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ABSTRACT

Probabilistic forecasts of atmospheric variables are often given as relative frequencies obtained from

ensembles of deterministic forecasts. The detrimental effects of imperfect models and initial conditions on

the quality of such forecasts can be mitigated by calibration. This paper shows that Bayesian methods

currently used to incorporate prior information can be written as special cases of a beta-binomial model and

correspond to a linear calibration of the relative frequencies. These methods are compared with a nonlinear

calibration technique (i.e., logistic regression) using real precipitation forecasts. Calibration is found to be

advantageous in all cases considered, and logistic regression is preferable to linear methods.

1. Introduction

Probabilistic forecasts represent the uncertainty in a

prediction by a probability distribution for the pre-

dictand. This distribution may be derived from historical

errors of deterministic forecasts or from ensemble fore-

casts (see Leith 1974; Ehrendorfer 1997; Stephenson and

Doblas-Reyes 2000, and references therein). In the

latter case, probabilistic forecasts for binary events are

often obtained as the relative frequency with which the

event occurs in the ensemble. For perfect forecasting

models and perfect ensembles, observations behave like

draws from the ensemble distribution and relative fre-

quencies will make good forecasts. In practice, however,

models are imperfect (Ferranti et al. 2002) and en-

semble generation techniques do not sample randomly

from the probability distribution of initial-condition

uncertainty (Hamill et al. 2000, 2003; Wang and Bishop

2003).

Various techniques have therefore been proposed for

improving such probabilistic forecasts. One approach is

to combine model forecasts with a prior belief about

the value of the predictand (Robertson et al. 2004;

Rajagopalan et al. 2002). For example, Bayesian tech-

niques model the prior belief that the event happens

(often using past data) and update it using the new in-

formation available from the numerical model via Bayes’s

theorem. Another approach is calibration (Gneiting et al.

2007), which adjusts forecasts based on past performance.

Most seasonal forecasting centers calibrate their forecasts

simply by adding or scaling by constants to correct biases

in means and variances (Stephenson 2008). This simple

procedure is based solely on the mean and variance of

past forecasts and past observations and ignores other

information about the joint distribution of past ob-

servations and forecasts (e.g., the skill of the forecasts).

Recalibrating the forecasts with a regression model of

past forecasts on past observations is often superior

(Stephenson 2008).

Note that these combination methods may lead to

linear transformations of the original forecasts (some

examples will be presented in section 3). If the param-

eters of the linear transformation are chosen to optimize

some measure of past performance, these methods can

also be presented as linear calibration techniques.

Calibration can improve forecast skill by improving

reliability (Murphy 1973), even though reliability is
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not a necessary condition for skill [see Jolliffe and

Stephenson (2005) and Glahn (2004) for further dis-

cussion]. When the interest focuses on binary events,

the binary nature makes common statistical calibration

methods (Gneiting et al. 2005; Wilson and Valle 2002)

inappropriate, and new methods that take into account

the discreteness are needed.

This study reviews different calibration methods for

probabilistic forecasts of a binary event. We show how

some Bayesian methods, used to incorporate prior be-

lief about the occurrence of the binary event, can be

written as special cases of a beta-binomial model and

correspond to a linear calibration of the relative fre-

quencies. The common framework underlying these

apparently different methods has not been noted be-

fore. A nonlinear calibration method in which past data

are used to model the relationship between observa-

tions and forecasts is also reviewed and is compared

with the combination methods. We find that calibration

improves probabilistic forecasts of binary events pre-

sented in this study by improving reliability. Nonlinear

calibration does as well as or better than other methods.

However, both linear and nonlinear calibration tech-

niques have consequences for warning systems because

of a possible reduction of the range of issued forecasts.

This paper is organized as follows. Section 2 intro-

duces notation and uncalibrated probabilistic forecasts

of a binary event. Section 3 identifies some Bayesian

methods as special cases of a beta-binomial model.

Section 4 reviews a nonlinear way to calibrate proba-

bilistic forecasts. Section 5 illustrates all the previous

calibration methods using a real weather example. Last,

section 6 gives some concluding remarks and caveats.

2. Uncalibrated probabilistic forecasts of binary
events

This paper is focused on forecasting the future state of

an observable binary event. Let Yt be the binary varia-

ble representing the observation of the event at time t:

Yt is 1 when the event happens and is 0 otherwise. The

observations are taken at a discrete set of time points.

The index t 5 1, 2, . . . , denotes the index of times on

which the event is observed, so {Y1, . . . , YT} represents

the set of past observations until the present time T.

Uncertainty about Yt at future time t can be represented

by a Bernoulli distribution with probability pt. The aim

of probabilistic forecasting is to provide the best pt for

the observable Yt for the time of interest (t . T).

Numerical models provide an ensemble of forecasts:

{Xti: i 5 1, . . . , m} at times t 5 1, 2, . . . , where m denotes

the number of ensemble members. The ith forecast Xti is

also a binary variable: Xti 5 1 if the event is forecast and

is 0 otherwise. The ensemble forecasts at any time t are

assumed to be a set of independent identically distrib-

uted Bernoulli variables Xti ; Ber(qt). The probability

pt may differ from qt. The simplest approach is to as-

sume that the model is perfect so that the probability

that an ensemble member forecasts the event is the same

as the probability that the event happens. In this case, the

natural most frequent estimate of pt is the relative fre-

quency of occurrence, bpt 5 nt/m, where nt is the number

of members that forecast the event:

nt 5 �
m

i51
Xti.

This probability estimator is easy to obtain but has

disadvantages. The probabilities can take only a finite

set of discrete values, the probabilities can be 0 or 1, and

there is no estimate of the uncertainty on the predicted

probability.

We have assumed that the probability that an en-

semble member forecasts the event is the same as the

probability that the event happens. However, in prac-

tice, models are not perfect and so this assumption

might not be true. One can try to overcome model im-

perfections by calibrating the original forecasts.

3. Linear calibration: Beta-binomial framework

The Bayesian framework is consistent with the fact

that many users are aware of the uncertainty inherent

in a limited ensemble size. For example, Katz and

Ehrendorfer (2006) use a Bayesian approach with the

beta distribution as a prior distribution to introduce such

uncertainty into the decision process. This allows them

to take into account uncertainty in estimating a forecast

probability from a limited number of ensemble members.

The choice of the prior distribution plays an essential

role. The prior distribution f(pt) can be conveniently

modeled using the beta distribution, pt ; beta(a, b),

where a and b . 0 (appendix A in Epstein 1985; chapter

4 in Wilks 2006b). This distribution, defined for values

between 0 and 1, is flexible, with a density that can be

either convex or concave and skew or symmetric.

For binary events, it is convenient to assume the prior

distribution to be the beta distribution since it has the

advantage of being conjugate when combined with a

binomial likelihood (Epstein 1985), so that a beta pos-

terior distribution is obtained:

f (ptjnt)} f (pt)f (ntjpt) 5 beta(pt; a, b) bin(nt; m, pt)

} beta(a 1 nt, b 1 m�nt).

(1)
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The forecaster is not primarily interested in the pos-

terior distribution of pt, but in the predictive distribution

of Yt. The predictive distribution of Yt is the conditional

distribution of Yt given the ensemble forecast. This can

be written as an average with respect to the posterior

distribution p for pt as follows: Pr(Yt 5 1|nt) 5
R

Pr(Yt 5

1|pt)p(pt|nt) dpt 5
R

ptp(pt|nt) dpt 5 E(pt|nt). Thus, our

prediction for the event {Yt 5 1} is the posterior mean for

pt. Since the posterior distribution of the probability that

the event happens is a beta distribution with parameters

a 1 nt and b 1 m 2 nt, the posterior expectation is

E(ptjnt) 5
a 1 nt

a 1 b 1 m
5 y

nt

m
1 (1� y)

a

a 1 b
, (2)

where y 5 m/(a 1 b 1 m). Thus, this estimate is a

weighted average of the relative frequencies and the

prior mean a/(a 1 b) with relative weights proportional

to sample size m and what can be thought of as the

‘‘effective’’ prior sample size (a 1 b).

Since the parameters that model our prior belief (a

and b) are constants, the beta-binomial approach leads

to a linear transformation of the relative frequencies:

E( ptjnt) 5 g 1 d(nt/m), (3)

where g 5 a/(a 1 b 1 m) and d 5 m/(a 1 b 1 m). The

beta-binomial approach is for combining model fore-

casts with a prior belief about the value of the predict

and; however, if g and d are chosen to optimize some

measure of past performance, then the beta-binomial

approach can also be considered to be linear calibration

of the relative frequencies.

Many current methods used by the climatological

community to produce probabilistic forecasts of a bi-

nary event can be written as special cases of a beta-

binomial model, and therefore they linearly calibrate

the relative frequencies. These methods are different

from each other in the choice of both a and b param-

eters, as follows.

If the prior distribution is assumed to be beta(0, 0),

defined as the limit as a and b tend to 0, this corresponds

to a prior distribution with probability mass function at

0 and 1. In this case, the posterior probability converges

to the relative frequency as a and b converge to 0:

lim
a,b!0

E( pt jnt) 5 nt/m. (4)

Instead of choosing both a and b parameters directly,

one can choose a central point (mean or mode) and

some measure of the spread for the prior distribution.

For the prior mean one can consider the climatological

mean, that is, the long-term frequency of the observed

event of interest: set a/(a 1 b) 5 y, where

�y 5
1

T � 1
�
T�1

t51
Yt.

For binary variables, this sample mean coincides with

the frequency p that the event happens in the sample

(�y 5 p). The choice of the spread is more difficult since

sample variance of the observations is not a good

choice, especially if the prior distribution is highly

skewed. An alternative is to use how many extra en-

semble members m9 the prior information is worth. This

number can then be equated to m9 5 a 1 b. The a and b

parameters are then given by

a 5 m0p and b 5 m0(1� p). (5)

The probability estimate is then obtained by

E(ptjnt) 5
cm0p 1 nt

cm01 m
. (6)

However, there is no objective criterion to estimate m9.

Rajagopalan et al. (2002) and Robertson et al. (2004),

introduced a different, but related, approach to estimate

both a and b parameters. They argue that climatological

information given by past observations is combined

with general circulation model forecasts and therefore a

weight may be introduced to give different importance

to both prior belief and model forecasts. They use a

prior beta distribution whose parameters depend on a

weight w as follows: a 5 w21Tp and b 5 w21T(1 2 p),

where p is the frequency with which the event happens

in the sample of past observations and T is the sample

size of climatology (number of past observations). The

quantities p and T are called Pk(x) and n, respectively,

in Rajagopalan et al. (2002), and Robertson et al.

(2004). The estimate of pt given the ensemble of fore-

casts is then given by

E(ptjnt) 5
Tp 1 wnt

T 1 wm
5 w1

nt

m
1 (1� w1)p, (7)

where w1 5 wm/(T 1 wm). The choice of the weight w

is found by maximizing what the authors refer to as

the ‘‘posterior likelihood’’ function (Rajagopalan et al.

2002). This choice is equivalent to minimizing the log-

arithmic score (a popular verification score; Winkler

1968). One could also imagine optimizing other scores

such as the quadratic Brier score (Brier 1950). Note that

this method was developed for multicategory forecasts,

but in this work we focus on binary events. Inspection

of Eq. (7) shows that E(pt|nt) 5 p when nt/m 5 p and,

since Rajagopalan et al. (2002) restrict w to be positive,
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0 , w1, 1. Therefore, this method corresponds to a

linear calibration curve that passes through the point

(p, p) and has a slope in the interval (0, 1).

The latter two methods estimate alpha and beta from

data and so are forms of empirical Bayes approaches.

Table 1 summarizes the different choices of the prior

distribution, the corresponding probabilistic forecasts

for a future time t . T, and both the intercept and the

slope of the different linear calibration techniques

[g and d in Eq. (3), respectively].

4. Nonlinear calibration: Logistic regression

When the interest focuses on binary events it is in-

appropriate to use a model based on the regression of

binary forecasts on binary observations because pre-

dictions can be made that are impossible. In particular,

if the mean of the dependent variable Yt, which is the

probability pt, is modeled as a linear function of pre-

dictors, the predicted value may lie outside the range

from 0 to 1. To overcome this problem, generalized linear

models (GLMs; McCullagh and Nelder 1989) provides a

suitable framework. As well as allowing nonlinearity,

using a so-called link function, these models incorporate

a range of distributions, including Bernouilli, for the

dependent variable, whereas much of linear regression

assumes a Gaussian distribution.

An example of a GLM is the logistic regression model

(Collett 2002), in which the dependent variable is as-

sumed to be binomial and the link function is the logit

transformation:

Ytjpt ; Ber(pt) and (8)

logit(pt) 5 log [pt/(1� pt)] 5 b0 1 b1ht1 1 � � � 1 bqhtq,

(9)

where b0, b1, . . . , bq are the regression coefficients and

ht1, . . . , htq are the predictor variables. Note that logit(pt)

can theoretically assume any value between minus and

plus infinity. It is easy to check that the predicted values

of pt are in the range of 0–1. One can use maximum

likelihood estimation to fit the logistic regression model

(Collett 2002). Logistic regression is widely used by

the statistical community and has recently been used

for probability-of-precipitation forecasts (Wilks 2006a;

Wilks and Hamill 2007).

The predictor variables will be a function of the en-

semble forecasts. We assume that the members within

any particular ensemble are independent and identically

distributed. For a single ensemble, all members should

be equally weighted, and therefore instead of choosing

each Xti as a predictor variable only one predictor var-

iable is chosen: ht, and it will be a function of the sym-

metric combination nt. Among the possible choices for

the predictor, the natural choice would be to use the

relative frequencies: ht 5 nt/m. However, it might be

useful to relate logit(pt) to the logit transformation of

the forecasts to have both predictands and predictors on

the same scale. Furthermore, prior information could be

combined by using ht 5 logit[E(pt|nt)] for a and b not

equal to 0. The prior parameters can be chosen to

minimize a score, for instance the logarithmic score: a 5

w21Tp and b 5 w21T(1 2 p) (Rajagopalan et al. 2002).

There is no objective rule as to how best to choose the

predictors, though the choice might be based on a di-

agnostic measure, such as minimizing the errors of the

fit. In addition, a check of the residuals of the fit (e.g.,

deviance residuals) should be done to ensure that the

model assumptions are valid and the model is not in-

appropriate. For simplicity, we will just illustrate the

logistic regression method with the Rajagopalan et al.

(2002) predictor.

5. Meteorological example

In this section we illustrate the methods described

in sections 2–4. Our data are daily total precipitation

forecasts generated by the Ensemble Prediction Sys-

tem (EPS) of the European Centre for Medium-Range

Weather Forecasts (Molteni et al. 1996). Each ensemble

has 50 members. We assume that the members are

independent and identically distributed. Forecasts are

daily data in the 3-month period of December–February

from 1997 to 2006, at a single grid point (518N, 18W) near

Reading in the United Kingdom. The first 4 yr define the

training period, and the last 5 yr define the verification

period. We use 72-h-ahead forecasts in the expectation

that calibration will have a significant impact on the

quality of the forecasts at this lead time. These data

are verified with observations of daily precipitation in

Reading at the University of Reading atmospheric

observatory.

This example is focused on showing whether cali-

bration improves forecasts of wet days in Reading. In

this work a wet day is defined by precipitation exceeding

0.1 mm. Thus, the binary event is defined as Yt 5 1 when

observed precipitation is above 0.1 mm and Yt 5 0 oth-

erwise; Xti 5 1 if the ith forecast ensemble member is

above 0.1 mm and Xti 5 0 otherwise.

Reports from 361 observations and 18 050 forecasts

(50 members and 361 daily data) of wet days in Reading

were considered for the training period. The model

forecast a wet day 14 637 times (81% of the forecasts).

However, wet days were observed on 9850 occasions

(54% of the observations). Hence, the model clearly
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overforecast the event. There were cases in which the

event did not happen but all members forecast it. Sim-

ilar results were found for the verification period, during

which wet days were forecast 17 740 times but were

observed on 11 700 occasions out of 22 550 forecasts.

Figure 1a shows the probabilities estimated by four

different calibration methods against naive relative

frequencies during the verification period: the methods

are climatology (which is a horizontal line, p 5 0.54), the

relative frequencies (diagonal), probabilities obtained

by the method described in Rajagopalan et al. (2002;

hereinafter RLZ), and logistic regression using the logit

transformation of RLZ probabilities as predictors. Ac-

cording to Eq. (7), RLZ probabilities are a linear

combination of the relative frequencies with slope al-

ways positive (the method forces the weights to be al-

ways positive) and less than 1. In this example the slope

is w1 5 0.48. In addition, when nt 5 pm the probabilities

are equal to climatology, and therefore this method is a

linear transformation of the probabilities forced to pass

through the climatological point (p, p). Hence, RLZ

probabilities are always represented by a straight line

through the point (p, p) and are obtained by rotating the

diagonal (relative frequencies) toward the horizontal

line (climatology). For example, it cannot simulta-

neously shift all values upward or all values downward.

Frequencies less than climatology are calibrated upward

and so they cannot take smaller values than climatology

after calibration, whereas those greater than climatol-

ogy are calibrated downward and so they cannot exceed

climatology after calibration. This makes this method

inappropriate to correct bias in means of the forecasts.

Thus, this method always reduces the maximum fore-

cast probability and the range of calibrated forecasts is

bounded away from 0 and 1. Logistic regression does

not have this problem because it transforms the relative

frequencies in a nonlinear way, so that they are non-

linear curves. Thus, logistic regression lets the minimum

forecast be close to 0. Since the model forecasts over-

forecast the observation, it is easy to see how logistic

regression corrects relative frequencies to reduce them.

Simulations not included in this work have shown that

the RLZ method does not distinguish whether the model

is overforecasting or underforecasting, and it provides

similar probabilistic forecasts in both cases. Neverthe-

less, logistic regression also reduces the range of issued

forecasts at the higher values.

To check whether calibration improves forecasts, the

Brier score BS and reliability terms of the forecasts have

been calculated (Brier 1950). All of the calibration ap-

proaches provide better probabilistic forecasts than do

naive relative frequencies, but it is nonlinear calibration

that achieves the greatest reduction:

BSRelFreq 5 0.308 . BSclim 5 0.252 . BSRLZ

5 0.240 . BSLogReg 5 0.209. (10)

The probability score decomposition proposed by

Murphy (1973) has been considered to distinguish the

two main aspects of the forecast performance: reliability

and resolution. Murphy’s decomposition consists of

three terms:

�
N

k51

Nk

M
(Pk � ok)2 ��

N

k51

Nk

M
(ok � �o)2

1 �o(1� �o), (11)

when a sample of M forecasts has been divided into N

categories, each comprising Nk forecasts of a probability

Pk, ok being the observed frequency when the forecast

was lying in that category and �o being the observed

frequency in the whole sample. The first term is the

reliability, the second is the resolution, and the third

term is the uncertainty. Since all of the calibration

techniques produce calibration curves that are strictly

monotonic functions of the relative frequencies, the

resolution and the uncertainty of all the methods are

equal. Thus, the improvement of the Brier score when

forecasts are calibrated is due to an improvement of the

reliability component:

RelRelFreq 5 0.131 . RelRLZ 5 0.064 . RelLogReg

5 0.032 . Relclim 5 0.006. (12)

When forecasts are equal to climatology and the fre-

quency of the event does not change between the train-

ing period and the verification period, then the reliability

component is close to 0 (note that the climatology is

computed in the training period). However, although

climatology may have near perfect reliability, it may

TABLE 1. Parameters of the beta (a, b) prior distribution, the corresponding probabilistic forecasts for a future time t . T, and coefficients

for the linear calibration.

Approach a b bptjnt Intercept (g) Slope (d)

Relative frequencies 0 0 nt/m 0 1

Central point and spread m9p m9(1 2 p) (m9p 1 nt)/(m9 1 m) m9p/(m9 1 m) m/(m9 1 m)

RLZ w21Tp w21T(1 2 p) (Tp 1 wnt)/(T 1 wm) Tp/(T 1 wm) mw/(T 1 wm)
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have the worst Brier score because climatology is like a

flat calibration curve, which is not strictly monotonic and

makes the resolution poor.

Figure 1b plots the stratified observed frequency

against the forecast probability (reliability diagram).

The range of forecast probabilities has been divided into

10 bins (each of width 0.1). The diagonal line indicates

perfect reliability (average observed frequency equal to

predicted probability for each category), and the hori-

zontal line represents the climatological frequency. Non-

linear calibration is closer to the diagonal than relative

frequencies or linear calibration.

In this particular example, results have been illus-

trated for a commonly occurring event. However, these

methods can also be applied to rarer events above larger

thresholds. Figure 1c shows how the Brier score evolves

depending on the threshold. The upper horizontal axis

represents the percentiles. The inset zooms in on the

lowest threshold values. Using linear calibration, the Brier

score decreases, but nonlinear calibration always provides

the best forecasts. This improvement decreases for ex-

treme events since the Brier score tends to 0 as the event

becomes increasingly rare. Figure 1d shows the evolution

of the reliability term.

FIG. 1. (a) Calibration of relative frequencies for the precipitation in Reading: climatology (black), relative frequencies (dark gray), RLZ

method (light gray), and logistic regression using the logit transformation of RLZ probabilities as predictors (dashed black line); (b) reliability

diagram of the probabilistic forecasts; (c) Brier score; and (d) reliability term of precipitation in Reading forecasts for different thresholds and

calibration techniques. The upper horizontal axis represents the percentiles. Inset in (c) zooms in on the lowest threshold values.

MARCH 2009 N O T E S A N D C O R R E S P O N D E N C E 1147



6. Conclusions

Different ways of calibrating forecasts of binary events

with past data have been considered. Currently the most

common way to obtain probabilistic forecasts from an

ensemble of forecasts is by using relative frequencies, but

numerical models are not perfect and so calibrating them

using past data can improve forecasts. This paper presents

some Bayesian approaches used by the climatological

community to produce probabilistic forecasts of binary

events as special cases of a beta-binomial model, and so

they are equivalent to a linear calibration. However, this

calibration differs from the standard calibration tech-

niques in that the relationship is not provided by the joint

distribution of past observations and forecasts but from

modeling the probability that the event occurs. Different

choices of the parameters of the prior distribution repre-

senting the prior belief will determine the intercept and

slope in the linear calibration.

The approach described by RLZ that is currently used

by the meteorological community has been presented as

a linear calibration technique that minimizes the loga-

rithmic score for the particular case of binary events. In

this approach the climatological value is never changed

and relative frequencies are calibrated toward the cli-

matology. For example, it cannot simultaneously shift

all values upward or all values downward. This makes

this method inappropriate to correct bias in means of

the forecasts. In addition, the range of calibrated fore-

casts is bounded away from 0 and 1.

This work also presents a nonlinear calibration tech-

nique already widely used by the statistical community

and recently used for probability of precipitation fore-

casts, namely, logistic regression. Logistic regression cal-

ibrates forecasts using a nonlinear curve and is a flexible

method able to correct bias in the forecasts.

Bayesian methods and nonlinear calibration can be

used together by a two-step approach. First, prior belief

may be modeled and updated with ensemble predic-

tions to obtain a posterior distribution. A first estimate

of the probabilistic forecasts can be obtained from this

posterior distribution. Then, forecasts might be recali-

brated by a nonlinear method (logistic regression). This

work has investigated one version of this two-step ap-

proach, namely, by calibrating the forecasts provided by

RLZ.

These calibration techniques have been illustrated by

a real meteorological case. The example shows that both

calibration methods investigated always improve the

Brier score relative to the probabilistic forecasts given

by the relative frequencies. The improvement of the

Brier score when the forecasts are calibrated is due to an

improvement of the reliability term. Calibration does

not affect resolution or uncertainty. For these examples,

the relative-frequencies technique always has larger Brier

scores because of poor reliability terms, and nonlinear

calibration always improves linear calibration.

Forecasters interested in issuing warnings need to

bear in mind that whenever the forecasts are calibrated

the range of the obtained probabilistic forecasts is re-

duced. After calibration they do not range from 0 to

1 anymore. The range reduction depends on how poor

the model was in the past. If the model overforecast the

event, the calibration tends to reduce high probabilities

and will never provide us with probabilities close to 1.

Conversely, if the model underforecasts the event, then

calibration tends to increase the probabilistic forecasts,

avoiding probabilities close to 0. Thus, if the warning

system relies on the forecast probability of an event

exceeding a threshold and the threshold exceeds the

upper bound for the forecast, then the warning will

never be issued.

Logistic regression is a nonlinear method that cali-

brates probabilistic forecasts in a more flexible way than

does the RLZ method, but if the prediction model has

been very poor in the past then the probability fore-

cast’s range is still bounded away from 0 and 1. More

work is needed to address this range issue.
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