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Annual maximum daily rainfall time series from 221 rain gages in the Midwest United States with a
record of at least 75 years are used to study extreme rainfall from a regional perspective. The main topics
of this study are: (i) seasonality of extreme rainfall; (ii) temporal stationarity and long-term persistence
of annual maximum daily rainfall; (iii) frequency analyses of annual maximum daily rainfall based on
extreme value theory; and (iv) clustering of heavy rainfall events and impact of climate variables on
the frequency of occurrence of heavy rainfall events.

Annual maximum daily rainfall in the Midwest US exhibits a marked seasonality, with the largest fre-
quencies concentrated in the period May-August. Non-parametric tests are used to examine the validity
of the stationarity assumption in terms of both abrupt and slowly varying temporal changes. About 10%
of the stations show a change-point in mean and/or variance. Increasing monotonic patterns are detected
at 19 stations. Quantile regression analyses suggest that the number of stations with a significant increas-
ing trend tends to decrease for increasing quantiles. Temporal changes in the annual maximum daily
rainfall time series are also examined in terms of long-term persistence. Conclusive statements about
the presence of long-term persistence in these records are, however, not possible due to the large uncer-
tainties associated with the estimation of the Hurst exponent from a limited sample. Modeling of annual
maximum daily rainfall records with the Generalized Extreme Value (GEV) distribution shows well-
defined spatial patterns for the location and scale parameters but not for the shape parameter. Examina-
tion of the upper tail properties of the annual maximum daily rainfall records points to a heavy tail
behavior for most of the stations considered in this study. The largest values of the 100-year annual max-
imum daily rainfall are found in the area between eastern Kansas, lowa, and Missouri. Finally, we use the
Poisson regression as a framework for the examination of clustering of heavy rainfall. Our results point to
a clustering behavior due to temporal fluctuations in the rate of occurrence of the heavy rainfall events,
which is modulated by climatic factors representing the influence of both Atlantic and Pacific Oceans.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

results (e.g., Potter, 1991; Changnon and Kunkel, 1995; Changnon
and Demissie, 1996; Gebert and Krug, 1996; Lins and Slack,

Flooding is one of the most important hazards in the United
States, claiming a high toll both in terms of economic damage
and fatalities (e.g., Pielke and Downton, 2000; Ashley and Ashley,
2008a,b). Over the past decades, damages from floods have been
increasing in the US in general (e.g., Kunkel et al., 1999b; Pielke
and Downton, 2000; Downton et al., 2005), and in the central
United States (e.g., Changnon, 1999). Previous studies examined
changes over time in the discharge record, finding contrasting
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1999; Olsen et al., 1999; Douglas et al., 2000; Rasmussen and Perry,
2001; Schilling and Libra, 2003; Lins and Slack, 2005; Zhang and
Schilling, 2006; Novotny and Stefan, 2007; Villarini et al., 2009a,
in press).

Modeling results point to an acceleration of the hydrologic cycle
in a warmer climate (e.g., Gleick, 1989; Voss et al., 2002; Held and
Soden, 2006), with potentially large impacts on the frequency of ex-
treme events (e.g., Voss et al., 2002; Milly et al., 2002, 2005;
Christensen and Christensen, 2003). For the Midwest US, previous
studies have generally suggested the presence of increasing trends
in rainfall (e.g., Lettenmaier et al., 1994; Angel and Huff, 1997; Karl
and Knight, 1998; Kunkel et al., 1999a, 2007; Kunkel, 2003;
Peterson et al., 2008; Pryor et al., 2009). Lettenmaier et al. (1994)
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found increasing precipitation trends, in particular from September
to November using monthly data. Over the Midwest US and during
the period 1901-1994, Angel and Huff (1997) found an increasing
trend in the number of daily precipitation events with accumula-
tion larger than 2 in. (50.8 mm). Karl and Knight (1998) showed a
widespread increase in the upper 10 percentiles of the precipitation
distribution.

In this study we use observations from 221 rain gage stations
with a record of at least 75 years of daily rainfall to investigate
the presence of changes in heavy rainfall in the Midwest US. The
main issues we address revolve around:

1. Presence of temporal nonstationarities (both in terms of abrupt
and slowing varying changes) and long-term persistence in
these records;

2. Frequency analyses and upper tail properties of annual maxi-
mum daily rainfall;

3. Description of the occurrence of heavy rainfall events in terms
of climate indices;

4. Clustering of heavy rainfall events.

A stationary time series is a time series with probability distri-
bution which is invariant to temporal translations (Brillinger,
2001). This definition of stationarity implies that a time series does
not exhibit periodicities, abrupt and slowly varying changes (e.g.,
Salas, 1993). For an extensive discussion about stationarity in hy-
dro-meteorological records, the interested reader is pointed to
Matalas (1997) and Koutsoyiannis (2006). As mentioned before,
several studies examined the validity of the stationarity assump-
tion for rainfall time series in the Midwest US (e.g., Lettenmaier
et al,, 1994; Angel and Huff, 1997; Karl and Knight, 1998; Kunkel
et al.,, 1999a, 2007; Kunkel, 2003; Pryor et al., 2009). The validity
of the stationarity assumption is, however, assessed by only testing
the record for the presence of slowly varying changes, while the
presence of abrupt changes in the rainfall distribution are generally
not considered. This happens despite the fact that the presence of
abrupt changes could have a large impact on the results of the
trend analyses (for instance, consult Villarini et al. (2009a) for a re-
cent discussion). When change-point analysis is performed, it is
mostly limited to abrupt changes in the mean, even though abrupt
changes in the variance can have a large impact on the occurrence
of extremes. For these reasons we examine the validity of the sta-
tionarity assumption by testing the time series of annual maxi-
mum daily rainfall for both abrupt and slowly varying changes,
with change-point analysis performed to detect step changes both
in the mean and variance of the rainfall distribution. The main dif-
ference between step and gradual changes is that with the former
the time series remains in the same regime until another abrupt
change occurs. Slowly varying changes, on the other hand, will
tend to persist in the future. Non-parametric tests are employed
to assess the validity of the stationarity assumption. We investi-
gate abrupt changes in the first two moments of the distribution
of annual maximum daily rainfall by means of the Pettitt test
(Pettitt, 1979). The presence of slowly varying changes is examined
by means of Mann-Kendall and Spearman tests (e.g., Helsel and
Hirsch, 1993). In addition to these two tests, we use quantile
regression (Koenker, 2005) to examine linear changes in different
quantiles of the rainfall distribution.

A different way of interpreting the presence of “deterministic”
trends and change-points in a time series is in terms of long-term
persistence (e.g., Hurst, 1951). Analyses of long-term persistence
are linked to fluctuations of climate regimes over decadal and
multidecadal scales (e.g., Klemes, 1974; Potter, 1976). Accounting
for long-term persistence could better explain some of the
behaviors exhibited by these time series (e.g., Potter, 1976;
Koutsoyiannis, 2002, 2006; Koutsoyiannis and Montanari, 2007)

and could explain the presence of statistically significant trends,
even though no trends are present (e.g., Cohn and Lins, 2005;
Koutsoyiannis, 2006). We therefore complement the stationarity
analyses with the description of these time series in terms of
long-term persistence.

The frequency analyses and upper tail properties of annual
maximum daily rainfall time series are examined by means of
the Generalized Extreme Value (GEV) distribution (e.g., Coles,
2001). This distribution has been widely used when dealing with
hydro-meteorological extremes because of practical and theoreti-
cal considerations (e.g., Stedinger and Lu, 1995; Katz et al., 2002).
The GEV distribution represents the limiting distribution of a sta-
tionary sequence obtained by taking the maxima of identically dis-
tributed and independent or weakly dependent random variables
(Leadbetter, 1983). By fitting the stationary time series with the
GEV distribution, we can examine regional variations in the magni-
tude, variability, and upper tail properties of annual maximum dai-
ly rainfall over the Midwest US.

In addition to the aforementioned analyses on the annual max-
imum daily time series, we also examine whether heavy rainfall
events are clustered in time and whether it is possible to relate
their frequency to climate indices. Clustering of events is an aspect
of rainfall frequency that is often overlooked (e.g., Smith and Karr,
1983, 1985; Mailier et al., 2006; Vitolo et al., 2009). Typically,
counts of heavy rainfall events are considered to be independent
and follow a Poisson distribution. However, large scale weather
patterns could influence the track of the storms responsible for
the extreme events, resulting in clustering of heavy rainfall events.
Because our study area is located at the center of the US, we use
climate indices that reflect contributions from both the Atlantic
and Pacific Oceans. We use a Poisson regression model to investi-
gate the presence of clustering in the number of days exceeding
different thresholds and the impact of different Atlantic and Pacific
climate indices.

This paper is organized as follows. In Section 2 we describe the
data and provide information about the seasonality of the extreme
rainfall process in the area. In Section 3 we briefly describe the
tools used in the analyses (change-point analysis, monotonic trend
tests, quantile regression, fitting the data with the GEV distribu-
tion, and Poisson regression). Section 4 presents the results of
our analyses, followed by Section 5 in which we summarize the
main points of the paper.

2. Data

We refer to the Midwest US as the region including nine states:
North and South Dakota, Nebraska, Kansas, Minnesota, lowa, Mis-
souri, Wisconsin, and Illinois. In this study we use rain gage mea-
surements of daily rainfall accumulations obtained from the
National Climatic Data Center (NCDC) Surface Daily Data. We limit
our analyses to stations with a record of at least 75 years. Over the
study region, there are 221 rain gages fulfilling this requirement
(35 in Illinois, 28 in lowa, 48 in Kansas, 25 in Minnesota, 19 in Mis-
souri, 27 in Nebraska, 10 in North Dakota, 22 in South Dakota, and
7 in Wisconsin). These rain gages provide good coverage of the area
and allow investigation of rainfall variability and nonstationarity at
the regional scale (Fig. 1). Seventy out of 221 stations have a record
of at least 100 years, 33 of at least 110 years, with the longest re-
cord being of 126 years (Fig. 2, bottom panel). Few stations provide
measurements of rainfall during the 19th century, and most of the
rain gages cover the 20th and the beginning of the 21st centuries
(Fig. 2, top panel). These long time series provide valuable informa-
tion about changes in heavy rainfall frequency for the Midwest US.
Note that, by the different record length of the stations, the statis-
tical estimators will have varying precision. However, a minimum
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Fig. 1. Map showing the location of the 221 rain gages with a record of at least 75 years included in this study.

precision is enforced by the requirement of having at least 75 years
of data in the record.

The climatology of heavy rainfall over this area exhibits a
marked peak during the late spring to summer seasons (from
May to August). During this period, organized convective systems
are often responsible for heavy rainfall events (e.g., Diehl and
Potter, 1987; McAnelly and Cotton, 1989; Olsen et al., 1999; Zhang
et al., 2001; Schumacher and Johnson, 2006; Wang and Chen,
2009; Villarini et al., in press). A small percentage of annual max-
imum daily rainfall occurs during the winter months and early
spring (Fig. 3). During April, we find a widespread increase in
frequency of annual maximum rain events over the domain. This
increase becomes more apparent in May, a month in which
approximately 20% of the annual maximum daily rainfall occurs
over the western part of the region. With the exception of Illinois
and Missouri, we have the highest frequencies in June, with values
ranging from 20% to 30%. After peaking in June, the months of July,
August, and September experience a decrease in frequency, with
the areas of higher frequency moving eastward. The percentage
of annual daily maxima decreases from October to December.
These results are consistent with Villarini et al. (in press), who
found a similar seasonality in annual maximum flood peak time
series.

Seasonal distribution of annual maximum daily rainfall are gen-
erally unimodal, with mode between June and July (Fig. 4) and
small variability from station to station. Several rain gages in Illi-
nois and Missouri do not exhibit the marked seasonal peak as
the other stations. These stations are in the southeastern part of
the states and exhibit anomalously uniform distributions through-
out the year (Fig. 3).

3. Methodology

In this section we provide an overview of the tools used to
perform change-point and trend analyses, analyses of long-term
persistence, and Poisson regression. We also present a discussion
of the Generalized Extreme Value (GEV) distribution used to model
annual maximum daily rainfall.

3.1. Change-point, trend analyses, and quantile regression

Change-point analysis provides a tool to check for the presence
of abrupt changes in the distribution of the variable under study.
These abrupt changes could be due to climatic changes (e.g., Karl
and Knight, 1998; Hare and Mantua, 2000; Alley et al., 2003;
Mauget, 2003; Swanson and Tsonis, 2009) as well as other anthro-
pogenic effects (e.g., gage relocation, changes in the measuring
procedure; Potter, 1979; Groisman and Legates, 1995; Peterson
et al., 1998). Change-point tests generally focus on the first and
second moments of the distribution of the variable of interest.
Several approaches have been proposed to check for the presence
of change-points in the mean of the data (e.g., Potter, 1981;
Buishand, 1984; Lombard, 1987; Perreault et al., 2000; Lund and
Reeves, 2002; Reeves et al., 2007; Wang et al., 2007; Aksoy et al.,
2008; Beaulieu et al., 2009). In this study we use the Pettitt test
(Pettitt, 1979), which was successfully used in previous studies
(e.g., Bardossy and Caspary, 1990; Caspary, 1995; Tomozeiu
et al., 2005; Villarini et al., 2009a, in press; Villarini and Smith,
2010). It is a non-parametric test based on a version of the
Mann-Whitney statistic and allows testing whether two samples
come from the same population. This test detects change-points



106

G. Villarini et al. /Journal of Hydrology 400 (2011) 103-120

2204
200
180 4
160 4
140
1201
1004
80
60
40
20

Number of rain gage stations

0 LA R DL R
1880 1890 1900 1910 1

920

1930

45

1

940

950

960

970

980

1 1 1 1 1990 2000

Year

40

35
30

25+

20
15+

10

Number of rain gage stations

5

0 :

70 75 80 85 90

T T T T T T L
95 100 105 110 115 120 125 130

Record length (year)

Fig. 2. Top panel: time series of the number of rain gages available in a given year (out of 221). Bottom panel: histogram with the record length for the 221 rain gages.

in mean at an unknown point in time. The main advantages of this
test are that it is less sensitive to outliers and skewed distributions,
and the test significance can be computed (see Pettitt, 1979). In
this study we assume that there is no more than one change-point.
Even though multiple change-points could be present, we make
this assumption to avoid segmenting the time series into multiple
subseries, affecting our capability to perform meaningful trend
analysis.

Most applications of change-point tests have been designed to
detect abrupt changes in the mean of the distribution, and only
few can detect changes in the variance (e.g., Perreault et al.,
2000). It is, however, important to test the data for changes in var-
iance, since increasing or decreasing variance significantly affects
the distribution of extremes (e.g., Katz and Brown, 1992; Meehl
et al., 2000; Ferro et al., 2005). In addition to testing the data for
abrupt changes in the mean, we investigate the presence of
change-points in variance by using the Pettitt test on the squared
residuals (similar to what suggested by Pegram (2000); Section
9.2.3) computed with respect to the local polynomial regression
line (loess function Cleveland (1979) with a span of 0.75). We have
selected a 5% significance level for the change-point analyses.

The presence of slowly varying monotonic patterns (we will re-
fer to them simply as monotonic trends), which are often related to

human-induced climate changes, are investigated by means of two
of the most widely used tests, Mann-Kendall and Spearman tests
(e.g., Mann, 1945; Kendall, 1975; Helsel and Hirsch, 1993; McCuen,
2003; Kundzewicz and Robson, 2004). These tests, like the Pettitt
test, are non-parametric, making them more robust against outliers
and departures from normality. Both of these tests have a similar
power (see Yue et al. (2002) for an extensive comparison). Because
these tests are widely used in studies of this kind, we refer the inter-
ested reader to Helsel and Hirsch (1993) (and references therein) for
details. We test the data for monotonic patterns even though we
acknowledge that it is possible that other patterns could be present
in the data (e.g., Hall and Tajvidi, 2000; Ramesh and Davison, 2002;
Mudelsee et al., 2003; Villarini et al., 2009b, 2010a). We set a 5% sig-
nificance level for both Mann-Kendall and Spearman tests.

The presence of change-points can have a significant impact on
the results of the monotonic trend analyses (see Villarini et al.
(2009a) for a recent discussion). For this reason, we follow the ap-
proach in Villarini et al. (2009a) and first perform change-point
analysis; if no statistically significant change-point in mean is de-
tected, we perform monotonic trend analysis on the entire record.
If a change-point in mean is detected, we split the record into two
subseries (before and after the change-point) and perform mono-
tonic trend analysis on each subseries separately.
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Fig. 3. Maps showing the frequency of the annual maximum daily rainfall for each month of the year. The empty circles indicate the location of the rain gages. Spatial

interpolation is performed by means of inverse distance weighted method.

Mann-Kendall and Spearman tests provide information about
the presence of monotonic trends in the central part of the distri-
bution. It is also useful to check for the presence of trends in other
parts of the distribution. Examining the width of the conditional
distribution by focusing on the high and low quantiles provides
uncertainty information. We use quantile regression to investigate
the presence of a linearly increasing or decreasing trend for differ-
ent quantiles of the rainfall distribution. Quantile regression was
introduced by Koenker and Basset (1978) and has been widely
used in fields ranging from economics to ecology. We provide a
brief overview of quantile regression and point the interested read-
er to Koenker (2005) for an extensive discussion about model fit-
ting, applications, and references.

We start by comparing the linear regression where the param-
eters have been estimated with the ordinary least square method
(OLS) with respect to the median regression (quantile 7 =0.5).
While in OLS we minimize the sum of the squared errors, in med-
ian regression we minimize the sum of the absolute errors. This
can be generalized to any other quantile 7, by computing the slope

and intercept for different quantiles through the minimization of
an asymmetrically weighted sum of absolute errors. In this way,
we obtain information about the presence of linear trends for other
levels of the distribution of the data. We compute the significance
of the slope by means of bootstrap and set a significance level o
of 5%. All the calculations are performed in R (R Development
Core Team, 2008) using the freely available quantreg package
(Koenker, 2009).

3.2. Long-term persistence

Decadal to multidecadal oscillations in climate regimes can re-
sult in apparent trends and change-points in stationary time series
(e.g., Potter, 1976; Cohn and Lins, 2005; Koutsoyiannis, 2006). In
addition to examining change-points and trends in rainfall series,
we also test the data for the presence of long-term persistence.

The presence of long-term persistence is studied by estimating
the Hurst exponent H (Hurst, 1951). Values of H range from 0 to 1,
where a value of 0.5 indicates lack of long-term persistence, while
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Fig. 4. Plots of the seasonal distributions of annual maximum daily rainfall. Each line represents a station.

values larger than 0.5 indicate the presence of long-term
persistence. Several estimators of the Hurst exponent have been
proposed, such as aggregated variance method, differenced
variance method, rescaled range statistic (R/S) method, and the
Whittle method (e.g., Taqqu et al., 1995; Montanari et al., 1999;
Kantelhardt, 2008; Rea et al., 2009; consult Serinaldi (2010) for a
recent comparison among estimators). In this study we use one
of the most widely used estimators, the aggregated variance
method:

Var(Xy) ~ cN*2 1)

where N is the sample size, ¢ is a positive constant, and Xy is the
sample mean.

Because the estimates of H are affected by large uncertainties
due to the limited sample size (e.g., Maraun et al., 2004;
Koutsoyiannis and Montanari, 2007; Rea et al., 2009; Villarini
et al., 2009a), we use a bootstrap approach to test whether the val-
ues of the Hurst exponent are different from 0.5 from a statistical
standpoint (Villarini et al., 2009a). In this case, the null hypothesis
Hp is H=0.5 (lack of long-term persistence), while the alternative
hypothesis H, is that H is different from 0.5. By resampling the time
series with replacement we destroy the memory of the series,
obtaining the bootstrap distribution of the Hurst exponent under
the null hypothesis (e.g., Efron and Tibshirani, 1997). We resample
the series M times (M is taken to be 8000, in agreement with the
suggestion by Efron (1990)) and for each new series we compute
H. Using the M values of H obtained from the resampling procedure,

we can build the empirical distribution of H from which we can
compute the p-value associated with the estimate of H from the ori-
ginal time series. This approach is used to test the hypothesis that H
is different from 0.5. We use a two-tailed test and we set a 5% sig-
nificance level.

3.3. Extreme value distribution

Statistical modeling of the annual maximum daily rainfall is per-
formed using the Generalized Extreme Value distribution (among
others, see Coles (2001) for a detailed discussion). Let us consider
the random variable X, which represents the annual maximum dai-
ly rainfall. For stations without statistically significant change-
points in mean and variance, and monotonic trends, we can write
the cumulative distribution function of the GEV as follows:

— -1/¢
Fixu.o.6) =exp { - [1+ ¢(22)] ] @)
where p € (—oo,*0) is the location parameter (in mm) and is re-
lated to the magnitude of the record, ¢ > 0 is the scale parameter
(in mm) and is related to the record variability, and ¢ € (—oo,+00)
is the shape parameter, which provides information about the
heaviness of the tail of the distribution (the larger the value of ¢,
the heavier the tail, the more likely extreme events are to occur;
e.g. Malamud, 2004; Resnick, 2006; ElAdlouni et al., 2008). The
GEV distribution combines the Weibull, Frechet, and Gumbel distri-
butions. If ¢ > 0 the distribution is unbounded above and belongs to
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the Frechet distribution. For ¢ < 0, the distribution is bounded above
with an upper bound of u — /¢ and represents the Weibull distri-
bution. The Gumbel distribution is the special case for ¢ — 0 and
corresponds to the case of unbounded, “light” upper tails.

We assess the quality of the fit using three goodness-of-fit tests
(Kolmogorov-Smirnov, Anderson-Darling, and Cramer-von Mises;
e.g., Laio, 2004; Kottegoda and Rosso, 2008; Serinaldi, 2009). Be-
cause the parameters of the GEV distribution are estimated from
the data, we use a Monte Carlo approach to compute the critical
values of the test statistics, under the null hypothesis that the data
come from the GEV distribution. We set a significance level to 5%.

We estimate the parameters of the GEV distribution by means
of maximum likelihood estimation (consult Hosking (1990),
Martins and Stedinger (2000), Coles (2001), Morrison and Smith
(2002) among others for a discussion about other estimation tech-
niques). For each of the stationary stations, we examine spatial dis-
tribution of the parameters of the GEV distribution to highlight

their regional variability. In particular, we examine the shape
parameter, since it provides information about the tail thickness
and, consequently, about how likely extreme events are to occur.

Another commonly used approach for the study of extreme
events is the so-called Peaks-Over-Threshold (POT) method, based
on the Generalized Pareto distribution (e.g., Coles, 2001). In this
approach one considers the datapoints in the record lying above
a threshold chosen by the user. Note that both the GEV and the
POT approaches require an assumption of temporal stationarity
in the data. Ad-hoc approaches can be devised, but this requires
a careful analysis of the non-stationarity features in the data
(e.g., Coles, 2001). The POT analysis is in our case substantially
more complex due to the intra-annual (seasonal) variability. This
requires to specify a time-dependent, seasonally varying threshold
and the results may be sensitive to this choice. Hence, we focus on
the GEV approach, for which we check the stationarity assumption
in the annual daily maxima.

Change-point
in mean

1951-1960
1961-1970 | °
1971-1980
>1980

Change-point
in variance

Fig. 5. Maps with the location of the stations with a change-point in mean (top panel) and variance (bottom panel) significant at the 5% level. The pointing-down (pointing-
up) triangles indicate a decrease (an increase) in mean or variance after the change-point, while the empty circles a lack of statistically significant change-point. These results

are based on the Pettitt test.
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3.4. Poisson regression

We examine clustering of heavy rainfall events from the per-
spective of Poisson models. Homogeneous Poisson point processes
provide a frame of reference for interpreting occurrences as “not
clustered” (Karr, 1991; see also Smith and Karr, 1985; Mailier
et al., 2006; Vitolo et al., 2009). Such processes arise naturally un-
der the assumptions of stationarity and independence of the
events. Counts of event occurrences from a Poisson process over
a specified time interval (a year, for example) have a Poisson distri-
bution. This distribution is characterized by equality of variance
and mean (equidispersion). Overdispersion is said to occur in ob-
served count data when the variance is larger than the mean. Over-
dispersion indicates violation of either (or both) the assumptions of
independence and stationarity underlying the Poisson processes. In
this case we speak of clustering (in a broad sense), following Smith
and Karr (1983), Mailier et al. (2006), and Vitolo et al. (2009).

In this study, we want to evaluate whether clustering character-
izes the number of days with rainfall accumulations larger than
25 mm. To evaluate whether the assumption that the data follows
a Poisson distribution is valid, we compute the dispersion

Mann-Kendall

coefficient (defined as the ratio between variance and mean): devi-
ation from unity indicates that the assumption of Poisson distribu-
tion is incorrect.

Poisson regression is then used as modeling framework to
examine the number of days with heavy rainfall. Poisson regres-
sion is a form of generalized linear model (GLM) suitable for count
data (e.g., McCullagh and Nelder, 1989; Dobson, 2001). Let us de-
fine N; as the count data for the year i. We say that N; has a condi-
tional Poisson distribution with rate of occurrence A;, given that:

e i g
k!

where A; is a non-negative random variable.
In a Poisson regression model, the parameter A; can be modeled
as a linear function h of predictors Xy;,X2j, . . ., Xni:

Ai = exp[fo + BiX1i + PoXai + -+ 4 PrXni] (4)

where p; is the coefficient for jth predictor, to be estimated by e.g.
maximum likelihood. For the predictors Xq;...,X,; we use yearly
time series of several climatic indices. Please note that the original
climatic indices which we use (NAO, AMO, SOI and PDO, see below

P(N; = k|4;) = k=0,1,2,..] 3)

Spearman

No change-point

o 3 5 . No change-point

|© *
o o2
¥ Negative trend
©  No trend
A Positive trend

¥ Negative trend &2
©  Notrend
A Positive trend

Fig. 6. Maps with the results of Mann-Kendall (left panels) and Spearman (right panels) tests for the series without change-point in mean (top panel), and with change-point

in mean (middle and bottom panels). The test is significant at the 5% level.
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for details) are defined on monthly timescales. However, we derive modeled in Eq. (3) is a time series of counts and that exactly one
time series of yearly values by considering averages over suitable such series corresponds to each of the stations. The regression mod-
periods, following an established approach (see e.g. Vitolo et al., el in Egs. (3) and (4) is therefore independently fitted to each station
2009). For clarity, please note that our response variable N; to be (that is, independently to each time series of yearly counts). Hence,

tau=0.90

Fig. 7. Maps with the results of the linear regression for four different quantiles (7 = 0.05, T = 0.50, T = 0.90, T = 0.95) by means of quantile regression The results are significant
at the 5% level.
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Fig. 8. Plot of the number of stations with a statistically significant (at the 5% significance level) increasing (left panel) and decreasing (right panel) trends for different
quantiles 7. The results are based on quantile regression.
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one set of fitted regression parameters f1,.. ., 8, is obtained for each
station. Our analysis aims at discussing climatic effects by also tak-
ing into account the spatial variability of these estimated parame-
ters as a function of the station.

In this study we consider four different climate-related covari-
ates that have been linked to rainfall variability over the central
US (e.g., Bunkers et al., 1996; Ting and Wang, 1997; Bates et al.,
2001; Barlow et al.,, 2001; Enfield et al., 2001; Mauget, 2003;
Higgins et al., 2007; Hu and Huang, 2009; Coleman and Budikova,
2010; Meng and Quiring, 2010). In particular, we use the North
Atlantic Oscillation (NAO; Hurrell, 1995; Hurrell and Van Loon,
1997; Jones et al.,, 1997), the Atlantic Multidecadal Oscillation
(AMO; Kerr, 2000; Enfield et al., 2001), the Southern Oscillation In-
dex (SOI; Trenberth, 1984; Ropelewski and Jones, 1987), and the
Pacific Decadal Oscillation (PDO; Mantua et al., 1997; Hare and
Mantua, 2000) The time series of these predictors were down-
loaded from the Global Climate Observing System (GCOS) Working

Group on Surface Pressure (WG-SP) website (www.esrl.noaa.gov/
psd/gcos_wgsp/Timeseries/). With the exception of NAO, we aver-
age these climatic indexes over the period May-September since
this is the period in which most of the heavy rainfall events are
concentrated (Figs. 3 and 4). We average the NAO index over the
months of May and June since this is the period (together with bor-
eal winter) during which the signal-to-noise ratio is the largest
(e.g., Elsner et al., 2001; Villarini et al., 2010b). For each rain gage,
we investigate the dependence of the rate of occurrence parameter
on the four predictors by selecting the model with the lowest value
of the Akaike Information Criterion (AIC; Akaike, 1974), in agree-
ment with the parsimony principle and to avoid model overfitting.
We have considered 16 possible models: a model with constant A,
and 15 models in which A is a linear function of all the possible
combinations of these four covariates. All these calculations are
performed in R (R Development Core Team, 2008) using the freely
available gamlss package (Stasinopoulos et al., 2007).
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Fig. 9. Maps with the values of the Hurst exponent H (top panel) and with the stations for which H is significantly different from 0.5 at the 5% confidence level (bottom panel).

The significance of the Hurst exponent is computed by means of bootstrap.
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4. Results
4.1. Stationarity and long-term persistence

In this section we discuss the stationarity assumption by exam-
ining both change-points in mean and variance, as well as mono-
tonic trends. As a preliminary step, we have checked the validity
of the independence assumption, since its violation could result
in the detection of a statistically significant trend, even if no trend
was present (e.g., Cox and Stuart, 1955; Cohn and Lins, 2005). For
each station we check whether the lag-one autocorrelation was
significantly different from zero. In only eight out of 221 stations

we found that the lag-one autocorrelation was significantly differ-
ent from zero at the 5% level. Even though different methods have
been proposed and developed to account for temporal dependen-
cies in the records (e.g., Kulkarni and von Storch, 1995; Yue and
Wang, 2004), we do not implement them in this study due to the
limited impact they have on our results (see later in the section).

We start the assessment of the validity of the stationarity
assumption by testing the annual maximum daily rainfall time ser-
ies for the presence of abrupt changes in the first two moments of
the rainfall distribution using the Pettitt test (Fig. 5). We have 22
stations with a statistically significant change-point in mean and
33 in variance (Fig. 5). Each of the 22 stations with a change-point
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Fig. 10. Maps of the parameters of the GEV distribution for the series without change-points and monotonic trends.
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in mean have a larger mean after the change-point. For the change-
point in variance, 19 stations show an increase and 14 a decrease
after the change-point. For three cases we observe a change-point
both in mean and variance. The change-points in mean tend to oc-
cur earlier in the record in the northern part of the domain, and la-
ter moving southward. For the change-point in variance, there is no
clear spatial pattern.

For the annual maximum peak discharge data over this area,
(Villarini et al., in press) related observed change-points to anthro-
pogenic effects (e.g., construction of dams, changes in land use/
land cover and agricultural practice). For the rainfall series, we
examined the metadata associated with these stations and found
that in several instances the year of the change-point is close to
the year in which the rain gage was relocated (e.g., placed at higher
elevation and/or placed at a different site; e.g., Potter, 1979, 1981;
Easterling and Peterson, 1995; Groisman and Legates, 1995;
Changnon and Kunkel, 2006; Daly et al, 2007; Allard et al,
2009). For some of the stations, however, it is possible that the
change-points are linked to changes in the rainfall regime (e.g.,
Karl and Knight, 1998).

We test the records for monotonic trends using both Mann-Ken-
dall (Fig. 6, left panels) and Spearman (Fig. 6, right panels) tests. Out
of the 199 stations without a statistically significant change-point
in mean, we detected a statistically significant increasing mono-
tonic trend in 19 of them and no decreasing trends (Fig. 6, left-
top panel). These increases are not restricted to a specific area,
but are distributed over the entire study domain. For the stations
with a change-point in mean, only two of them show a statistically
significant decreasing trend before the change-point. No station
exhibits statistically significant trends after the change-point.
These conclusions are supported by the results of the Spearman test
(Fig. 6, right panels). The only difference is for the subseries before
the change-point in mean (Fig. 6, middle panels). In this case,

decreasing trends are detected by both tests at only one of the
two stations. The use of more than one test as in this case can pro-
vide valuable information about the robustness of our results.

We have performed quantile regression on the time series of the
stations that do not exhibit a statistically significant change-pointin
mean. With these analyses we can investigate the presence of linear
trends for different quantiles. We focus our attention on the 0.05,
0.50 (median regression), 0.90, and 0.95 quantiles (Fig. 7). The pic-
ture does not change significantly for the quantile regression results
with respect to the results of Mann-Kendall and Spearman tests
(Fig. 6). Even in this case, we observe a tendency towards increasing
trends. For the 0.05 quantile, 12 stations have a statistically signifi-
cant increasing trend. For the median, 12 stations have a statistically
significant increasing and one a decreasing trend. For the largest
quantiles, we have a slightly smaller number of increasing trends.
The number of stations with a statistically significant increasing
trend tends to decrease for increasing quantile value (Fig. 8). On
the other hand, the number of stations with a statistically significant
decreasing trend tends to be small, independently of the quantile.

In addition to describing these time series in terms of determin-
istic abrupt and slowly varying changes, we also consider long-term
persistence, which can result in apparent trends or change-points in
time series that are actually stationary. For each station we have
computed the Hurst exponent H using the aggregated variance
method and summarized the results in Fig. 9 (top panel). Approxi-
mately 40% of the stations have a Hurst exponent smaller than or
equal to 0.5, suggesting that the time series do not exhibit long-
term persistence. On the other hand, for almost 60% of the stations
the estimated Hurst coefficient is consistent with long-term persis-
tence. Estimation of the Hurst exponent, however, is affected by
large sampling uncertainties that should be quantified and ac-
counted for in order to assess the significance of these results. To
evaluate the statistical significance of our findings, we have used
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Fig. 11. Map with the 100-year return period rainfall based on the GEV modeling in Fig. 10. Spatial interpolation is performed by means of inverse distance weighted method.
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a bootstrap approach (Fig. 9; bottom panel), testing the null
hypothesis that the Hurst exponent H is equal to 0.5. Once we ac-
count for the estimation uncertainties, there is enough statistical
evidence against the null hypothesis in only 11 out of 221 stations.
To complicate the matter, it is also possible that for these 11 sta-
tions the observed long-term persistence could be related to rain
gage relocation (e.g., Potter, 1979; Rust et al., 2008). These results
highlight the difficulty of making conclusive statements about the
presence of long-term persistence in hydro-meteorological time
series due to the limited sample sizes.

4.2. Extreme value distribution

After examining the validity of the stationarity assumption, we
present results from modeling of the annual maximum daily
rainfall time series for stations that do not exhibit statistically sig-
nificant change-points and monotonic trends. We use the Kolmogo-
rov-Smirnov, Anderson-Darling, and Cramer-von Mises tests to
assess the quality of the GEV fit, and compute their p-values using
a Monte Carlo approach. The results of these tests indicate that we
cannot reject the null hypothesis (samples generated from the GEV
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Fig. 12. Map with the mean (top panel), variance (middle panel), and dispersion coefficient (bottom panel) of the number of days exceeding daily rainfall accumulations of
25 mm. The dispersion coefficient (units are 1/year) is defined as the ratio of the variance and the mean.
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distribution) at the 5% significance level for all of the rain gages,
justifying the use of this distribution.

We have summarized our results in Fig. 10, with the spatial dis-
tribution of the location (top panel), scale (middle panel), and
shape (bottom panel) parameters. The map of the location param-
eter shows an organized pattern, with increasing values from the
northwestern to the southeastern part of the domain, mirroring
the climatology of rainfall over the Midwest United States. For esti-
mates of the scale parameter, we can see a similar spatial pattern
as for the location parameter. For the shape parameter, there is
not a clear spatial pattern. Approximately 90% of the stations have
a shape parameter larger than zero, indicating that the rainfall pro-
cess in this area exhibits heavy tail behavior. Over this region,
Villarini et al. (in press) found that estimates of the shape param-
eter for annual maximum peak discharge time series are generally
larger than zero as well.

Given the parameters of the GEV distribution, we can compute
the 100-year return period rainfall over this area by computing the
annual maximum daily rainfall value with a probability of non-
exceedance of 0.99. Despite the fact that our records are “long”
compared to those employed in other studies, this approach is
preferable to the one in which we estimate the high quantiles di-
rectly from a limited sample (e.g., Stedinger et al., 1993). As shown

in Fig. 11, we have a marked northwest-southeast gradient, similar
to what we found for the location and scale parameters (Fig. 10). In
Illinois, however, even though the location parameter was higher
than in other areas, the 100-year return period maximum daily
rainfall is smaller than the surrounding regions due to the values
of the scale parameter and the lighter tail of the distribution. This
analysis highlights the gradient in extreme rainfall, with the largest
values concentrated in the eastern portion of Kansas, Missouri and
lowa.

4.3. Poisson regression

The Poisson regression model is the framework we have used to
examine clustering of heavy rainfall events, and the link between
their frequency of occurrence and climate variables. The mean
and variance in number of days with rainfall accumulations larger
than 25 mm (Fig. 12) exhibit a rather well organized spatial pat-
tern, and similar to what shown in Fig. 10 (top two panels). The
mean decreases from northwest to southeast, with values smaller
than 4 days per year in South Dakota increasing to values larger
than 14 days per year in southern Missouri and Illinois. The vari-
ance exhibits a similar spatial pattern. The coefficient of dispersion
(ratio between the variance and the mean) is greater than 1 in the

20 mm

®® 00O

Fig. 13. Map with the dispersion coefficient for the number of days exceeding daily rainfall accumulations of 20 mm (top left panel), 25 mm (top right panel), 30 mm (lower
left panel), and 40 mm (lower right panel). The dispersion coefficient is defined as the ratio of the variance and the mean.
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vast majority of the cases. These results suggest that clustering
may play a role in heavy rainfall occurrences. To better understand
the effects of the selected threshold on the results of the dispersion
coefficient, we have computed it for three additional thresholds
(20 mm, 30 mm, and 40 mm) and summarized the results in
Fig. 13. The dispersion coefficient tends to increase with decreasing
threshold. Over most of the domain, however, the data exhibit
overdispersion independently of the selected threshold.

The Poisson regression model (Egs. (3) and (4)) is used to exam-
ine clustering of heavy rainfall counts (days exceeding 25 mm and
50 mm) in terms of time-varying climate indices. These analyses
allow us to assess specific modes of climate variability as sources
of overdispersion in heavy rainfall counts. For 147 out of 221 sta-
tions at least one of the four climate indices is a significant covar-
iate (figure not shown), with the western part of the domain
exhibiting the largest frequency. In the western portion of the do-
main, most of the covariates are significant (Fig. 14). NAO tends to
be a significant predictor for most of the stations in the southwest-
ern part of the domain (Fig. 14). There are no pronounced pattern
in location of stations with significant dependence on AMO, SOI,
and PDO. If we set a threshold of 50 mm, the results are the same
as those presented in Fig. 14 for a 25-mm threshold, suggesting
that the patterns observed in these figures are not very sensitive
to the selected threshold.

The presence of statistically significant climatic effects indicates
that the overdispersion in the data may be caused by nonstationa-
rity due to a time-varying rate. In other words, the modulation of
the rate of occurrence parameter A by the climatic factors, ex-
pressed in Eq. (4), induces periods of enhanced and reduced activ-
ity. This corresponds to a larger interannual variability than would
be expected from a totally random (Poisson) process. This does not
rule out the presence of statistical dependence between the events.
More sophisticated statistical models must be used to investigate
this.

5. Conclusions

In this study we have analyzed the annual maximum daily
rainfall time series from 221 rain gages with a record of at least
75 years over the Midwest United States (North and South Dakota,
Nebraska, Kansas, Minnesota, lowa, Missouri, Wisconsin, and
Illinois). The results of this study can be summarized as follows.

1. Our study indicates significant temporal inhomogeinities in the
heavy rainfall records, the strongest being related to seasonality
and to the influence of large-scale climatic factors. These tem-
poral features are organized in a clear spatial pattern (namely,
a north-west to south-east spatial gradient), which is coherent

NAO
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Fig. 14. Map showing the stations for which NAO (top left panel), AMO (top right panel), SOI (lower left panel), and PDO (lower right panel) are significant covariates in the

Poisson regression model.
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from the physical viewpoint. Non-stationarities and long-term
persistence appear to be less spatially consistent.

. Annual maximum daily rainfall occurrence exhibits a marked

seasonality within the study domain, with the largest frequen-
cies between May and August. The seasonal distribution is uni-
modal, with the exception of few stations in the southeastern
part of the domain.

. Approximately 10% of the stations exhibit a change-point in

mean and variance. By examining the metadata associated with
these stations, it is possible to relate some of the change-points
to rain gage relocation. For other stations, however, abrupt
changes are potentially linked to changes in rainfall regime.

. The results of the monotonic trend analysis based on Mann-

Kendall and Spearman tests show a slight tendency towards
an increase in annual maximum daily rainfall over time. The
results of the quantile regression suggest that these changes
over time are less significant for higher quantiles.

. Long-term persistence analyses show that for approximately

60% of the stations, the estimated Hurst coefficient H is larger
than 0.5. However, once the uncertainties associated with the
estimation of the Hurst exponent are accounted for by means
of bootstrap, there is statistical evidence to support long-term
persistence for only 11 stations. Our study highlights the diffi-
culties in making conclusive statements about the presence of
long-term persistence in hydro-meteorological time series due
to the limited sample sizes. Future studies should examine
the sensitivity of these findings to different estimators of the
Hurst coefficient.

. We modeled the time series of the stations with no statistically

significant change-points or monotonic trends with the Gener-
alized Extreme Value distribution. We found that the location
and scale parameters exhibit a pronounced increasing gradient
from the northwestern to southeastern part of the study region.
The shape parameter did not exhibit a marked spatial pattern.
The shape parameter is larger than zero for almost 90% of the
stations, pointing to a heavy tail behavior of these time series.
A map of the 100-year return period annual maximum daily
rainfall shows that the largest rainfall values are concentrated
in the area between eastern Kansas, lowa, and Missouri.

. We used a Poisson regression model to examine clustering of

heavy rainfall, and the relation between their frequency of
occurrence and climate indices. The mean and variance of the
yearly number of days exceeding a 25-mm threshold tend to
increase from the north-west to the south-east regions of our
domain. This pattern is similar to the one exhibited by the
location and scale parameters of the GEV distribution. The num-
ber of days with rainfall accumulations larger than 25 mm exhi-
bit overdispersion in most of the cases. Similar conclusions
could be drawn for different thresholds (20 mm, 30 mm, and
40 mm). Four climate indices reflecting the influences of both
Atlantic and Pacific Oceans (NAO, AMO, SOI, and PDO) were
found to be significant predictors in modeling the frequency
of heavy rainfall events (defined as days exceeding a 25-mm
and 50-mm thresholds). These are strong indications of cluster-
ing behavior due to temporal fluctuations in the rate of arrival
of the events, which is modulated by climatic factors. The
possibility of statistical dependence in the data (on top of the
climate-induced modulation) is not ruled out and is the subject
of on-going research.

. One issue that should be object of future studies is the transfer-

ability of these results to other areas of the world. Among sev-
eral outstanding questions, statements about the presence of
increasing or decreasing trends are important to assess the
impact of human-induced climate warming: can we detect an
anthropogenic climate change signal in heavy rainfall in other
parts of the world? Moreover, since the Midwest US is a rela-

tively flat region, it would be particularly interesting to com-
pare our results against others from areas characterized by
different topography (e.g., marked orography). Additionally,
given the large impact of events from the tail of the distribution,
future analyses should focus on the upper tail properties of the
heavy rainfall time series and examine whether the heavy tail
behavior exhibited by these stations is a common feature across
different regions.
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