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[1] A novel additive model analysis of multimodel trends is presented. The approach
is motivated by, and particularly suited to, the analysis of multimodel time series of
varying length. This Time series Additive Model (TSAM) approach consists of three
distinct steps: estimation of individual model trends, baseline adjustment of the trends, and
the weighted combination of the individual model trends to produce a multimodel trend
(MMT) estimate. The baseline adjustment step is not an essential ingredient of the TSAM
but is included to reduce model spread. The association of the TSAM approach with
a probabilistic model allows trend estimates to be used to make formal inference
(e.g., calculation of confidence and prediction intervals). The method is applied to the
analysis of multimodel ozone time series of varying lengths as were considered for the
2006 Scientific Assessment of Ozone Depletion. The advantages of the TSAM approach
are demonstrated to include the production of smooth trend estimates out to the ends of
the time series, the ability to model explicitly interannual variability about the trend
estimate, and the ability to make rigorous probability statements. Calculated ozone return
dates are consistent with previous qualitative estimates, but the more quantitative analysis
provided by the MMT is expected to allow such data sets to be better utilized by the
community and policy makers.
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1. Introduction

[2] One of the most significant advances in the 2006
Ozone assessment [WMO, 2007] is that future projections of
ozone were being made with chemistry models embedded
within upwardly extended versions of the atmospheric
general circulation models used for the IPCC assessments
[Eyring et al., 2006, 2007]. These are often referred to as
Chemistry Climate Models or CCMs. The multimodel data
set used for the 2006 ozone assessment was amassed under
the Chemistry‐Climate Model Validation (CCMVal) Acti-
vity and is referred to as “CCMVal‐1.” Projections of future
ozone in the CCMVal‐1 data set are derived from the
REF‐A2 experiment, which employed the moderate (A1B)
IPCC AR4 future scenario for greenhouse gas concentrations
and a future scenario (B2) for the evolution of ozone
depleting substances that reflects controls resulting from the
Montreal Protocol and subsequent amendments and adjust-
ments [WMO, 2003, Table 4B‐2].
[3] While the specified period for the REF‐A2 simula-

tions spanned the period 1980–2100, due to the computa-

tional expense of the CCMs, modeling groups generally
provided only a portion of the requested data. For example,
individual REF‐A2 contributions ranged from ensembles of
one, extending over the period 2000–2019, to ensembles of
three, extending over the expanded period 1960–2100. Due
to the disparity in time series length and periods covered in
the REF‐A2 portion of the CCMVal‐1 data set, the evalu-
ation of multimodel mean time series and, therefore, mul-
timodel estimates of ozone recovery are not straightforward.
Previous trend estimation in the REF‐A2 data have provided
mostly qualitative results making it difficult to formulate
and utilize multimodel projections [WMO, 2007; Eyring
et al., 2007].
[4] In this study we formulate a new statistical modeling

approach that employs a nonparametric additive model to
estimate individual‐model trends (IMT), and the multi-
model, trend (MMT) for time series of unequal length. Here
the term “trend” refers to a smooth trajectory passing
through the time series data representing the “signal” leav-
ing a “noise” field as the residual. The goal in this procedure
is the definition of the simplest nonparametric additive
model whose trend estimate produces residuals that satisfy
assumed properties of noise (e.g., that it be an independent
normally distributed random variable). The association with
a probabilistic model allows the trend estimates to be used to
make formal inference (e.g., calculation of confidence and
prediction intervals). We shall refer to this new approach as
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the Time Series Additive Model, or “TSAM,” approach.
Attractive properties of the TSAM approach include: the
production of smooth trend estimates out to the ends of the
time series, the ability to model explicitly interannual vari-
ability about the trend estimate, and the ability to make
rigorous probability statements. Because the TSAM is based
on a testable probabilistic model, the suitability of the par-
ticular nonparametric additive model used can be validated.
[5] The TSAM approach adopted here consists of three

steps: estimation of individual model trends (IMT), baseline
adjustment of these trends, and the weighted combination of
the adjusted IMT estimates to produce a multimodel trend
(MMT) estimate. Much of the development effort of the
TSAM approach has gone into the final weighting step. The
formulation allows the specification of prior model weights
if this is desired (e.g., metric‐based performance weighting)
in the evaluation of the final MMT estimate. Two types of
uncertainty intervals are constructed for the MMT estimate.
The first is the pointwise 95% confidence interval on the
trend. This interval has a 95% chance of overlapping the
“true trend” (i.e., the expected trend predicted by the sta-
tistical model), representing the local uncertainty in the
trend at each year. The second interval, larger by con-
struction, is the 95% prediction interval, which represents
the uncertainty in predicting a value for an individual year.
This interval is a combination of uncertainty in the trend
estimate and uncertainty due to natural interannual vari-
ability about the trend.
[6] The present study focuses on the derivation of the

TSAM approach and its basic properties. A more complete
analysis of ozone in the CCMVal‐1 data set as revealed by
the TSAM approach is presented in the companion study
[Austin et al., 2010] in this special issue. Austin et al. [2010]
also applies the TSAM approach to the newer CCMVal‐2
data set [Eyring et al., 2008]. Unlike CCMVal‐1, essentially
all model contributions to CCMVal‐2 spanned the entire
length of the requested period of integration (1960–2100).
Application of the TSAM to both allows a quantitative com-
parison of, and clearer statements about, multimodel projec-
tions of ozone decline and recovery.
[7] Other studies have used observations to determine the

statistical probability of detecting ozone recovery, e.g., using
the method of cumulative sums [Newchurch et al., 2003;
Yang et al., 2006;WMO, 2007, chapter 6]. This method is less
easily applied to the situation in which a dozen or more
models may be contributing. Also, Hofmann et al. [1997]
used ozone observations over the south pole to try to detect
ozone recovery. However, their analysis if extended to recent
years could have resulted in quite misleading conclusions
because of the 2002 southern hemisphere stratospheric
warming. Those studies generally concentrated on the impact
of halogen induced ozone loss which is just one part of the
ozone change which occurs over a century length timescale
which is the focus of attention here and in the study by Eyring
et al. [2007]. Earlier works by Andersen et al. [2006] and
Weatherhead et al. [2000] also used statistical techniques to
estimate the timing of ozone recovery, but with a small
number of models and simulations of short duration their
conclusions would be largely superceded first by Eyring et al.
[2007] and using the more rigorous techniques of the current
paper.

[8] The outline of the paper is as follows. In section 2 the
development of the TSAM approach is presented using
specific time series examples from the CCMVal‐1 data set.
In section 3, the application of the TSAM is illustrated by
using it to derive individual and multimodel estimates of
ozone recovery in the form of return dates for the CCMVal‐1
REF‐A2 experiment. In section 4 we conclude with a brief
summary and discussion.

2. TSAM Approach

[9] Here we introduce a statistical modeling approach that
uses nonparametric regression to estimate smooth trends from
time series data. The nonparametric regression uses a set of
optimal thin plate splines to represent the trends and can be
used to make formal inference (e.g., calculate confidence and
prediction intervals). As discussed in the Introduction, the
approach adopted here consists of three distinct steps: esti-
mation of individual model trends (IMT), baseline adjustment
of the trends, and the weighted combination of the adjusted
individual model trends to produce a multimodel trend
(MMT) estimate. In this section the development and appli-
cation of this approach will be illustrated using the time series
of column ozone data presented in Figure 1. These data
correspond to the CCMVal‐1 raw time series analyzed by
Eyring et al. [2007, Figure 7]. Several models participating in
CCMVal‐1 provided two overlapping time series of column
ozone to cover the maximum range of the REF‐A2 period
(1980–2100): one from the REF‐A2 experiment and one
from the climate‐of‐the‐20th‐century experiment REF‐A1.
This additional complication is accounted for in the TSAM
approach by considering these partially overlapping time
series as ensemble members.

2.1. Nonparametric Estimation of the Individual
Model Trends

[10] The time series yjk(t) of an ozone‐related index, such
as one of those displayed in Figure 1, is additively modeled
as the sum of a smooth unknown model‐dependent trend,
hj(t), and irregular normally distributed noise:

yjk tð Þ ¼ hj tð Þ þ �jk tð Þ; ð1Þ

where the noise field

�jk tð Þ � N 0; �2
� � ð2Þ

is assumed to be an independent normally distributed ran-
dom variable with zero mean and variance s2, and the
indices j and k, respectively, represent model and ensemble‐
member number. (Here the ensemble index k extends over
both REF‐A1 and REF‐A2 simulations for some models.)
This is a nonparametric regression of the time series on time.
The regression is nonparametric because the function of
time does not have a fixed functional form with explicit
parameters. The noise term (2), representing natural vari-
ability about the trend, is considered to be an independent
normally distributed random variable: independent between
different times, models, and runs. The variance of the noise
is assumed to be constant over all models and runs. By
fitting the trend to all the data rather than to each model
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separately one can obtain better estimates of the noise var-
iance (referred to as “borrowing strength”).
[11] The unknown smooth functions hj(t) are estimated by

fitting the data to a finite set of smooth basis functions
having optimal interpolating properties. This was done here
by using the generalized additive model gam() function in
the mgcv library of the R language [R Development Core
Team, 2008; Woods, 2006]. The default option was used
which fits the data to a set of thin plate regression splines, by
maximizing penalized likelihood to find the coefficients
multiplying the basis functions. The smoothness of the basis
functions is controlled by a smoothing parameter, which is
chosen using a leave‐one‐out generalized cross‐validation
prediction approach (see Woods [2006] for more details).
Unlike iterated 1:2:1 Lanczos filter smoothing, typically
used on CCMVal‐1 data [e.g., Eyring et al., 2007], the thin
plate splines are guaranteed to give smooth trend estimates
and do not alter their properties at the ends of the series.

[12] The first step in the TSAM approach is to apply the
nonparametric regression (1) to the raw time series data.
This is illustrated in Figures 2a and 2b by the IMT esti-
mates hj(t) of the CCMVal‐1 March 60°N–90°N and
October 60°S–90°S total column ozone displayed in
Figure 1. (Note that, while the smooth trend estimates hj(t)
extend over the full period (1950–2100) in Figures 2a and 2b,
we have elected to display the hj(t) only over the period where
data exists for each model.)

2.2. Baseline Adjustment of the Trend Estimates

[13] The initial IMT estimates hj(t) in Figures 2a and 2b
reveal significant differences in the background values of
column ozone, particularly in the Arctic (Figure 2a). To
facilitate a comparison of the trends across models, anomaly
time series are constructed relative to a pre–ozone‐hole
baseline value of the index. While this is analogous to the
procedure employed by Eyring et al. [2007], the smoothness
of hj(t) allows a more robust definition of the baseline at a
particular time t0 (i.e., hj(t0)), rather than from the average
over some period about t0. This results in the anomaly time
series:

yjk tð Þ � hj t0ð Þ: ð3Þ

By construction, the anomaly time series (3) is centered on a
baseline value of zero at the time t0. Here we chose to have
this baseline changed from zero to the multimodel mean of
hj(t0) resulting in the “t0 baseline‐adjusted time series”:

y
0
jk tð Þ ¼ yjk � hj t0ð Þ þ h t0ð Þ: ð4Þ

where

h t0ð Þ ¼ 1

J

XJ
j0¼1

hj0 t0ð Þ; ð5Þ

where J is the total number of models. Since the multimodel
average of the IMT estimates h(t0) is a close approximation
to the final multimodel trend estimate (MMT) derived in the
third step of the TSAM approach, the baseline adjustment
may be viewed simply as forcing the anomaly time series to
go roughly through the final MMT estimate at the reference
date t0.
[14] The time series (4) contains all the information of (3)

plus the multimodel average h(t0), which can be compared
with observations. We will used the baseline t0 = 1980 since a
number of the CCMVal‐1 models do not have data prior to
this date. Following (4), the 1980 baseline‐adjusted time
series, y′jk for the CCMVal‐1March 60°N–90°N and October
60°S–90°S total column ozone are displayed in Figures 2c
and 2d, respectively. The corresponding 1980 baseline‐
adjusted nonparametric IMT estimates h′j(t) are presented in
Figures 2e and 2f. Following (1) and (4) the 1980 baseline‐
adjusted nonparametric smooth trend in our model is:

h
0
j tð Þ ¼ hj tð Þ � hj t0ð Þ þ h t0ð Þ ð6Þ

with

y
0
jk tð Þ ¼ h

0
j tð Þ þ �jk tð Þ: ð7Þ

Figure 1. CCMVal‐1 time series of monthly averaged total
column ozone (a) in the latitude band 60°N–90°N for March
and (b) in the latitude band 60°S–90°S for October. Follow-
ing Eyring et al. [2007], these time series include REF‐A1
data in addition to REF‐A2 data for several of the models.
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Before moving on to the third step in the TSAM, we may ask
if the statistical model in (7) is well specified. In other words,
are all its model assumptions satisfied in modeling the data,

for example, that the noise term �jk (t) is independent from
year to year, is normally distributed, and is drawn from the
same underlying distribution with zero mean and similar

Figure 2. (a and b) Initial estimate of the individual model trends hj(t) for the raw time series displayed
in Figure 1. This represents the first step in the TSAM approach. (c and d) The 1980 baseline‐adjusted
time series data y′jk following from (7) with t0 = 1980. (e and f) The 1980 baseline‐adjusted trend estimate
h′j(t). This represents the second step in the TSAM approach. The thick gray line in Figures 2c and 2d
represents the trend estimate g’(t) for the simpler nonparametric additive model (8). For reference, following
Eyring et al. [2007], smooth fits to the observations in these plots have been created by 30 iterations of a
1:2:1 filter (black lines).
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variance. For example, we could have chosen the simpler
nonparametric model:

y
0
jk tð Þ ¼ g

0
tð Þ þ �̂jk tð Þ; ð8Þ

where one trend estimate is made for all time series data
instead of individual trend estimates for each model (7). This
implicitly defines a different random noise component �̂jk(t).
The nonparametric trend estimate g′(t) is displayed as the
thick grey line in Figures 2c and 2d. If (8) were a reasonable
model for the data then, in addition to being an IMT, g′(t)
could also serve as the MMT thereby eliminating the need for
the third step of the TSAM. Visual inspection of the smooth
estimate g′(t) to the 1980 baseline‐adjusted time series y′jk in
Figures 2c and 2d would suggest a reasonable fit. However,
because we have built the approach on a probabilistic model,
the specification of the g′(t) and h′j (t) fits may be tested.
[15] The year‐to‐year independence of the model noise

term may be tested by calculating its autocorrelation func-
tion. In Figure 3 the autocorrelation function for the noise
term ��jk (t) is displayed for each model for the nonparametric
fit (7) to the CCMVal‐1 October 60°S–90°S column ozone.
The dashed blue lines in Figure 3 represent 95% confidence

limits. Lines that extend beyond these limits are considered
to be sample correlations that are significantly different from
zero. Inspection of all the models reveals that the assump-
tion of year‐to‐year independence is a good one for the
model (7). The fits are designed to give “smooth” estimates
of the long‐term trends; in other words, they capture long‐
term variations in the trend but do not wiggle up and down
annually. Interannual wiggles are suppressed by a roughness
penalty when fitting the splines. Since the residuals of (7)
are not serially correlated, there is no need to represent the
residuals using more complex time series models such as
ARMA models or fractional Brownian noise. This would
not be the case if one had used simple parametric trends that
are unable to follow longer term up and down decadal
variations. Unlike model (7), the simpler nonparametric
model (8), which has the same trend for all climate models,
gives serially correlated residuals (Figure 4) and so is not
well specified (i.e., its assumptions are not satisfied when
the model is fit to the data).
[16] Model assumptions related to the noise term may

be further investigated by “notched box‐and‐whisker”
plots. These are displayed for �̂jk(t) and ��jk(t), respectively,
in Figures 5a and 5b again for the CCMVal‐1 October

Figure 3. Individual model autocorrelation functions for the residuals �jk(t) for CCMVal‐1 October total
column ozone in the latitude band 60°S–90°S. This noise corresponds to the nonparametric model (7)
with 1980 baseline trend estimates h′j(t) displayed in Figure 2f. The blue dashed lines represent 95%
confidence limits for the sample autocorrelation function. This suggests that the assumption of year‐to‐year
independence is a good one for the (7) model.
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60°S–90°S column ozone (see caption for details). From
Figure 5b, we can see that the noise term ��jk(t) has a similar
location and scale for each model, validating the model
assumption that the residuals were drawn from the same
distribution with zero mean and roughly the same variance.
Again, the same cannot be said for the �̂jk(t) residuals
(Figure 5a) suggesting that g′(t) in (8) is not a well‐speci-
fied model of the trend.
[17] We conclude, therefore, that (7) represents one of the

simplest nonparametric additive models that is satisfied by
the ozone indices considered in the two examples.

2.3. Multimodel Trend Estimates

[18] The final step of the TSAM approach involves
combining the IMT estimates h′j(t) to arrive at an MMT
estimate:

h
0
tð Þ ¼

X
j

wj tð Þh0
j tð Þ; ð9Þ

where the weights wj(t) have the properties

wj tð Þ � 0 and
X
j

wj tð Þ ¼ 1: ð10Þ

If the weights are assumed to be nonrandom, and the errors
in the individual trends are assumed to be independent, then
the squared standard error of the weighted sum is given by:

s2h tð Þ ¼
X
j

w2
j tð Þs2j tð Þ; ð11Þ

where sj(t) is the standard error of the trend estimate h′j(t),
which can be calculated using standard expressions from
linear regression [Woods, 2006]. The standard error (11) can
then be used to estimate the confidence and prediction in-
tervals, respectively, as:

h
0
tð Þ � 1:96sh tð Þ; h0

tð Þ þ 1:96sh tð Þ
h i

ð12Þ

and

½h0
tð Þ � 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2h tð Þ þ s2�

q
; h

0
tð Þ þ 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2h tð Þ þ s2�

q
�: ð13Þ

[19] The 95% confidence interval in the trend gives the
uncertainty in the trend estimate, where s� is the standard
deviation of the noise term. In other words, there is 95%

Figure 4. Individual model autocorrelation functions for the noise term �̂jk(t) for CCMVal‐1 October
total column ozone in the latitude band 60°S–90°S. This noise corresponds to the simpler nonparametric
model (8) with a 1980 baseline trend estimate g’(t) displayed in Figure 2d. The lines extending past the
blue dashed lines for several models indicates that the assumption of year‐to‐year independence is not
well satisfied for the (8) model.
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chance that this interval will overlap the expected trend
predicted by the statistical model. The interval is pointwise
(rather than simultaneous) in that it represents the uncer-
tainty in the trend at each year rather than being an interval
for all probable trend curves over the whole period. The
95% prediction intervals give an idea of how much uncer-
tainty there might be in a predicted index value for an
individual year. In other words, there is 95% chance that a
particular index value on a specific year will lie in this
interval. This interval is the combination of uncertainty in
the trend estimate and the uncertainty due to natural inter-
annual variability about the trend.

[20] The specific choice of weights in (9) remains open. In
general, we decide to base the construction of the weights on a
statistical probability model with testable assumptions. Here
we have chosen a “random effects” model to determine the
weights. This model assumes that the trends for individual
models h′j(t) are random samples from the “true trend” ~hj(t):

h
0
j tð Þ ¼ ~h0

j tð Þ þ � tð Þ ð14Þ

where

� tð Þ � N 0; �2
� �

: ð15Þ

Figure 5. Individual model notched box‐and‐whisker plots (a) for the noise term �̂jk (t) corresponding
to the simpler nonparametric additive model (8) and (b) for the noise term �jk(t) corresponding to the
nonparametric additive model (7). These apply to the CCMVal‐1 October total column ozone in the latitude
band 60°S–90°S. In these plots the central black line represents the median, the extent of the notches away
from the median line indicates the 95% confidence interval of the median, the top and bottom of the boxes
represent the upper and lower quartiles, respectively, and the top and bottom whiskers extend out to 1.5
times the distance from the first to third quartiles. For the noise term �jk(t) in Figure 5b, the medians of all
models fall within the notches and are close to zero. Also, the similar height of the boxes indicates that all
models have a similar amount of variance away from the estimated trend h′j(t). For the noise term �̂jk(t), the
means are significantly different and the intermodel variance is larger suggesting that (8) is not a suitable
model for these data.
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Figure 6. For time series of CCMVal‐1 October total column ozone in the latitude band 60°S–90°S are
presented the (a, d, and g) individual model fits, (b, e, and h) weights, and (c, f, and i; thick gray line)
trend (MMT) estimate for three approaches to determining the weights. Results from the “random effects”
model (17) are shown in Figures 6a–6c. One problem with this approach is that models can contribute to
the final MMT estimate at times when no data exists of that model (i.e., in regions where h′j(t) represents
an extrapolation). The introduction of prior weights (20) can help mitigate this problem. Results from the
use of a simple on/off set of prior weights (having a value of one where there are model data and zero
where there is none) are presented in Figures 6d–6f. One artifact of this approach is that it causes dis-
continuities in the final MMT estimate. Finally, results from set of prior weights used for the present
study, which employ a smoother quadratic taper from a value of 1 where time series data exist to a value
of 0 where it is absent, is displayed in Figures 6g–6i.
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The quantity l2 is included to account for additional variance
between model trends that cannot be accounted for merely by
sampling the uncertainty sj

2. Using this random effects model,
(11) then generalizes to:

s2h tð Þ ¼
X
j

w2
j tð Þ �2 þ s2j tð Þ

� �
; ð16Þ

which is used here to calculate intervals. Assuming this model
is valid, a least squares estimate ofwj(t) may be obtained from
(9) employing the weights:

wj tð Þ ¼ w tð Þ
�2 þ s2j tð Þ ð17Þ

where

w�1 tð Þ ¼
X
j

�2 þ s2j tð Þ
� ��1

: ð18Þ

Specification of the weights wj(t) from (17) requires an
estimate of the parameter l2. For this we have used the
following iterative approach: An initial estimate of the true
trend is obtained by calculating h′l=0(t). Then an iterative
Newton‐Raphson algorithm is employed to determine the
l that gives scaled residuals that have unit variance as is
expected from (14):

var
h
0
tð Þ � h

0
�¼0 tð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 þ s2j

q
tð Þ

0
B@

1
CA ¼ 1: ð19Þ

Figure 7. Raw time series data of annually averaged column O3 (25°S–25°N) and initial individual
model trend (IMT) estimates (top left), and 1980 baseline‐adjusted time series data and IMT estimates
(top right) for the TSAM analysis of CCMVal‐1 data. Observational data (black symbols) and lowess
fit with smoother span f = 0.4 [Cleveland and Devlin, 1988] to the observations appear as black lines
in all panels. (bottom) The 1980 baseline‐adjusted multimodel trend (MMT) estimate is displayed (heavy
dark gray line) with 95% confidence and 95% prediction intervals appearing as light and dark gray‐
shaded regions about the trend. The 1980 baseline‐adjusted IMT estimates are also plotted.
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Employing this model for the weights produces the MMT
estimate h′(t) for the 1980 baseline CCMVal‐1 October
60°S–90°S column ozone displayed in Figure 6c. The asso-
ciated individual model trend estimates h′j(t) and weights
wj(t) are displayed in Figures 6a and 6b, respectively. In
Figure 6, the weights are scaled by the number of models so
that a scaled weight of 1 implies a proportional contribution
of that model to the MMT estimate.
[21] While this formulation of weights provides a smooth

final trend estimate h′(t), for this example it highlights a
potential problem: the individual model weights wj(t) are
very insensitive to the absence of data in the original time
series. For example, the time series for the MAECHAM4-
CHEM model (green) extends only over the period 1980–
2019 (see Figure 2). Its scaled weight, however, has a value
of roughly 1 over the entire period 1960–2100 suggesting
significant contributions of its trend estimate h′j(t) at times

when there are no model data. The original idea behind this
model for the weights was that the natural increase in
standard errors sj

2 (t) in the region where h′j(t) is extrapolated
beyond the model data would cause the weights to decrease
naturally toward zero. While Figure 6b indicates that there is
some tendency for the weights to display this behavior,
many models retain weight values close to unity out to 2100
where they have provided no data.
[22] To correct this unphysical behavior, we introduce the

concept of prior weights w j
p(t) into the formulation such that

the final weights now have the form:

w
0
j tð Þ ¼

w p
j tð Þwj tð ÞP
j0 w

p
j0 wj0 tð Þ

ð20Þ

(with w′j(t) implicitly replacing wj(t) in expressions (11) and
(17)). An example set of prior weights would be the “on/off”

Figure 8. Raw time series data of (left) annually averaged column O3 and initial individual model trend
(IMT) estimates and (right) 1980 baseline‐adjusted time series data and IMT estimates for the TSAM
analysis of column ozone in the latitude bands (top) 60°N–90°N and (bottom) 60°S–90°S. Observational
data as given as in Figure 7.
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set: wj
p(t) = 1 at times t when raw time series data exist for

model j and wj
p(t) = 0 otherwise. This prescription is illus-

trated in Figures 6d–6f. It corrects the unphysical behavior
identified when wj(t) of (17) is used alone. However, this on/
off prescription is still problematic in that it causes dis-
continuities in the MMT estimate Figure 6f. The set of prior
weights used for the present chapter employ a smoother
quadratic taper from a value of 1 where time series data
exists to a value of 0 where it is absent:

wp
j tð Þ ¼

1� z2 if 0 � z2 � 1

0 otherwise

8<
: ; ð21Þ

where

z ¼ �1þ 2 t � tj;min

� �
= tj;max � tj;min

� �
; ð22Þ

and where [tj,min, tj,max] defines the period within which data
exist for model j. This scheme is illustrated in Figures 6g–6i.
[23] Finally, we note that the formulation of prior weights

(20) allows a natural entry point for the specification of
prior, time‐independent, model weights based on perfor-
mance metrics. Such metric based weights would take on

values in the range [0,1] and simply multiply wj
p(t) in the

numerator and denominator of expression (20).

3. TSAM Analysis of Column Ozone
and Its Recovery

[24] In this section the TSAM approach is illustrated by its
application to CCMVal‐1 total column ozone in all latitude
bands. Individual and multimodel trend estimates derived
from this analysis are used to make quantitative estimates of
ozone recovery.
[25] In Figure 7 (top left) we present the raw time series

and the initial TSAM individual model trend (IMT) esti-
mates for the annual total column ozone in the latitude band
25°S–25°N for 11 CCMVal‐1 models. These initial IMT
estimates employ the nonparametric additive model dis-
cussed in section 2 and were verified by an analysis of the
residuals (e.g., see section 2.3). Observations of total ozone
from four data sets are also presented in Figure 7 (black
lines and symbols). These include ground‐based measure-
ments (updated from Fioletov et al. [2002]), merged satellite
data [Stolarski and Frith, 2006], the National Institute of
Water and Atmospheric Research (NIWA) combined total
column ozone database [Bodeker et al., 2005], and from
Solar Backscatter Ultraviolet (SBUV, SBUV/2) retrievals
(updated from Miller et al. [2002]).
[26] The raw time series display a wide range of back-

ground total ozone values over the entire REF‐A2 period,
which extend significantly above and below the observed
values in this region. As described in section 2.2, relative to
a selected reference date, baseline‐adjusted time series and
IMT estimates are computed in the second step of the TSAM
approach to facilitate a closer comparison of the predicted
evolution of ozone indices between models. Following the
analysis performed in chapter 6 of WMO [2007] and Eyring
et al. [2007], anomaly time series are created for each
model about a baseline value prior to significant ozone loss.
Here the baseline value is taken to be the initial IMT
estimate at a selected reference date for each model (e.g.,
1980). The baseline adjusted time series are then formed by
adding a constant so that each anomaly time series goes
through the multimodel average of the IMT estimates at the
reference date. Since the multimodel average of the IMT
estimates is a close approximation to the final multimodel
trend estimate (MMT) derived in the third step of the
TSAM approach, the baseline adjustment may be viewed
simply as forcing the anomaly time series to go roughly
through the final MMT estimate at the reference date.
[27] The baseline‐adjusted IMT estimates employing a

reference date of 1980 are presented in Figure 7 (top right).
Comparing the top left and top right of Figure 7, it can be
seen that the TSAM approach has been very effective at
providing a common reference for the total ozone time
series allowing a clearer comparison of the predicted evo-
lution between models. In Figure 7 (bottom) the multimodel
trend (MMT) estimate (thick gray line) computed in the final
step of the TSAM approach for the 25°S–25°N total column
ozone is presented. The 95% confidence and 95% prediction
intervals for the MMT estimate are also displayed as the
light and dark gray‐shaded intervals and the IMT estimates
are superposed on top of the MMT estimate.

Figure 9. 1980 baseline‐adjusted multimodel trend (MMT)
estimates of annually averaged column O3 (heavy dark gray
line) in the latitude bands (top) 60°N–90°N and (bottom)
60°S–90°S with 95% confidence and 95% prediction inter-
vals appearing as light and dark gray‐shaded regions about
the trend. The 1980 baseline‐adjusted IMT estimates and
unadjusted lowess fit [Cleveland and Devlin, 1988] to the
observations are additionally plotted.
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[28] The TSAM analysis of springtime total column ozone
over polar latitudes (60°N–90°N in March and 60°S–90°S
in October) is presented in Figure 8. Unlike the tropical
latitudes, the baseline adjustment of the column ozone has
only a modest impact on the intermodel spread in the Arctic
and essentially no impact in the Antarctic. This implies that
tropical differences come primarily from intermodel sys-
tematic offset biases while polar differences come from in-
termodel differences in sensitivity to ozone depleting
substances. The MMT estimates of the polar ozone are
displayed in Figure 9. Due to the greater intermodel spread
of the baseline adjusted time series at the poles relative to
the tropics, there occurs larger 95% confidence and pre-
diction intervals about the MMT estimates in the polar la-
titudes. It is important to note that, while the TSAM analysis
has been effective at combining IMT estimates into the final
MMT estimate, an artifact in the form of a change in slope

seems to remain near 2050 in Figure 9. This is primarily due
to the fact that a large number of the model time series end
at this point and the MMT estimate beyond this time relies
on only three models’ IMT estimates.
[29] The TSAM analysis of annual column ozone in

midlatitudes (35°N–60°N and 35°S–60°S) is presented in
Figure 10. The baseline adjustment in both the Northern
Hemisphere and Southern Hemisphere is found to reduce
the intermodel spread of the IMT estimates. The MMT
estimates of the midlatitude ozone are displayed in Figure 11.
Due to the reduced intermodel spread of the baseline adjusted
time series at midlatitudes relative to the poles, there occurs
tighter 95% confidence and prediction intervals about the
MMT estimates in midlatitudes.
[30] The IMT and MMT estimates for total ozone may be

used to quantify individual model, and multimodel estimates
of ozone recovery back to values associated with a specified

Figure 10. Same as Figure 8 but for the annual mean column ozone in the latitude bands (top) 35°N–60°N
and (bottom) 35°S–60°S.
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reference date. Because the IMT and MMT estimates are
smooth curves by construction, the value of ozone for any
reference date prior to maximum ozone depletion may be
mapped onto a future date based on the return of ozone to
the reference date value. The TSAM approach, therefore,
allows the definition of return dates for a continuous set of
reference dates. Here a reference date of 1980 will be used
for the REF‐A2 time series to be consistent with previous
analyses of ozone return dates for the CCMVal‐1 data set
[WMO, 2007, chapter 6; Eyring et al., 2007].
[31] In Figure 12, for the CCMVal‐1 data set, we present

summary diagnostics of 1980 return dates for column ozone
for the five sets of latitude bands considered in Figures 7–
11. In Figure 12, for each latitude band, the MMT estimates
of return dates are indicated by large black triangles. Error
bars on these estimates are associated with the TSAM 95%
confidence intervals. Figure 12 provides a concise summary
of the ozone evolution presented in Figures 7–11. It allows
return dates of individual models to be compared to each
other, and to the return date of the multimodel mean. It also
clearly reveals the latitudinal structure of recovery.
[32] Initial inspection of Figure 12 reveals that return

dates for total ozone are not symmetric in latitude and in the
tropics realized by only a few models, with the MMT esti-
mate of return date having a very large uncertainty. The
asymmetric structure of midlatitude and polar ozone recov-
ery is an indication that, in addition to halogen loading, ozone
is affected by dynamical and radiative changes brought about
by increased greenhouse gas forcing (e.g., Austin et al. [2010])
and these have been consistently reproduced in the MMT

estimates of CCMVal‐1. In the absence of the TSAM
analysis this result was difficult to identify.

4. Summary and Discussion

[33] In this study we have developed a nonparametric
additive model trends analysis that is suitable for producing
smooth individual model trend (IMT) and multimodel trend
(MMT) estimates of time series of unequal length. We have
referred to this approach as the Time Series Additive Model,
or “TSAM,” approach. The association of the TSAM
approach with a probabilistic model allows the trend esti-
mates to be used to make formal inference (e.g., calculation
of confidence and prediction intervals). Advantages of the
TSAM include: the production of smooth trend estimates
out to the ends of the time series, the ability to model
explicitly interannual variability about the trend estimate,
and the ability to make rigorous probability statements.
[34] The TSAM approach was motivated by the nature of

the CCMVal‐1 data set, which formed the basis of the 2006
Ozone assessment [WMO, 2007]. In general, individual
model time series of future ozone in the REF‐A2 experiment
of CCMVal‐1 spanned only portions of the requested period
(1980–2100) making it difficult to evaluate multimodel
ensemble behavior. The TSAM approach was illustrated by
its application to REF‐A2 ozone time series providing
smooth IMT and MMT estimates that extended over the
entire REF‐A2 period. This allowed, for the first time,
quantitative estimates of ozone return dates for individual
models and the multimodel mean of the CCMVal‐1 data set.

Figure 11. Same as Figure 9 but for the annual mean
column ozone in the latitude bands (top) 35°N–60°N and
(bottom) 35°S–60°S.

Figure 12. Date of return to 1980 values for the annual
average (tropical and midlatitude) and spring (polar) total
ozone column derived from the IMT (colored symbols)
and MMT (large black triangles) estimates for the
CCMVal‐1 data set. The error bars on the MMT estimate
of recovery date are derived from the 95% confidence inter-
val of the MMT estimates to the 1980 baseline‐adjusted
time series data.
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[35] It is anticipated that as the number of models in-
creases, assuming all span the same period, a simple mul-
timodel ensemble mean and the MMT estimate of the
TSAM approach will converge toward each other. Smooth
estimates of individual model trends, on the other hand,
would require ensembles of nontrivial size for each model.
In the absence of large ensembles for each model, the IMT
estimate of the TSAM would seem to provide a superior
estimate of smooth individual model trends.
[36] The TSAM approach can easily be extended to time

series with shorter sampling times. For monthly (or even
daily) time series one is likely to have to model serial cor-
relation in the residuals. A good example of how to use
autoregressive models to do this for daily air temperatures in
Cairo is presented on page 322 of Woods [2006].
[37] Finally, since one of themain advantages of the TSAM

is the use of the probabilistic model, the approach provides
both the mean model trend and an estimate of its uncertainty.
Although this uncertainty does not take account of unknown
physical processes, ozone in the atmosphere is generally well
understood. Therefore, it is anticipated that the statistical
uncertainty in the multimodel trend is representative of the
true uncertainty, and that its knowledge would be of benefit in
the formulation of policy on the ozone layer.
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