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ABSTRACT

Verifying forecasts of rare events is challenging, in part because traditional performance measures de-

generate to trivial values as events become rarer. The extreme dependency score was proposed recently as

a nondegenerating measure for the quality of deterministic forecasts of rare binary events. This measure has

some undesirable properties, including being both easy to hedge and dependent on the base rate. A symmetric

extreme dependency score was also proposed recently, but this too is dependent on the base rate. These two

scores and their properties are reviewed and the meanings of several properties, such as base-rate dependence

and complement symmetry that have caused confusion are clarified. Two modified versions of the extreme

dependency score, the extremal dependence index, and the symmetric extremal dependence index, are then

proposed and are shown to overcome all of its shortcomings. The new measures are nondegenerating, base-

rate independent, asymptotically equitable, harder to hedge, and have regular isopleths that correspond to

symmetric and asymmetric relative operating characteristic curves.

1. Introduction

Extreme weather events such as high wind speeds,

heavy precipitation, or high temperatures can have se-

vere impacts on society. Improving predictions of such

events therefore has a high priority in national weather

services, and an important part of this activity is to de-

termine whether or not prediction quality is improved

when prediction systems are updated. Assessing the

quality of predictions of extreme weather events, how-

ever, is complicated by the fact that measures of forecast

quality typically degenerate to trivial values as the rarity

of the predicted event increases. The drive to improve

predictions of extreme events and the associated diffi-

culties of measuring the quality of such predictions has

generated a growing interest in better ways of verifying

forecasts of extreme events.

In this paper we consider the problem of verifying

deterministic forecasts of rare binary events. Forecasts

that state whether or not daily rainfall accumulations

will exceed a high threshold provide one example. A set

of such forecasts is commonly displayed in a 2 3 2

contingency table, such as Table 1.

Many summary statistics of contingency tables have

been proposed as measures of forecast performance

(Mason 2003). Popular examples include the hit rate,

H 5
a

a 1 c
;

the false-alarm rate,

F 5
b

b 1 d
;

and the odds ratio,

OR 5
ad

bc
.

We can illustrate the difficulty of verifying forecasts

of extreme events with a set of precipitation forecasts

considered previously by Stephenson et al. (2008). The

forecasts are 6-h rainfall accumulations taken directly

from the old 12-km mesoscale version of the Met Office

Unified Model (Davies et al. 2005) at the grid point

nearest to Eskdalemuir in Scotland between 1 January

1998 and 31 December 2003. The observations are

6266 corresponding rain gauge measurements from the
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Eskdalemuir observatory and are plotted opposite the

forecasts in Fig. 1.

Suppose that the event of interest corresponds to 6-h

rainfall exceeding the threshold marked in Fig. 1 and

that the event is forecasted to occur if the forecasted

rainfall exceeds the same threshold. The elements of the

contingency table are then the numbers of points in the

four quadrants of Fig. 1. If we construct a contingency

table for each of several different thresholds, then we

can examine how verification measures change as we

move to rarer events. Figure 2 shows that the hit rate and

false-alarm rate decrease toward zero and the odds ratio

increases toward infinity as the events become rarer.

Stephenson et al. (2008) demonstrated that such behavior

is common: verification measures such as these typically

degenerate to trivial values as the definition of the event is

changed to become increasingly rare. This happens be-

cause entries a, b, and c in the contingency table tend to

decay to zero at unequal rates (Ferro 2007).

Stephenson et al. (2008) proposed a new verification

measure, the extreme dependency score or EDS, for

summarizing the performance of deterministic forecasts

of rare binary events. Instead of degenerating, the EDS

converges to a meaningful limit for rare events. We

define the EDS in section 2 and then discuss its advan-

tages. Some undesirable properties of the EDS have

been noted recently in the literature and we review these

criticisms in section 3, while also clarifying the meaning

of some properties that have caused confusion elsewhere

in the literature. An alternative version of the EDS, the

symmetric extreme dependency score or SEDS, was

proposed recently by Hogan et al. (2009) in an attempt to

overcome some of the shortcomings of the EDS. We

discuss the SEDS in section 4 and show that it also suffers

from some drawbacks. Motivated by these results, we

introduce in section 5 two new measures that overcome

all of the undesirable features of the EDS and SEDS.

These measures are the extremal dependence index,

EDI 5
logF 2 logH

logF 1 logH
, (1)

and the symmetric extremal dependence index,

SEDI 5
logF 2 logH 2 log(1 2 F) 1 log(1 2 H)

logF 1 logH 1 log(1 2 F) 1 log(1 2 H)
.

(2)

We illustrate the various measures throughout with ide-

alized and operational forecasting examples, and con-

clude with a summary in section 6.

2. Extreme dependency score

Following Coles et al. (1999), the EDS was defined

by Stephenson et al. (2008) as
FIG. 1. Forecasted 6-h rainfall accumulations against observations

at Eskdalemuir.

FIG. 2. Odds ratio (OR, solid line), hit rate (H, dashed line), and

false-alarm rate (F, dotted line) against threshold (mm) for the

Eskdalemuir precipitation forecasts.

TABLE 1. A contingency table representing the frequencies of

forecast–observation pairs for which the event and nonevent were

forecasted and observed. Entries are also written in terms of the

sample size, n; base rate, p; hit rate, H; and false-alarm rate, F.

Event observed Nonevent observed

Event

forecasted

a 5 Hpn b 5 F(1 2p)n a 1 b

Nonevent

forecasted

c 5 (1 2 H)pn d 5 (1 2 F)(1 2 p)n c 1 d

a 1 c 5 pn b 1 d 5 (1 2p)n n
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EDS 5
2 log[(a 1 c)/n]

log(a/n)
2 1:

The EDS can also be rewritten in the following form

(Primo and Ghelli 2009), which will be useful for our

treatment later:

EDS 5
2 logp

log(Hp)
2 1

5
logp 2 logH

logp 1 logH
, (3)

where H is the hit rate and p 5 (a 1 c)/n is the base rate,

the relative frequency with which the event was ob-

served to occur. Rare events therefore correspond to

low base rates.

The EDS is designed to measure the dependence

between the forecasts and observations in such a way

that it will converge to a meaningful limit for rare events.

We explain later in this section that, in order to achieve

this meaningful limit, it is necessary to separate out

the dependence from any bias. Consequently, the EDS

should not be calculated for raw forecasts. Rather, the

EDS should be calculated only after recalibrating the fore-

casts so that the number of forecasted events (a 1 b) equals

the number of observed events (a 1 c) in Table 1. If the

event is forecasted to occur when a continuous forecast

variable exceeds a threshold u, and is observed to oc-

cur when a continuous observation variable exceeds a

threshold y, then the forecasts can be recalibrated by

choosing u and y to be the upper p quantiles of the

forecasted and observed variables, respectively (Ferro

2007; Stephenson et al. 2008). When forecasts are recali-

brated in this way, the EDS converges to a meaningful

limit in the interval (21, 1] as the base rate decreases. This

convergence holds under quite weak conditions on the

joint distribution of the forecasts and observations, which

imply that a/n ; kp1/h for small p, where k . 0 and 0 , h #

1 (Ledford and Tawn 1996; Coles et al. 1999; Ferro 2007).

Consequently, EDS / l 5 2h 2 1 as p / 0. One way to

interpret this limit is in terms of the rate at which the

number of hits, a, in Table 1 decays to zero (Stephenson

et al. 2008). In particular, a decays at a rate of p2/(11l) as

p / 0, and so

d if l . 0, then a decreases slower than p2;
d if l 5 0, then a decreases at the same rate as p2; and
d if l , 0, then a decreases faster than p2.

The expected value of a for calibrated, random forecasts

is np2 because np events are observed and events are

forecasted randomly with probability p. The threshold

l 5 0 therefore separates forecasts with extremal de-

pendence that is stronger than for random forecasts

(l . 0) from those with extremal dependence that is

weaker than for random forecasts (l , 0).

If the EDS is calculated without recalibrating the

forecasts, then it may still converge to a nontrivial limit,

but only under stronger conditions on the joint distri-

bution of the forecasts and observations than we needed

for the recalibrated case above. For example, for un-

calibrated forecasts with (a 1 b)/n 5 q 6¼ p, stronger

conditions can be imposed to ensure that a/n behaves

like k(pq)1/(2h) when p is small (Ramos and Ledford

2009). If, in addition, the frequency bias q/p converges

to a positive constant b as p / 0, then a/n ; k9p1/h as

before, where k9 5 kb1/(2h). In this case, the EDS still

converges to 2h 2 1 and the limit remains meaningful.

In other cases, however, the limiting value of the EDS

depends on how the bias changes as the base rate de-

creases, and degenerate limits are possible. This is why

the EDS should not be calculated for uncalibrated fore-

casts of rare events. When the EDS is calculated after

recalibrating forecasts, then the bias of the raw forecasts

can also be reported in order to provide a more complete

description of forecast performance.

We close this section by calculating the EDS for the

precipitation forecasts in Fig. 1. The forecasts were re-

calibrated and the EDS was calculated for base rates

ranging from 0.01 to 0.99. The results are plotted in Fig. 3

with approximate 95% confidence intervals of the form

EDS 6 2s, where s is an estimate of the standard error

of the EDS. As in Stephenson et al. (2008), s was ob-

tained by fixing n and p, assuming that a is the number of

hits in np independent cases, and then employing the delta

method (e.g., Davison and Hinkley 1997, p. 45) to obtain

FIG. 3. EDS (solid line) with approximate 95% confidence in-

tervals (gray shading) against forecast threshold (mm) and base

rate for the Eskdalemuir precipitation forecasts. EDI (dashed line)

and SEDI (dotted line) are also shown.
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s 5
2jlogpj

H(logp 1 logH)2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H(1 2 H)

pn

s
.

The graph in Fig. 3 differs slightly from Fig. 5 of

Stephenson et al. (2008) because a different range of

base rates is considered here, and because Stephenson

et al. (2008) added some random noise to the forecasts

and observations to mitigate the effects of the discretiza-

tion of the precipitation totals. Nonetheless, the gross

features are similar: the EDS is always positive and con-

verges to a value near two-thirds as the base rate de-

creases, indicating good skill at forecasting heavy rainfall

totals. The oscillations of the EDS at low thresholds are

due to the fact that the observations are typically recorded

to the nearest millimeter (see Fig. 1) and that the data

are denser at lower thresholds, which means that only

small changes in the threshold are required for the ele-

ments of the contingency table to change. The frequency

bias, (a 1 b)/(a 1 c), is shown in Fig. 4 and indicates that

rainfall events are overforecasted by approximately 20%

at low thresholds but that the bias decreases until events

are underforecasted by approximately 10% for thresholds

greater than 4 mm.

3. Shortcomings of the EDS

In the previous section we reviewed the EDS and

pointed out its desirable property of converging to

a meaningful limit for rare events. Several shortcomings

of the EDS have been noted recently in the literature.

We discuss these criticisms below and add some new

observations of our own.

a. Base-rate dependence

The notion of verification measures that are base-rate

independent has existed for over a century but uncer-

tainty over its meaning still arises in the weather fore-

casting community. The phrase itself may in fact be

relatively recent and the same idea has been given several

different labels. For example, Swets (1988) advocated

measures that are ‘‘independent of event frequencies,’’

Woodcock (1976) referred to ‘‘trial independence,’’

and Yule (1912, p. 586f.) advocated measures that are

‘‘unaffected by selection.’’ The common definition used

by all of these authors is the following one: a verification

measure is base-rate independent if it can be written as

a function of only the hit rate and false-alarm rate.

We know of only limited discussions in the weather

forecasting literature of why this is a sensible definition

and useful property, so we provide a fuller discussion

here before commenting on the EDS specifically.

The starting point is to appreciate that the numbers

of observed events and nonevents in a contingency table

are beyond the control of the forecasting system being

assessed and therefore should not affect the assessment

of forecast skill (Mason 2003, p. 41). To understand the

implications of this idea, first note that the skill of a

forecasting system must be defined with respect to a

particular forecasting problem, which is identified with

a particular population of events and nonevents. For

example, we might wish to know the skill of a system

for forecasting whether or not daily rainfall totals at

Exeter in southwest England exceed 25 mm, in which

case the population might comprise daily exceedances

from all days in recent decades. To quantify skill, we

obtain a sample from the population and calculate sum-

mary measures for the contingency table of correspond-

ing forecast–observation pairs. Importantly, this sample

must be representative of the population of interest;

otherwise, we would be measuring the skill for a dif-

ferent forecasting problem. For example, if we sampled

daily rainfall exceedances from only winters, then we

would obtain a different impression of skill than if we

sampled from all seasons.

From these ideas it follows that we should seek sum-

mary measures that are insensitive to changes in the

numbers of observed events and nonevents in the sam-

ple as long as the sample otherwise remains represen-

tative of the population of interest. This is taken to mean

that, however the numbers of events and nonevents in

the sample are determined, the sampled events must be

representative of the events in the population and the

sampled nonevents must be representative of the non-

events in the population. In addition to this insensitivity,

measures should be sensitive to other changes in sample

FIG. 4. Bias (solid line) with approximate 95% confidence in-

tervals (gray shading) against forecast threshold (mm) and base

rate for the Eskdalemuir precipitation forecasts.
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design, and also to changes in the sampled population

and forecasting system, since these factors can affect

forecast skill.

So, which measures are insensitive in this sense? Un-

der the conditions of the previous paragraph, we can

think of the two columns of Table 1 as separate samples,

with one representing the population of events and one

representing the population of nonevents. While the

frequencies of hits and misses in the first column vary

with the total number of events, the proportions of hits

and misses among the observed events are typically

close to the corresponding proportions in the popula-

tion regardless of however many events are sampled.

Both of these proportions are given by the hit rate H.

Similarly, the analogous proportions in the second col-

umn, which are given by the false-alarm rate F, are

largely unaffected by the number of nonevents that are

sampled. The hit rate and false-alarm rate are therefore

insensitive to the numbers of events and nonevents.

Moreover, any other insensitive measure can be written

as a function of H and F because, together with the

numbers of observed events and nonevents, they define

the entire contingency table. Finally, note from Table 1

that knowing the numbers of observed events and non-

events is equivalent to knowing the sample size and base

rate, so the measures that are insensitive to both the

sample size and base rate are those that can be written as

a function of H and F only. This is why such measures

are called base-rate independent.

Medical screening provides a helpful analogy. Con-

sider the task of diagnosing whether or not a patient has

a disease (the observation) based on the result of a di-

agnostic test (the forecast). The analog of the base rate

in this case is the prevalence of the disease in the pop-

ulation, and the analog of the hit rate is the probability

of a positive test result for patients who do have the

disease. This probability is just a property of the di-

agnostic test procedure that will remain constant how-

ever many people happen to contract the disease.

Base-rate-independent measures are particularly use-

ful for monitoring forecast performance over time be-

cause they are not unduly influenced by variations in

the numbers of events and nonevents that are observed.

Base-rate-dependent measures, on the other hand, may

vary over time because of changes in the base rate only.

If we use a base-rate-dependent measure, then we can-

not tell if changes in its value are due to changes in skill

or to changes in the base rate. If we use a base-rate-

independent measure, however, then we know that any

change in its value is due to a change in skill.

Mason (2003, p. 47f.) categorizes several popular mea-

sures as either base-rate dependent or base-rate inde-

pendent. In addition to the hit rate and false-alarm rate,

for example, the odds ratio is also base-rate independent

(Stephenson 2000) because it can be written as

OR 5
H(1 2 F)

F(1 2 H)
. (4)

One example of a base-rate-dependent measure is the

frequency bias. Primo and Ghelli (2009) and Ghelli and

Primo (2009) noted that the EDS is also base-rate de-

pendent.

Let us illustrate the idea of base-rate dependence with

an artificial numerical example. Suppose that a fore-

casting system produces the contingency table shown in

Table 2. Here, p 5 0.1, H 5 0.55, F 5 0.05, and EDS 5

0.59. Suppose now that forecasts are made for a second

time period in which the sampled population is the

same but the base rate happens to be p 5 0.3. The data in

Table 3 exemplify a case in which the forecasting system

remains unchanged. The hit rate and false-alarm rate are

the same as before but now EDS 5 0.34, reflecting its

dependence on base rate. The data in Table 4, on the

other hand, exemplify a case in which the forecasting

system is changed in such a way that its forecasts are

unbiased in the second period. Here, the hit rate and

false-alarm rate increase to H 5 0.65 and F 5 0.15, and

EDS 5 0.47, reflecting the change in performance of the

forecasts as well as the change in base rate. These cal-

culations are summarized in Table 5.

We close this section by addressing two misunder-

standings about base-rate dependence that we have

noticed in the verification community.

1) The definition of base-rate independence does not

mean that base-rate-independent measures cannot

also be written in a form that involves the base rate:

H 5 a/(a 1 c) 5 a/(np), for example. A measure that

cannot be written as a function of only H and F,

however, is base-rate dependent.

TABLE 2. An artificial set of unbiased forecasts with base rate 0.1.

Event observed Nonevent observed

Event forecasted 55 45

Nonevent forecasted 45 855

100 900

TABLE 3. An artificial set of biased forecasts with base rate 0.3.

Event observed Nonevent observed

Event forecasted 165 35

Nonevent forecasted 135 665

300 700
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2) There are many situations in which H and F will

change in tandem with the base rate, but only if

whatever causes the base rate to change also changes

the forecast skill. For example, if we change to as-

sessing a forecasting system in winter rather than in

summer and different physical processes predomi-

nate in the two seasons, then the population repre-

sented by the sample changes and both the base rate

and skill may change (see also Hamill and Juras

2006). As before, if we use a base-rate-dependent

measure, then we cannot tell if changes in its value

are due to changes in skill or to changes in the base

rate, but if we use a base-rate-independent measure,

then we know that any change in its value is due to

a change in skill.

Another example arises in the verification of fore-

casts of extreme events. Recall Fig. 2 in which we

plotted three verification measures against the pre-

cipitation threshold used to define the event. See

Göber et al. (2004) for similar examples. As the

threshold increases, the definition of the event

changes. Therefore, the base rate changes but so

does the forecast skill: both the population and the

forecasting system are being changed, so there is no

reason to expect the skill to remain constant. Instead,

as Fig. 2 illustrates, most measures degenerate to

trivial values as rarer events are considered, but this

is not due to base-rate dependence: even base-rate-

independent measures such as H can decay to zero.

Measures degenerate because they quantify aspects

of forecast quality for which it is intrinsically hard to

maintain the same level of performance as events

become rarer. (Of course, maintaining a nonzero hit

rate for rare events is possible in theory. Investigating

why forecasting systems typically fail to do so would

be an interesting exercise.) The EDS, on the other

hand, measures the rate at which forecast perfor-

mance degenerates and therefore need not degener-

ate itself.

b. Hedging

We have seen that the EDS is base-rate dependent. A

second criticism of the EDS is that it can be hedged

(Primo and Ghelli 2009; Ghelli and Primo 2009; Brill

2009). There is no consensus in the literature about what

is meant by hedging for deterministic forecasts (Jolliffe

2008) and so we clarify below the senses in which the

EDS is hedgable.

Hedging can be defined as issuing a forecast that dif-

fers from one’s judgment. Unless a forecaster is certain

about the future, a deterministic forecast will differ from

his judgment and, in this sense, all deterministic forecasts

are hedged forecasts (Jolliffe 2008) and all verification

measures for deterministic forecasts can be hedged.

The notion of consistency (Murphy and Daan 1985)

provides another way to define hedging for deterministic

forecasts. A verification measure is said to be consistent

with a particular rule for converting probabilistic beliefs

into deterministic forecasts if the forecaster will opti-

mize their expected score by following that rule. For

forecasts of binary events, any measure is consistent

with a rule of the form ‘‘forecast the event when your

belief exceeds a specific threshold’’ (Mason 2003). The

value of this optimal threshold depends on the measure

and, possibly, on the entries in the contingency table,

but can be computed. So all verification measures for

forecasts of binary events are consistent with some rule.

If a forecaster is directed to employ a specific rule to

produce deterministic forecasts but the forecasts are

evaluated using a measure that is inconsistent with that

rule, then the measure could be hedged by disregarding

the directive and employing the rule with which the

measure is consistent. In such a situation, we may say

that the measure is hedgable. To find the optimal

threshold for the EDS, suppose that a forecaster’s belief

that the event will occur is a probability q and that the

entries in the contingency table are all nonzero. If the

event were to be forecasted, then the number of hits, a,

will be incremented by 1 with probability q and the

number of false alarms, b, will be incremented by 1 with

probability 1 2 q. The forecaster’s expected value of

the EDS is therefore

q
2 log[(a 1 c 1 1)/(n 1 1)]

log[(a 1 1)/(n 1 1)]
2 1

��

1 (1 2 q)
2 log[(a 1 c)/(n 1 1)]

log[a/(n 1 1)]
2 1

�
.

�

Similarly, if the event were not forecasted, then the

expected value is

TABLE 4. An artificial set of unbiased forecasts with base rate 0.3.

Event observed Nonevent observed

Event forecasted 195 105

Nonevent forecasted 105 595

300 700

TABLE 5. Values of four verification measures for the data in

Tables 2–4.

p H F EDS SEDS EDI SEDI

Table 2 0.1 0.55 0.05 0.59 0.59 0.67 0.71

Table 3 0.3 0.55 0.05 0.34 0.56 0.67 0.71

Table 4 0.3 0.65 0.15 0.47 0.47 0.63 0.66
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q
2 log[(a 1 c 1 1)/(n 1 1)]

log[a/(n 1 1)]
2 1

��

1 (1 2 q)
2 log[(a 1 c)/(n 1 1)]

log[a/(n 1 1)]
2 1

�
.

�

The former is greater than the latter if and only if q . 0.

Thus, the optimal threshold for the EDS is zero, and so

the EDS is consistent with the rule ‘‘always forecast the

event.’’ This rule is unlikely ever to be issued as a di-

rective and therefore the EDS will be hedgable when-

ever directives are employed.

Another way to think about hedging is to determine

whether or not there exist ‘‘unskillful’’ modifications

of the forecasts that guarantee an improvement in the

value, or expected value, of the verification measure.

This is related to equitability (Jolliffe 2008) but equita-

bility ensures only that the expected score cannot be

improved by choosing one set of random forecasts over

another; the score may still be improved by other

choices of unskillful forecasts. We return to equitability

later in this section. Another type of unskillful modifi-

cation is to switch forecasts randomly from events to

nonevents or vice versa (Stephenson 2000). The EDS

is prone to hedging in this sense because the EDS at-

tains its optimal value of 1 when H 5 1, and this can be

achieved by always forecasting the event (Primo and Ghelli

2009). Reassigning all forecasts of nonevents to fore-

casts of events therefore ensures that EDS 5 1. A gen-

eral approach to constructing measures that are not

hedgable in this sense has yet to be advanced, but

a necessary condition for positively oriented, base-rate-

independent measures is that the measure should be

strictly increasing in the hit rate and strictly decreasing

in the false-alarm rate. To see that this is a necessary but

not sufficient condition for preventing hedging, suppose

that we switch forecasts of events to nonevents with

probability a. Then, the hit rate and false-alarm rate are

both strictly decreasing in a. The derivative of a base-

rate-independent measure S with respect to a can be

written as

›S

›a
5

›S

›H

›H

›a
1

›S

›F

›F

›a
.

Therefore, if S is strictly decreasing in both H and F, or

strictly decreasing in one and constant in the other, then

S is strictly increasing in a and hedging is possible.

Similarly, if we switch forecasts of nonevents to events

with probability a, then hedging is possible if S is strictly

increasing in both H and F, or strictly increasing in one

and constant in the other. Assuming that S is not con-

stant in both H and F, then the derivatives of S with

respect to H and F must be of opposite signs, and for

positively oriented measures we should require S to be

strictly increasing in H and strictly decreasing in F,

rather than vice versa.

The derivative of the EDS (3) with respect to H is

22 logp

H(logH 1 logp)2
,

which, as required, exceeds zero when p , 1. The EDS

does not depend on the false-alarm rate, however, and

so it is prone to overforecasting, as we have seen (Primo

and Ghelli 2009).

Hedgable measures have also been defined by Marzban

(1998) as those measures that cannot be optimized for

unbiased (calibrated) forecasts. The EDS is optimized if

and only if c 5 0 and a 6¼ 0 so that H 5 1 and p 6¼ 0. This is

achieved for perfect forecasts that have no bias, but can

also be achieved for biased forecasts by always forecasting

the event, as noted by Brill (2009) and Hogan et al. (2009).

c. Regularity

Signal detection theory (Swets 1988) makes a useful

distinction between the actual performance of a set of

forecasts and the potential performance of the fore-

casting system (Harvey et al. 1992). So far we have

considered measures of actual performance, summary

measures of a single contingency table that can usually

be written as functions of H, F, and, in the case of base-

rate-dependent measures, p. Signal detection theory is

based on the idea that the event is forecasted if a de-

cision variable exceeds a decision threshold. Figure 1

provides an example: the forecasted rainfall is the de-

cision variable and the event is forecasted if a threshold

is exceeded. A contingency table then reflects the per-

formance of the forecasting system for a particular

decision threshold. The potential performance of the

forecasting system, on the other hand, is considered to

be independent of the decision threshold. Instead, the

potential performance is determined by two frequency

distributions: the distribution of the decision variable

prior to events being observed, and the distribution of

the decision variable prior to nonevents being observed.

These two distributions are usually displayed as a rela-

tive operating characteristics (ROC) curve, which is

the graph of the hit rate against the false-alarm rate

as the decision threshold is varied over the range of

the decision variable (e.g., Mason 1982; Mason and

Graham 1999). The empirical ROC curve for the fore-

casts in Fig. 1 is shown in Fig. 5. A ROC curve encap-

sulates the potential performance of the forecasting

system and each point on the curve identifies the actual

performance of the forecasts for a particular decision

threshold.
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According to signal detection theory, measures of the

skill of a forecasting system should be numerical sum-

maries of the system’s ROC curve. Note that the ROC

curve and derived summary measures are base-rate in-

dependent because they depend on only hit rates and

false-alarm rates, and cannot be hedged because the

ROC curve is defined by all possible decision thresholds

whereas hedging relates to choosing a particular de-

cision threshold. One popular summary of ROC curves

is the area under the curve (e.g., Mason and Graham

2002; Marzban 2004). An alternative way of summariz-

ing ROC curves is to find a verification measure whose

value is the same at each point on the system’s ROC

curve. If such a measure can be found, then the ROC

curve is said to be an isopleth of the measure, which then

provides a good summary of the system’s skill (Swets

1986). An isopleth of the odds ratio is shown in Fig. 5.

From the definition of the odds ratio (4), we find that the

isopleth satisfying OR 5 k is the graph of the function

H 5
kF

1 2 (k 1 1)F
.

In Fig. 5 the isopleth of the odds ratio tends to lie above

the points nearer to (0, 0) and below the points nearer to

(1, 1) and is therefore a poor fit to the empirical ROC

curve in this example. If an isopleth of a verification

measure does provide a good fit to the ROC curve of

a forecasting system, however, then that measure cannot

be hedged by changing the decision threshold. The same

measure may well provide a poor fit to the ROC curve of

another system, in which case the measure could be

hedged by the second system. In contrast, the area under

the curve is unhedgable for all systems.

Almost all empirical ROC curves for real forecasting

systems possess the following two properties: the curve

connects the points (0, 0) and (1, 1), and otherwise re-

mains strictly inside the unit square. The isopleths of

verification measures that provide good summaries of

ROC curves must therefore also satisfy these two prop-

erties. Verification measures for which this is true are

called regular (e.g., Mason 2003, p. 62). The odds ratio is

regular but the EDS is nonregular because its isopleths

correspond to horizontal lines on ROC diagrams: EDS 5

k if and only if

H 5 p(12k)/(11k),

which is constant in F.

d. Range

Now we highlight a drawback of the EDS that has

been overlooked by previous authors. Both Coles et al.

(1999) and Stephenson et al. (2008) stated that the EDS

lies in the interval (21, 1]. In fact, when the EDS is

calculated for calibrated forecasts, its range of possible

values depends on the base rate (Segers and Vandewalle

2004, p. 345). The upper bound of the EDS is always

1 but the lower bound is 21 only when p # ½. The

contingency table yields the inequality c # (1 2 p)n,

which implies that a 5 pn 2 c $ (2p 2 1)n and therefore

EDS $
2 logp

log(2p 2 1)
2 1

when p . ½. Although this condition does not refer

to rare events, we would like measures to have good

properties for all base rates if possible. A measure can

be difficult to interpret if its range of possible values

depends on the base rate. For example, if a set of fore-

casts with p 5 3/4 achieves an EDS equal to its lowest

possible value, 20.17, does that indicate a better or

worse level of performance than forecasts with an EDS

of 20.6 when p 5 1/4?

e. Equitability

Another desirable property of verification measures is

equitability (Gandin and Murphy 1992). A measure is

equitable if its expected value is the same for all random

forecasts. Hogan et al. (2010) noted that many measures

(including the so-called equitable threat score) are eq-

uitable only in the limit as the sample size n increases

to infinity, and called this weaker property asymptotic

FIG. 5. The empirical ROC curve (circles) for the forecasts of

Eskdalemuir precipitation exceeding 17.5 mm. An isopleth (solid

line) of the odds ratio is also shown.
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equitability. When the base rate is p and the event is

forecasted to occur at random with probability q, the

expected value of a is npq and so a/n converges to pq

as n / ‘. In this case, H / q and so EDS / (logp 2

logq)/(logp 1 logq). The limit of the EDS for random

forecasts therefore varies with the forecast probability

q and so the EDS is not asymptotically equitable. In fact,

random forecasts with q 5 1 (for which the event is al-

ways forecasted) maximize the EDS. However, if the

random forecasts are recalibrated, then H / p as n / ‘

and so EDS / 0 always.

If an asymptotically equitable measure is also increasing

in a for fixed values of a 1 b and a 1 c, then, for large

sample sizes, the measure will exceed the expected value

for random forecasts if and only if the forecasts’ perfor-

mance is better than the expected performance of ran-

dom forecasts. The expected score for random forecasts

therefore provides a meaningful origin that separates

better-than-random forecasts from worse-than-random

forecasts. This property holds for the EDS when it is

calculated for recalibrated forecasts: EDS . 0 if and only

if a . np2. Figure 3 shows that the EDS is always positive

for our precipitation forecasts, indicating that they per-

form better than random forecasts for all base rates. For

uncalibrated forecasts, zero is no longer a meaningful

origin: if q . p, then the EDS can be positive for forecasts

that are worse than random, while if q , p, then the EDS

can be negative for forecasts that are better than random.

f. Complement symmetry

So far, we have identified five undesirable properties

of the EDS: it is base-rate dependent, it has nonregular

isopleths, its range changes with the base rate, and, if the

EDS is used without recalibrating the forecasts, it is not

asymptotically equitable and can be hedged. Sometimes

it is impossible or undesirable to recalibrate forecasts

(Hogan et al. 2009) and in such situations we suggest that

the EDS should not be used: there is no guarantee of

a meaningful limit for extreme events, and all five of the

aforementioned drawbacks will apply. In the remainder

of this section we discuss three more properties that

have been advocated as desirable in the literature and

that are not satisfied by the EDS. In these cases, how-

ever, we argue that there are no general reasons for

preferring measures with these properties.

Measures that are invariant to relabeling the event as

the nonevent and the nonevent as the event are called

complement symmetric by Stephenson (2000). Rela-

beling in this way rearranges the elements of the contin-

gency table from (a, b, c, d) to (d, c, b, a). If the original

contingency table has base rate p, hit rate H, and false-

alarm rate F, then the new table has base rate 1 2 p, hit

rate 1 2 F, and false-alarm rate 1 2 H. The value of the

EDS therefore typically changes after relabeling and so

the EDS is not complement symmetric.

At first sight, complement symmetry is a desirable

property: it seems unfair to change the skill of the system

just because we decide to start calling events ‘‘non-

events’’ and nonevents ‘‘events’’ when the sampled pop-

ulation and forecasting system are unchanged. Here, it

is important to distinguish between actual and poten-

tial levels of performance. We should expect actual

performance to change after taking complements: the

hit rate and false-alarm rate typically change and so the

forecasts have a different quality. If we wish to sum-

marize actual performance, then there is no reason,

therefore, to use a complement symmetric measure. The

potential performance of the forecasting system, on the

other hand, should be unaffected by taking comple-

ments. We discussed earlier how the ROC curve en-

capsulates potential performance and that summaries of

ROC curves can provide measures of potential perfor-

mance. A popular example is the area under the ROC

curve. On taking complements, hit rates and false-alarm

rates are changed in such a way that a system’s ROC

curve is reflected in the negative diagonal, the line H 5

1 2 F. The area under the ROC curve is invariant to this

reflection and so that measure of potential performance

is invariant to taking complements.

Now consider a verification measure S(H, F) with an

isopleth that corresponds to the system’s ROC curve. If

the ROC curve is symmetric about the negative diag-

onal, then a little geometry shows that S(1 2 F, 1 2 H) 5

S(H, F) and so the measure will be invariant to taking

complements. If the ROC curve is not symmetric about

the negative diagonal, however, the measure will not be

invariant to taking complements. The measure is still

an appropriate summary of potential performance, but

evaluating the measure after taking complements would

not provide a good summary of potential performance.

This is because the reflection of the system’s ROC curve

will not correspond to an isopleth of S(H, F). Instead,

the reflected ROC will be an isopleth of the measure

S*(H, F) 5 S(1 2 F, 1 2 H) and so we would need to

evaluate S* for the complementary events in order to

obtain a measure of potential performance. If we wish

to summarize potential performance using a measure

whose isopleth corresponds to the system’s ROC curve,

then the measure must be chosen so that the isopleth

matches the ROC curve even if the curve is asymmetric

about the negative diagonal, in which case a comple-

ment asymmetric measure will be necessary.

g. Transpose symmetry

Hogan et al. (2009) criticize the EDS because, when

calculated for biased forecasts, it is not invariant to
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transposing the contingency table (interchanging ele-

ments b and c), which amounts to switching the roles of

the observations and the forecasts. Hogan et al. (2009)

also claim that transpose symmetric measures are more

difficult to hedge. However, the relationship between

hedging and transpose symmetry is unclear: the measure

a/n for example is transpose symmetric but is optimized

by always forecasting the event, while the Peirce skill

score, H 2 F, is transpose asymmetric but is unhedgable

in the sense of Stephenson (2000). Transpose symmetry

is appropriate if both types of forecasting error, misses

(c) and false alarms (b), are to be penalized equally but

there appear to be no other reasons for requiring measures

of forecast performance to be transpose symmetric.

h. Linearity

Hogan et al. (2009) also introduce a concept of line-

arity, which requires that the difference

S(a 1 1, b 2 1, c 2 1, d 1 1) 2 S(a, b, c, d)

should be invariant to the values of a, b, c, and d; see also

Hubálek (1982). This property enables a half-life of

forecast quality to be defined without ambiguity but

other motivations for this property are unclear. Fur-

thermore, measures that have nondegenerate limits for

extremes require nonlinear transformations of the ele-

ments in the contingency table and are therefore un-

likely to satisfy this notion of linearity. Indeed, the EDS

is nonlinear (see Hogan et al. 2009). Nonetheless, mea-

sures that are approximately linear may be preferable to

measures that are very nonlinear.

4. Symmetric EDS

In the previous section we showed that the EDS has

several undesirable properties. Hogan et al. (2009) de-

veloped a new version of the EDS, the symmetric ex-

treme dependency score or SEDS, which overcomes

some of these problems. We discuss SEDS in this sec-

tion, noting its advantages and remaining disadvantages.

The SEDS is defined as

SEDS 5
log[(a 1b)(a1c)/n2]

log(a/n)
2 1,

and can also be written as

SEDS 5
log( pq)

log(Hp)
2 1

5
logq 2 logH

log p 1 logH
, (5)

where q 5 (a 1 b)/n is the relative frequency with which

the event was forecasted. SEDS differs from EDS in (3)

by replacing the base rate p with q in the numerator. As

a result, SEDS . EDS if and only if q , p. If the forecasts

are recalibrated so that q 5 p, then SEDS equals EDS.

The primary aim of Hogan et al. (2009) was to obtain

a measure that can be used for uncalibrated forecasts,

that is transpose symmetric, and that retains a mean-

ingful limit as the base rate tends to zero. SEDS is

transpose symmetric because it is symmetric in b and c.

SEDS also has a meaningful limit, but only in certain

circumstances. For example, if the frequency bias q/p

converges to a positive constant as the base rate tends to

zero, then SEDS has the same limit as EDS because

SEDS 5
log(q/p) 1 logp 2 logH

logp 1 logH

5
log(q/p)

log(pH)
1 EDS

and log(pH) / 2‘ as p / 0. If the bias does not

converge to a positive constant, then the limiting value

of SEDS depends on how the bias changes with the base

rate. This compromises the interpretation of SEDS and

is why we recommend calculating EDS for only recali-

brated forecasts.

SEDS does enjoy some advantages over EDS. We

show in appendix A, for example, that SEDS is asymp-

totically equitable and more difficult to hedge than EDS.

On the other hand, SEDS is still base-rate dependent,

has a range that depends on the base rate, and is non-

regular. These latter properties are demonstrated in

appendix A too and a summary is provided in Table 6.

Properties of the equitable threat score, which typically

degenerates to zero with the base rate (Stephenson et al.

2008), are also included in Table 6 for comparison

(Mason 2003, 52–54).

If SEDS is calculated for uncalibrated forecasts, then

its standard error can be estimated by

sSEDS 5
jlogp 1 logqj

H(logp 1 logH)2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H(1 2 H)

pn

s
.

This is obtained via the delta method, previously employed

for EDS in section 2.

For the reason given earlier, we do not recommend

calculating SEDS for uncalibrated forecasts if the aim is

to understand the extremal dependence between the

forecasts and the observations. When the forecasts are

recalibrated, SEDS equals EDS and so we do not cal-

culate SEDS for the precipitation forecasts in Fig. 1. Let

us instead calculate SEDS for the forecasts in Tables 2–

4. Results are summarized in Table 5. From Table 2 we

obtain SEDS 5 EDS 5 0.59 because the forecasts are

calibrated. For the uncalibrated forecasts in Table 3 with
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the same hit rate and false-alarm rate but greater base

rate, we obtain SEDS 5 0.56. This is a less dramatic re-

duction than that experienced by EDS, which decreases

to 0.34 for these data, but still illustrates the dependence

of SEDS on the base rate. For the calibrated forecasts

in Table 4, we obtain SEDS 5 EDS 5 0.47 once more,

reflecting the changes in hit rate, false-alarm rate, and

base rate.

5. Extremal dependence indices

In the previous section we showed that, although SEDS

is asymptotically equitable and more difficult to hedge than

EDS for uncalibrated forecasts, SEDS is still base-rate

dependent, nonregular, and has a range that depends on

the base rate. We have also argued that SEDS should be

calculated for only recalibrated forecasts if the purpose is to

understand extremal dependence, in which case SEDS is

identical to EDS. In this section we propose two new

measures that avoid all of the shortcomings of EDS. Again,

we recommend that the measures are calculated for re-

calibrated forecasts only. The difference between these two

new versions of EDS is that one is complement symmetric

and the other is complement asymmetric.

The first new measure is the extremal dependence

index or EDI (1). The reasoning behind this definition is

as follows. To obtain a base-rate independent measure,

the measure should be a function of F and H only. Since,

for recalibrated forecasts, F 5 p(1 2 H)/(1 2 p) behaves

like p as p / 0, we can consider replacing p with F in

the definition of EDS (3). Thus, we obtain a base-rate-

independent measure that has the same meaningful limit

as EDS for recalibrated forecasts.

EDI also overcomes other disadvantages of EDS. We

show in appendix B, for example, that EDI is regular,

asymptotically equitable, more difficult to hedge than EDS,

and always has range [21, 1]. It is neither transpose sym-

metric nor complement symmetric. These properties are

summarized in Table 6.

The second new measure is the symmetric extremal

dependence index or SEDI (2). This is similar to EDI

but includes terms log(1 2 F ) and log(1 2 H). Since F

and H both decay to zero as p / 0, these extra terms

play a negligible role asymptotically and therefore

SEDI has the same meaningful limit as EDS and EDI

for recalibrated forecasts. Including the log(1 2 F) and

log(1 2 H) terms merely makes SEDI complement

symmetric. Otherwise, SEDI shares the same proper-

ties as EDI, as shown in appendix B and summarized in

Table 6. The base-rate independence of EDI and SEDI

is illustrated numerically in Table 5.

The numerator of SEDI is

2log

�
H(1 2 F)

F(1 2 H)

�
,

a transformation of the odds ratio (4). SEDI can there-

fore be thought of as a normalized version of the log

odds ratio, where the normalization transforms the odds

ratio to fall in the interval [21, 1] and ensures a mean-

ingful limit as the base rate decreases to zero. This may

be compared with the measure Q 5 (OR 2 1)/(OR 1 1)

proposed by Yule (1900), which also transforms the odds

ratio to the interval [21, 1] but which typically de-

generates to either 21 or 1 for rare events.

EDS and EDI are equal if F 5 p or H 5 1, and oth-

erwise satisfy the following relationship: EDI . EDS if

and only if F , p, which is usually the case for low base

rates. It is also possible to show that SEDI $ EDI if and

only if jH 2 1/2j # jF 2 1/2j, which is also usually the

case for low base rates.

Let us compare EDI and SEDI with EDS for the re-

calibrated precipitation forecasts in Fig. 1. Further ap-

plications of the delta method show that an estimate of

the standard error of the EDI for recalibrated forecasts is

sEDI 5

2 logF 1
H

1 2 H
logH

����
����

H(logF 1 logH)2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H(1 2 H)

pn

s
,

and an estimate of the standard error of the SEDI is

sSEDI 5

2
(1 2 H)(1 2 F) 1 HF

(1 2 H)(1 2 F)
log[F(1 2 H)] 1

2H

1 2 H
log[H(1 2 F)]

����
����

Hflog[F(1 2 H)] 1 log[H(1 2 F)]g2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H(1 2 H)

pn

s
.

TABLE 6. Properties of five verification measures.

ETS EDS SEDS EDI SEDI

Nondegenerate limit 3 U U U U

Base-rate independent 3 3 3 U U

Nontrivial to hedge U 3 U U U

Regular 3 3 3 U U

Fixed range [21, 1] 3 3 3 U U

Asymptotically equitable U 3 U U U

Meaningful origin U 3 U U U

Complement symmetric U 3 3 3 U

Transpose symmetric U 3 U 3 3
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The values of EDI and SEDI are superimposed onto

Fig. 3. The estimated standard errors of EDI and SEDI

are close to the estimated standard errors of EDS for all

base rates, but we suppress the confidence intervals for

EDI and SEDI in the figure to preserve clarity. As ex-

pected, the scores satisfy the ordering SEDI . EDI .

EDS for most thresholds and converge to the same limit

at low base rates.

6. Conclusions

We have reviewed two existing measures for quanti-

fying the performance of deterministic forecasts of rare

binary events. EDS has several drawbacks, including

being susceptible to hedging by overforecasting and being

base-rate dependent. SEDS is harder to hedge than EDS

but is still base-rate dependent. In the course of this re-

view we have attempted to define and explain clearly the

notions of base-rate dependence, hedging, and comple-

ment symmetry. We have also introduced two new mea-

sures that overcome all of the disadvantages of EDS and

SEDS. One of the new measures is complement symmetric,

and the other is complement asymmetric. We recommend

that the new measures should be preferred to EDS and

SEDS for examining the performance of rare-event fore-

casts. We emphasize that forecasts must be recalibrated

before computing these measures if a clear understanding

of forecast performance for rare events is desired.

The relative frequency of correct forecasts of the

event typically behaves like apb for small base rates p,

where a . 0 and b $ 1 are constants. The limiting values

of our measures are informative for b but the scaling

constant a may also be important. Information about

both a and b can be obtained using the approach de-

scribed by Ferro (2007).
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APPENDIX A

Properties of SEDS

We derive the properties of SEDS (see section 4) that

are summarized in Table 6.

a. Base-rate dependence

SEDS is base-rate dependent because its value can

change even when H and F are unchanged, as demon-

strated by the numerical examples at the end of section 4.

b. Hedging

We saw that EDS is consistent with the directive

‘‘forecast the event when your belief exceeds zero,’’

effectively ‘‘always forecast the event.’’ SEDS, on the

other hand, is consistent with a directive for which the

belief threshold is a complicated function of the entries

in the contingency table. This threshold is typically

nonzero and therefore SEDS is consistent with a non-

trivial directive.

SEDS is also less prone than EDS to hedging by ran-

dom switching of forecasts. For example, if a proportion

a of forecasts are switched randomly from forecasts of

the event to forecasts of the nonevent (as in Stephenson

2000), then the entries in the contingency table become

(a 2 aa, b 2 ab, c 1 aa, d 1 ab) and SEDS becomes

SEDS9 5
log[(a 1 b)(a 1 c)/n2] 1 log(1 2 a)

log(a/n) 1 log(1 2 a)
2 1:

Now, SEDS9 . SEDS if and only if

flog[(a 1 b)(a 1 c)/n2] 1 log(1 2 a)g log(a/n)

. log[(a 1 b)(a 1 c)/n2][log(a/n) 1 log(1 2 a)],

and canceling terms common to both sides leaves

log(1 2 a) log(a/n) . log(1 2 a) log[(a 1 b)(a 1 c)/n2].

Dividing through by the left-hand side and subtracting

1 shows that SEDS9 . SEDS if and only if SEDS , 0. In

other words, random switching of forecasts from events to

nonevents will improve SEDS if and only if SEDS , 0.

We noted earlier that EDS is strictly increasing in the

hit rate but does not decrease as the false-alarm rate in-

creases. In contrast, SEDS is strictly increasing in the hit

rate and is also strictly decreasing in the false-alarm rate.

To see this, note that the derivative of SEDS with respect

to the false-alarm rate F is (1 2 p)/[q log(Hp)], which is

negative when p , 1 and zero when p 5 1. The derivative

of SEDS with respect to the hit rate H is [b logb 2 q

log(pq)]/[Hq(log b)2], where b 5 Hp and maxf0, p 1 q 2

1g # b # minfp, qg. The denominator of this derivative

is positive while the numerator is positive when p , 1

and zero when p 5 1. The proof of this last statement is

fairly straightforward but tedious. A simple approach is

to consider three cases separately: first, when p 1 q 2 1 ,

1/e , minfp, qg and the numerator is minimized at b 5

1/e; second, when minfp, qg , 1/e and the numerator is

minimized at b 5 minfp, qg; and third, when p 1 q 2 1 .

1/e and the numerator is minimized at b 5 p 1 q 2 1.

In all cases, it is possible to show that the minimum value

achieved by the numerator is nonnegative.
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These results all suggest that SEDS is harder to hedge

than EDS. However, SEDS is only optimized for per-

fect, unbiased forecasts and so is hedgable in the sense of

Marzban (1998).

c. Regularity

SEDS is nonregular. One way to see this is to use the

identity q 5 Hp 1 F(1 2 p) to show that H 5 p(12SEDS)/SEDS

when F 5 0 and SEDS 6¼ 0. Therefore, the isopleths of

SEDS typically fail to pass through the point (0, 0).

d. Range

The range of possible values of SEDS depends on the

base rate. As for EDS, the maximum possible value of

SEDS is always 1 but, unlike EDS, this maximum is

obtained only for perfect forecasts with b 5 c 5 0. To see

this, note that SEDS # 1 if and only if

log

�
(a 1 b)(a 1 c)

n2

�
$ 2 log

�a

n

	
,

which holds if and only if (a 1 b)(a 1 c) $ a2. This is

always true, with equality if and only if b 5 c 5 0. Like

EDS, the minimum possible value of SEDS depends on

the base rate. Following an argument similar to that in

section 3d, if p 1 q # 1, then the lower bound is 21, but

SEDS $
log( pq)

log( p 1 q 2 1)
2 1

if p 1 q . 1.

e. Equitability

Hogan et al. (2009) showed that SEDS is asymptoti-

cally equitable. For a contingency table with a 1 b 5 qn

and a 1 c 5 pn, the expected value of a is pqn for ran-

dom forecasts, in which case SEDS 5 log(pq)/log(pq) 2

1 5 0. SEDS is also increasing in a for fixed p and q so

that SEDS exceeds zero if and only if the forecasts

perform better than random forecasts.

f. Complement symmetry

SEDS is not complement symmetric because replacing

(a, b, c, d) with (d, c, b, a) typically changes the value of

SEDS.

g. Transpose symmetry

SEDS is transpose symmetric because it is symmetric

in b and c.

h. Linearity

Hogan et al. (2009) showed that SEDS is approxi-

mately linear.

APPENDIX B

Properties of EDI and SEDI

We derive the properties of the new measures, EDI

and SEDI, that are summarized in Table 6.

a. Base-rate dependence

Both EDI and SEDI are base-rate independent be-

cause they are functions of H and F only.

b. Hedging

As for SEDS, both EDI and SEDI are consistent with

directives for which the belief thresholds are compli-

cated functions of the entries in the contingency table.

These thresholds are typically nonzero and therefore

EDI and SEDI are consistent with nontrivial directives.

If a proportion a of forecasts are switched randomly

from forecasts of the event to forecasts of the nonevent,

then EDI becomes

logF 2 logH

logF 1 logH 1 2 log(1 2 a)
,

which exceeds (logF 2 logH)/(logF 1 logH) if and only

if F , H. Therefore, random switching of forecasts from

events to nonevents will improve EDI if and only if

EDI , 0. Numerical experiments indicate that the same

is true for SEDI, but we have no proof of this at present.

It is straightforward to show that, as for SEDS, both

EDI and SEDI are strictly increasing in the hit rate and

strictly decreasing in the false-alarm rate.

Finally, EDI 5 1whenever c 5 0 and a, b, and d are

nonzero. Thus, EDI can be optimized for biased forecasts.

In contrast, SEDI is undefined whenever one or more

entries in the contingency table are zero. Therefore, SEDI

only approaches its maximum value of 1 as the forecasts

become close to perfect. These results all suggest that EDI

and SEDI are both harder to hedge than EDS.

c. Regularity

Both EDI and SEDI are regular. For the isopleths of

EDI, we have EDI 5 k if and only if

H 5 F(12k)/(11k),

a form of regular ROC curve known as a power ROC

(e.g., Swets 1996, p. 75). These isopleths are asymmetric

about the negative diagonal (H 5 1 2 F) unless EDI 5 0.

In other words, EDI is not complement symmetric. The

regular ROC isopleths of SEDI 5 k are defined im-

plicitly by

[F(1 2 H)]12k 5 [H(12 F)]11k.
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These isopleths are symmetric about the negative di-

agonal, and so SEDI is complement symmetric.

d. Range

Unlike EDS and SEDS, the range of EDI is always

[21, 1] because

EDI # 15 logF 2 logH $ logF 1 logH

5 2 logH # 0 5H # 1,

which is always true, and

EDI $ 215 logF 2 logH # 2logF 2 logH

5 2 logF # 0 5 F # 1,

which is always true. Furthermore, EDI is maximized

whenever H 5 1 and minimized whenever F 5 1. By a

similar argument, SEDI always lies in the interval [21, 1]

but, because it is undefined when any entry in the con-

tingency table is zero, SEDI only approaches its maxi-

mum value as H / 1 and F / 0, and approaches its

minimum value as H / 0 and F / 1.

e. Equitability

Like SEDS, both EDI and SEDI are asymptotically

equitable. For random forecasts with (a 1 b)/n 5 q 6¼ p

and a/n 5 pq, we have H 5 F 5 q, which yields EDI 5

SEDI 5 0. Furthermore, EDI and SEDI exceed zero if

and only if a/n . pq so that zero demarcates forecasts

that are better than random and those that are worse

than random.

f. Complement symmetry

EDI is not complement symmetric because replacing

(a, b, c, d) with (d, c, b, a) typically changes the value of

EDI. In contrast, SEDI is complement symmetric be-

cause replacing H with 1 2 F and F with 1 2 H leaves the

measure unchanged.

g. Transpose symmetry

Neither EDI nor SEDI is transpose symmetric because

switching b and c typically changes their values.

h. Linearity

Numerical experiments (not shown) similar to those

in Hogan et al. (2009) indicate that EDI and SEDI are

more nonlinear than SEDS.
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