as bin width de-
creases, generalized resolution must increase in order

FIG. 2. Bin dependence of the unbinned Brier score (solid line)
and its three traditional components: uncertainty (dotted line),
reliability (dotted–dashed line), and negated resolution (line with
asterisks).

FIG. 3. The generalized resolution component GRES (solid
line) defined as the sum of the traditional resolution component
RES (dotted line) and the negated within-bin variance (dotted–
dashed line) and the within-bin covariance (dashed line).
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to compensate for the increase in reliability that has
been demonstrated by Atger (2004) and Candille and
Talagrand (2005). The difference between the general-
ized resolution and resolution components indicates
how much the Brier score increases by binning the fore-
casts—it provides a measure of the loss of skill caused
by binning the probability forecasts.

One can consider binning to be a crude form of non-
parametric smoothing. Smoothing has the advantage of
improving estimates of conditional averages and so can
give estimates of Brier score components that have less
sampling uncertainty than if one stratified on each
single value of issued probability. However, smoothing
can also introduce bias and so one needs to develop
good statistical modeling approaches. Atger (2004) ad-
dressed the problem by parametric modeling of the re-
liability curve based on binormal linear fits to ROC
curves. It would be of interest to develop more flexible
nonparametric approaches for estimating the reliability
curves (and hence the Brier score components), which
also included point-wise confidence intervals.
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