
Higher precision estimates of regional polar warming by ensemble
regression of climate model projections

Thomas J. Bracegirdle • David B. Stephenson

Received: 30 August 2011 / Accepted: 29 February 2012

� Springer-Verlag 2012

Abstract This study presents projections of twenty-first

century wintertime surface temperature changes over the

high-latitude regions based on the third Coupled Model

Inter-comparison Project (CMIP3) multi-model ensemble.

The state-dependence of the climate change response on

the present day mean state is captured using a simple yet

robust ensemble linear regression model. The ensemble

regression approach gives different and more precise esti-

mated mean responses compared to the ensemble mean

approach. Over the Arctic in January, ensemble regression

gives less warming than the ensemble mean along the

boundary between sea ice and open ocean (sea ice edge).

Most notably, the results show 3 �C less warming over the

Barents Sea (*7 �C compared to *10 �C). In addition,

the ensemble regression method gives projections that are

30 % more precise over the Sea of Okhostk, Bering Sea

and Labrador Sea. For the Antarctic in winter (July) the

ensemble regression method gives 2 �C more warming

over the Southern Ocean close to the Greenwich Meridian

(*7 �C compared to *5 �C). Projection uncertainty was

almost half that of the ensemble mean uncertainty over the

Southern Ocean between 30� W to 90� E and 30 % less

over the northern Antarctic Peninsula. The ensemble

regression model avoids the need for explicit ad hoc

weighting of models and exploits the whole ensemble to

objectively identify overly influential outlier models.

Bootstrap resampling shows that maximum precision over

the Southern Ocean can be obtained with ensembles having

as few as only six climate models.

Keywords CMIP3 � CMIP5 � Climate model � Arctic �
Antarctic � Regional climate � Weighting � Observational

constraint � Southern Ocean � Sea ice edge � Polar climate

1 Introduction

The uncertainty in climate model projections is particularly

large near the boundary between sea ice and open ocean

(referred to hereinafter as the sea ice edge) (e.g. Tebaldi

et al. 2005; Greene et al. 2006; Christensen et al. 2007).

Precise climate change response estimates on the local

(grid-box) scale are important for impact studies of the

socio-economic consequences of future change. In parti-

cular, changes in the polar regions can have a global impact

through changes in sea level and ocean circulation. Preci-

sion is a well-known concept in science and engineering

that is distinct from accuracy. Accuracy is how close the

estimated response is to the future observations whereas

precision is the sampling uncertainty in our estimate. High

precision is a necessary but not sufficient condition for

reliable accuracy, since the mean estimate might have a

small sampling uncertainty but might not be centred around

the true future value. In previous studies, methods for

improving the precision of estimated future climate change

over the polar regions have often involved ad-hoc

weighting to remove climate models with large local biases

in their simulation of observed climate (e.g. Overland and

Wang 2007; Stroeve et al. 2007; Bracegirdle et al. 2008;
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Walsh et al. 2008; Zhang 2010). However, there are

inherent difficulties in estimating and justifying the weights

applied to different climate models.

The simplest form of model averaging is to weight all

climate change responses equally by calculating the

ensemble mean response. However, this fails to account for

poorly performing models and so it is common practice to

consider ensemble means of only a subset of models (i.e.

assign zero weight to some models). For example, Arctic

sea ice declines have been estimated by discarding climate

models with large biases in sea ice extent (Overland and

Wang 2007; Stroeve et al. 2007; Zhang 2010). However,

the decision over what threshold to use for discarding a

climate model from the original ensemble can be difficult

to justify and risks leaving out models that will still con-

tribute valuable information. More complex methods for

assigning weights to climate models have been proposed

over the last decade, based largely on weighting according

to how well the model reproduces the observed mean cli-

mate (Giorgi and Mearns 2002; Murphy et al. 2004; Con-

nolley and Bracegirdle 2007). An important caveat with

these approaches is that they do not consider the extent to

which biases in simulated present day mean climate may be

related to climate change responses (Raisanen et al. 2010).

Recently there has been a greater consideration of the

importance of this over the polar regions (Whetton et al.

2007; Raisanen et al. 2010; Abe et al. 2011).

Whetton et al. (2007) found significant similarity

between patterns of regional present day climate and pat-

terns of regional future change. However, Watterson and

Whetton (2011) found that weights based on the ‘M’ simi-

larity statistic used by Whetton et al. (2007) have little

impact on multi-model PDF spread. Abe et al. (2011) used

an alternative approach in which singular value decompo-

sition (SVD) was applied to extract modes relating inter-

model variability in present day climate to variability in

future change. When compared to projected climate change

based on an equal-weight ensemble mean, their method

shows increased precision over the Arctic, but decreased

precision at lower latitudes. These mixed results may be a

consequence of defining the model weights based on non-

local global-scale patterns. Raisanen et al. (2010) took a

more local approach by deriving weights at each model grid

point from present-day-future relationships of key vari-

ables. They showed increased precision near the sea ice

edge in winter and negligible differences elsewhere. How-

ever, estimation of weights from such relationships remains

rather difficult due in part to the small size of most climate

model ensembles (Knutti et al. 2010; Weigel et al. 2010).

Boe et al. (2009) took the less complicated approach of

directly using the estimated mean response from linear

regression applied to the relationship between simulated

recent total Arctic sea ice extent trends and projected

extent in the early-to-mid twenty-first century. Estimates

derived from linear regression onto such relationships have

been presented based on other large-scale parameters, such

as Northern Hemisphere snow-albedo feedback (Hall and

Qu 2006) and Arctic-wide warming (Mahlstein and Knutti

2011). A key issue associated with the polar regions is the

large internal variability of the climate (Wang et al. 2007),

which potentially introduces a large amount of additional

uncertainty into estimated mean climate change responses.

In addition, the large-scale parameters used in the above

studies are not necessarily representative of specific loca-

tions that are important for impact studies.

In this study, we introduce a simpler robust statistical

framework that addresses these issues and apply it to the

Coupled Model Inter-comparison Phase 3 (CMIP3) dataset

(Table 1). There are three important elements in this

framework. Firstly, local present day mean climate is used

as a predictor for the future climate change response, based

on linear regression of inter-model relationships at each

model grid point. Secondly, a procedure for identifying

influential climate models having large leverage in the

regression is introduced. Thirdly, a procedure is introduced

to determine the point at which errors stop decreasing with

increasing ensemble size (or whether a larger ensemble is

required). Together these three elements provide a new

framework for producing more precise climate change

projections at the local (grid box) scale. We refer to this

statistical model-based approach as ensemble regression

(ER). For locations where the multi-model climate change

response is uncorrelated with present day climate, the ER

approach effectively reverts to an ensemble mean (EM)

approach.

Section 2 of this paper describes the statistical metho-

dology and data sources. Arctic and Antarctic projections

of near-surface winter temperature change over the twenty-

first century estimated using ER are then shown in Sect. 3

and compared to projections estimated using the EM

approach (see Fig. 1 for the Arctic and Antarctic locations

referred to in this paper). Section 3 includes results from a

quadratic regression model (in Sect. 3.4), which is shown

to give less reliable results than those based on linear

regression. Section 4 concludes with a summary and dis-

cussion of possible future extensions.

2 Statistical methodology and data

2.1 Ensemble mean

The simplest approach for inferring the observable climate

change response from multi-model ensembles of climate

projections is to take the arithmetic mean of all the climate

model responses. In other words, the estimate of the
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observable response ŷ0 ¼ x̂00 � x̂0 provided by the ensem-

ble mean of the n climate model projections is:

ŷ0 ¼ x̂00 � x̂0 ¼
1

n

Xn

i¼1

ðx0i � xiÞ ð1Þ

where xi is the mean present day climate in the ith model,

x0 is the present day observed climate (e.g. the 1970–1999

mean), x0 denotes future climate (e.g. the 2070–2099

mean), and the hat, ,̂ symbol denotes an estimate or

prediction1 of a random variable. Throughout this paper

grid point near-surface temperature values are used for xi

and x0. Where spatial means of ŷ0 are shown, they are

calculated as area-weighted averages of values at

individual grid points within the area of interest.

Although very easy to implement and explain, the equal

weighting of model responses is not robust to overly

influential outlier models. The use of equal weights is

justified if one can assume that all the responses can be

well described by the following statistical model:

yi ¼ lþ ei for i ¼ 0; 1; . . .; n ð2Þ

where ei is an identically independently distributed random

variable with zero expectation (i.e. noise). The ei stochas-

tically represents model uncertainty in the response. The

ensemble mean can easily be shown to provide an unbiased

estimate of the mean response l parameter in this model.

For normally distributed noise, the ensemble mean is also

the maximum likelihood estimate of l for this statistical

model. But are the assumptions of this simple statistical

model justified?

2.2 Ensemble regression

Projected regional climate responses can depend on the

model’s basic present day state. For example, the surface

Table 1 IPCC CMIP3 models used in this study

Model ID Model name 20c3m runs Sresa1b runs Institute

1 BCCR BCM2.0 1 1 Bjerknes Centre for Climate Research

2 CCSM3 1,2,3,4,5,6,7,8 1,2,3,4,5,6,7 National Center for Atmospheric Research

3 CGCM3.1(T47) 1,2,3,4,5 1,2,3,4,5 Canadian Centre for Climate Modelling and Analysis

4 CGCM3.1(T63) 1 1 Canadian Centre for Climate Modelling and Analysis

5 CNRM-CM3 1 1 Centre National de Recherches Meteorologiques

6 CSIRO-Mk3.0 1,2,3 1 Commonwealth Scientific and Industrial Research

Organisation (CSIRO) Atmospheric Research

7 CSIRO-Mk3.5 1,2,3 1 Commonwealth Scientific and Industrial Research

Organisation (CSIRO) Atmospheric Research

8 ECHAM5/MPI-OM 1,2,3,4 1,2,3,4 Max Planck Institute for Meteorology

9 ECHO-G 1,2,3,4,5 1,2,3 Meteorological Institute of the University of Bonn,

Meteorological Research Institute of KMA, and

Model and Data group

10 FGOALS-g1.0 1,2a,3 1,2,3 LASG/Institute of Atmospheric Physics

11 GFDL-CM2.0 1 1,2,3 Geophysical Fluid Dynamics Laboratory

12 GFDL-CM2.1 1 1,2 Geophysical Fluid Dynamics Laboratory

13 GISS-AOM 1,2 1,2 NASA/Goddard Institute for Space Studies

14 GISS-EH 1,2,3,4,5 1,2,3 NASA/Goddard Institute for Space Studies

15 GISS-ER 1,2,3,4,5,6,7,8,9 1,2,3,4,5 NASA/Goddard Institute for Space Studies

16 INGV-SXG 1 1 Instituto Nazionale di Geofisica e Vulcanologia

17 INM-CM3.0 1 1 Institute for Numerical Mathematics

18 IPSL-CM4 1,2 1 Institut Pierre Simon Laplace

19 MIROC3.2(hires) 1 1 Center for Climate System Research

20 MIROC3.2(medres) 1,2,3 1,2,3a Center for Climate System Research

21 MRI-CGCM2.3.2 1,2,3,4,5 1,2,3,4,5 Meteorological Research Institute

22 PCM 1,2,3,4 1,2,3,4 National Center for Atmospheric Research

23 UKMO-HadCM3 1 1 Hadley Centre for Climate Prediction and Research/UK Met Office

24 UKMO-HadGEM1 1 1 Hadley Centre for Climate Prediction and Research/UK Met Office

a These runs were found to include erroneous values of near-surface temperature and were therefore omitted from the ensemble averages

1 In this paper the word prediction is used in the statistical sense to

signify the expectation of the response variable for a given

explanatory variable obtained using a regression model. It does not

necessarily refer to future forecasts.
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warming response over polar regions strongly depends on

the presence of sea ice in present day model simulations

(Raisanen 2007; Knutti et al. 2010). The state-dependency

of the response is not represented in the ensemble mean

statistical model in Eq. (1). Such unrepresented variation in

the mean response leads to dependency in the ei, which

then violates the model assumptions. The ensemble mean

model is therefore inconsistent (i.e. mis-specified) if there

is state-dependency in the climate response.A more flexible

approach is to relate the responses to the basic present day

state using a linear regression model such as

yi ¼ lþ bxi þ ei for i ¼ 0; 1; . . .; n ð3Þ

where ei is an identically independently distributed random

variable with zero expectation (i.e. noise). The Ensemble

Mean (EM) model (referred to as MMM in Raisanen et al.

2010) is a special case of the ensemble regression (ER)

model when b = 0. The model parameters l, b, and r2
e (the

variance of e) can easily be estimated using ordinary least

squares (Draper and Smith 1998).

Examples of the use of least squares linear regression as

applied in ER are presented in Fig. 2. Scatter plots of winter

near-surface temperature climate change response yi versus

present day mean xi are shown at selected locations along

the Greenwich Meridian (based on the CMIP3 climate

models see Sect. 2.4 and Table 1). Each star represents the

average of all available ensemble members from a given

model. Significant linear association (state dependency) is

clearly visible in scatter plots of locations near the sea ice

edge (Fig. 2b, e). At 60� S, 0� E (Fig. 2e) the relationship is

very strong (r2 = 0.77) showing that in most, but not all,

cases models with a colder present-mean give a larger

future warming. At 75� N, 0� E (Fig. 2b) the relationship is

also significant, but with a smaller slope. In addition, model

10 is a clear outlier with present day mean Ts approximately

20 �C lower than any other model. The issue of influential

outliers is assessed across both polar regions in Sect. 2.3. At

mid-latitudes the r2 values are small and the regression

slopes are not significantly different from zero (Fig. 2c, f).

Poleward of the sea ice edges the picture is less clear and

more difficult to interpret physically. At the North Pole

(Fig. 2a), although small, it is notable that the slope is of an

opposite sign to locations near the sea ice edge. At the South

Pole (Fig. 2d) the slope is significant, but much smaller than

at 60� S, 0� E. The general picture of strong correlations in

Ts at high latitudes is broadly representative of other lon-

gitudes beyond the examples shown here (e.g. see spatial

maps of correlations shown in Fig. 3 of Raisanen (2007)

and also Fig. 7 of Knutti et al. (2010)). An implicit impli-

cation of the regression relationships shown in Fig. 2 is that

at locations with a strong state-dependency, models that are

closer to present day observed basic state are more likely to

be closer to future observed climate change (assuming the

same emissions scenario both in models and in

observations).

The main mechanism for the strong state-dependency

near the sea ice edge in winter is likely to be the strong

local correspondence between near-surface temperature

Fig. 1 Maps of the Arctic and Antarctic that show key place names referred in the main text
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and sea ice fraction. The retreat of sea ice over the tewnty-

first century leads to dramatic regional warming as the

winter atmosphere is exposed to the relatively warm open

ocean. Models with excessive local sea ice will therefore

show more warming as the ice retreats in the future. This

effect was demonstrated by Holland and Bitz (2003), who

showed that CMIP2 models with a larger present day

Arctic sea ice extent give a more equatorward maximum in

Ts warming, since the transition from sea ice to open ocean

occurs further south in those models. Related to this, Abe

et al. (2011) found that, in the CMIP3 models, future

regional Arctic warming is significantly related to local

changes in sea ice concentration. Another possible mech-

anism for the state-dependency is a relationship between

ocean heat transport and Arctic warming that has been

suggested by Mahlstein and Knutti (2011). However, this is

probably more apparent as a non-local effect and would not

necessarily contribute significantly to local state-depen-

dency in Ts. A full assessment of potentially important

explanatory variables, local and non-local, is beyond the

scope of this paper, but is a priority for future work.

Projections based on the application of ER to state-

dependency relationships involve several important sim-

plifying assumptions:

• As in Whetton et al. (2007) and Raisanen et al. (2010),

it is assumed that there is a systematic linear relation-

ship (with a unique slope parameter) between present

day mean and future change shared universally across

the different climate models and observations. There-

fore, results of both the ER and EM approaches are

susceptible to the effects of potentially important

missing processes such as black carbon deposition

(Shindell and Faluvegi 2009);

Fig. 2 Scatter plots of twenty-first century projected changes versus

present day means in wintertime near-surface temperatures at

locations along the Greenwich Meridian: the top panels a–c show

Northern Hemisphere locations in January, bottom panels d–f show

Southern Hemisphere locations in July. Left panels a, d show

temperatures at the poles, middle b, e at the sea ice edges, and right c,

f at mid-latitudes. The longitude and latitude are indicated in brackets
at the top left of each plot along with r2 and p values. The p values

were calculated using a 2-tailed t test and show whether the null

hypothesis (that the slope is zero) can be rejected at a given

significance level. Each small asterisk represents one CMIP3 climate

model, which are annotated by the numbers used as identifiers in

Table 1. The straight line fits are from linear regression and the solid
curves show the 95 % confidence intervals. The vertical dashed lines
show the present day observations (ERA-40 data) with large asterisks
showing the associated mean response and confidence interval from

linear regression. The horizontal dotted line shows the simple equal-

weight multi-model average of twenty-first century change
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• Bias and its relationship to the basic state remains

stationary into the future. Unlike the EM approach,

some future changes in bias can be accommodated by

the ER approach if they are related to the present day

basic state. These issues are discussed in detail in Ho

et al. (2012);

• The errors about the line of best fit are assumed to be

identically and independently distributed;

• Climate model results and observations are considered

to be interchangeable. The effects due to observational

measurement error and model bias are considered to be

negligible compared to other sources of uncertainty.

These assumptions are less restrictive than those of the

EM approach and can be tested in various ways as will be

shown later in this paper. The inclusion in the model of a

systematic dependence on the basic state helps to yield

residual errors that are identically and independently

distributed.

Our ER approach differs from previous regression

approaches in several important ways. Raisanen et al.

(2010) used weights based on linear regression fits to pair-

wise differences between models and observations. From

Eq. (2), it can be seen that yi � yj ¼ lþ bðxi � xjÞ þ ei �
ej and so their linear model is equivalent to our simpler

formulation. Unlike our approach where the weights

emerge naturally from the mean regression-prediction of

the statistical model, the weights in Raisanen et al. (2010)

involve additional subjective parameters. Boe et al. (2009)

used a simpler approach to ours that used a regression of

future sea ice extent on recent 1979–2007 sea ice trends.

Unlike our approach, their linear model predicted the

expected value of the future variable rather than expected

changes between future and present day values. Use of

changes is advantageous since it can help correct for some

of the individual model biases.

2.3 Estimated mean response

For each grid point, projections based on the ensemble

regression model are given by the following estimate of the

expected observable mean climate change response:

ŷ0 ¼ l̂þ b̂x0 ¼ �yþ b̂ðx0 � �xÞ: ð4Þ

This expression can easily be rewritten as a weighted

sum of the model responses ŷ0 ¼
Pn

i¼1 wiyi with grid point

weights in each model given by

wi ¼ n�1 1þ ðxi � �xÞðx0 � �xÞ=s2
x

� �
ð5Þ

where s2
x is the sample variance of the present day tem-

peratures from the climate models and �x ¼ n�1
Pn

i¼1 xi.

The weights wi will generally differ from 1/n but the mean

response estimate ŷ0 will always be equal to �y when there is

no correlation between xi and yi (note that negative values

of wi are possible). Figure 3 shows that many of the CMIP3

models give spatially averaged grid point wi values that

differ significantly from 1/n both globally and over the

Arctic and Antarctic (area averages of grid point weights

are shown since separate regressions are made at each grid

point and thus 23 global maps would be required for all

weights to be displayed). Over middle and lower latitudes

where xi and yi are generally uncorrelated (Raisanen 2007;

Knutti et al. 2010), ŷ0 largely reverts to the equal-weight

mean response �y (e.g. Fig. 2e, f). The weights themselves

do not involve the term xi - x0 and so do not depend

explicitly on the distance between simulated and observed

present day climate. In other words, models closer to the

observations in present day do not necessarily get higher

weights. It can easily be shown that if the observations

coincide with a present day model value i.e. x0 = xj, then

the weights are the jth column (or row) in the hat matrix

(see ‘‘Appendix’’). Unlike weighting based on ad hoc

metrics, these weights have emerged naturally from pre-

dictions of a statistical model, which is based on assump-

tions that can be rigorously tested.

The precision of the estimated mean response is quan-

tified based on its variance. For independent residual errors

about the line of best fit, the variance of the mean response

is

Fig. 3 Area-averaged weights for each of the CMIP3 models in

a January and b July for the area-weighted global mean (asterisks),

Arctic mean (diamonds) and Antarctic mean (triangles). The Arctic

and Antarctic means are area-weighted means poleward of 60�. The

vertical dashed lines show the multi-model mean weight (1/n)

T. J. Bracegirdle, D. B. Stephenson: Higher precision estimates

123



s2
ŷ ¼ varðŷ0Þ ¼ r2

e
1

n
þ ðx0 � �xÞ2
Pn

i¼1 ðxi � �xÞ2

" #
ð6Þ

where r2
e ¼ varðeÞ (see Draper and Smith 1998; p. 130). The

second term in parentheses accounts for estimation error in

the slope and grows quadratically with the distance of the

observed present day value from the ensemble mean of the

climate models. Equation (6) can be used to quantify

the precision of the estimated response. For example, for

normally distributed residual errors, the 95 % confidence

interval in the mean response is given by ðŷ0 � 1:96sŷ; ŷ0 þ
1:96sŷÞ for sufficiently large ensemble size n. The 95 %

prediction interval additionally takes into account the

residuals about the mean response and is given by

ŷ0 � 1:96
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs2

ŷ þ r2
e Þ

q
; ŷ0 þ 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs2

ŷ þ r2
e Þ

q� �
. For the

ensemble mean case with slope b = 0, the mean response is

ŷ0 ¼ �y with variance s2
ŷ ¼ varðŷ0Þ ¼ r2

yn�1 (assuming

independent yi). For non-zero slope, the variance of the

residuals about the regression line, r2, will be smaller than

the variance of residuals from the ensemble mean response

and this can then lead to smaller variance in the mean

response from the regression approach (i.e. more precise

climate change projection). The ensemble mean approach

generally makes the simplest assumption that the model

responses yi are independent and identically distributed

about the same mean. However, model responses are not

unconditionally independent if the responses are state-

dependent, or if the individual model errors are correlated

with one another (Knutti et al. 2010; Weigel et al. 2010;

Stephenson et al. in review). This violation is one of the main

motivations for using ensemble regression where one makes

the weaker, and more justifiable, assumption that residuals

of the responses from the regression fit are independent.

Allowing for positive correlations between model responses

would inflate the variance of the ensemble mean projections.

Hence, the comparison of results in this paper is conserva-

tive in that it compares the precision of projections derived

from ensemble regression to overestimates of the precision

of projections derived from the ensemble mean approach.

It should be noted that our regression equations are

estimated using only the model data and so observational

error will have no effect on the estimated slope and inter-

cept. However, the projection of the future mean value

does potentially depend on the choice of observation since

it is the linear statistical prediction evaluated at the

observed present day value. The sensitivity to the choice of

dataset is considered in the next section.

Because of the small number of climate models, it is

important to test how much influence each model is having

on the mean response. We investigate this by calculating

the leverage for each model (see ‘‘Appendix’’), which helps

identify overly influential models that can then be removed

if desired. Figure 4 shows spatial averages [global, NH

winter (Fig. 4a) and SH winter (Fig. 4b)] of grid point

leverages of the CMIP3 models. One rule of thumb for

labelling cases as ‘‘high leverage’’ is if the leverage

exceeds 3p/n where p is the number of predictor variables

and n is the sample size (Hoaglin and Kempthorne 1986).

For our data example, n = 24 and p = 1 so the threshold

for high leverage is 3/24 = 0.125. In terms of global

averages, none of the models have a particularly large

leverage (i.e. there are no particularly influential outliers).

However, over the Arctic in winter model 10 has a much

larger leverage than the other models (Fig. 4a). This is the

result of the unrealistically small poleward ocean heat

transport at mid-latitudes in this model, which results in

much larger sea ice extents than observed in both hemi-

spheres (Arzel et al. 2006). Since it is an influential outlier

at mid-to-high latitudes with a clear physical deficiency,

model 10 is omitted from the main results for both the

Arctic and Antarctic.

The leverage-based approach exploits the whole ensem-

ble to identify potential outlier models rather than to reject

models on individual performance based on ad hoc metrics.

We also use cross validation and bootstrap resampling to

investigate the sensitivity of our results to the choice of

models—ideally, the mean response is not unduly sensitive

to which particular subset of models we decide to choose.

Fig. 4 Area-averaged leverages for each of the CMIP3 models in

a January and b July for the area-weighted global mean (asterisks),

Arctic mean (diamonds) and Antarctic mean (triangles). The Arctic

and Antarctic means are area-weighted means poleward of 60�. The

vertical dashed lines show the rule of thumb value of 3p/n for

labelling cases as high leverage (Hoaglin and Kempthorne 1986)
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2.4 Near-surface temperature data

The multi-model ensemble climate model dataset used is

the Coupled Model Inter-comparison Phase 3 (CMIP3)

dataset, which was compiled as part of the Intergovern-

mental Panel on Climate Change (IPCC) Fourth Assess-

ment Report (AR4). Model projections based on emissions

following the Special Report on Emissions Scenarios

(SRES) A1B scenario are used here. In terms of global

temperature, the SRES A1B scenario is about the middle of

the range of changes projected by the different SRES

scenarios. Historical forcing runs (20C3M) were used for

the present day time slice. Changes over the twenty-first

century are defined as differences between a future time

slice (2069–2098) and a present day time slice

(1970–1999). A total of 24 different climate models were

considered in this study and are listed in Table 1. For each

model the average of all available ensemble members was

taken and used to calculate mean surface air temperature

(Ts; CMIP3 variable name ‘tas’) over both time slices.

Before analysis the climate model datasets were bi-linearly

interpolated onto the UKMO-HadCM3 horizontal grid

(2.5� latitude 9 3.75� longitude). A sensitivity test of

results using the CSIRO-Mk3.5 grid (1.9� 9 1.9�) showed

negligible differences (see Sect. 3.2).

The European Centre for Medium-Range Weather

Forecasts (ECMWF) ERA-40 re-analysis dataset was used

for observations. Over the polar regions (particularly Ant-

arctica) there is a dramatic increase in accuracy of re-

analysis datasets after the introduction of widespread

satellite temperature retrievals in late 1978 (Hines et al.

2000; Marshall and Harangozo 2000; Renwick 2004; Sterl

2004). Therefore the period used to calculate the present

day mean climate from ERA-40 was 1979–1999. Estimates

of the errors in ERA-40 fields are not provided by EC-

MWF. However, various comparisons between ERA-40

fields and in situ observations at high latitudes have been

conducted. These show post-1979 Ts biases in ERA-40 of

approximately ±1 �C over both the Arctic and Antarctic

(Bromwich and Fogt 2004; Bromwich et al. 2007; Tjern-

strom and Graversen 2009; Brodeau et al. 2010). We

repeated ER projections using the recently-released ERA-

Interim dataset (Dee et al. 2011) instead of ERA-40 and

obtained very similar results (not shown). Internal climate

variability will also introduce sampling error to the esti-

mation of present day background climate. The standard

error of January 20-year averages of Ts was estimated to be

approximately 0.5–1.5 �C near the Arctic sea ice edge from

a pre-industrial control run of ECHAM5/MPI-OM (not

shown). The total range of uncertainty in the ERA-40 data

is therefore an order of magnitude smaller than the inter-

model range in Ts of approximately 20 �C over sea ice in

winter (Fig. 2c, d).

3 Results

3.1 Arctic and Antarctic temperature projections

Figure 5 shows projections of twenty-first century grid

point Ts change over the Arctic in winter (January), with

the regressions for ER calculated at each grid point. Model

10 was omitted as it was found to be an influential outlier

(see Sect. 2.3). The EM method (Fig. 5a) shows the largest

warming over the Arctic Ocean. The warming is particu-

larly large over Hudson Bay, the Chuckchi Sea and the

Barents Sea. The projections derived from the ER method

show a broadly similar pattern (Fig. 5b), but with key

differences (Fig. 5c). The most notable difference is less

warming over the Barents Sea by approximately 3 �C. Here

there is a particularly strong gradient in warming, which is

shifted further east in ER. There is also significantly less

warming over parts of the northern boundary of the Pacific

(significance indicated by hatching). In addition there is

significantly more warming in a region south of New-

foundland in the northwest Atlantic. Figure 5d shows that

these differences are associated with biases in the CMIP3

ensemble average present day climatology, which in par-

ticular shows a large cold bias of more than 10 �C over the

Barents Sea. Most of the models have too much sea ice in

the Barents Sea (Arzel et al. 2006) and therefore as this

retreats in the future they give unrealistically large warm-

ing in a region that in reality has an ice-free present day

climate. The ER method therefore adjusts for this unreal-

istically large warming over the Barents Sea, which is a

clear improvement over the EM method. Over the eastern

region of the Arctic Ocean the ER method gives more

warming, but not significantly more. This is a consequence

of the change in sign of the regression slope poleward of

the ice edge region that was seen in Fig. 2. Since ER gives

more warming in some places and less in others, for the

whole Arctic region (all grid points C60� N) differences in

warming are negligible with an area-weighted warming of

6.9 �C given by the EM approach and ER giving 7.0 �C.

Over southern high latitudes in winter (July) there is in

general less warming than over the Arctic in winter

(Fig. 6). As was found for the Arctic, there are regions with

significant differences between the ER and EM methods.

The ER method gives warming of up to 7 �C over a region

to the northwest of the Weddell Sea at approximately 62�
S, 5� W (Fig. 6b). This is approximately 2 �C more than

estimates based on the EM method (Fig. 6c). There is a

large region of significantly less warming extending

westwards from the tip of the Antarctic Peninsula (centred

on *60� S, *90� W). A smaller region of reduced

warming is apparent at around 60� S, 110� E over the

Southern Ocean. As was found in the Arctic winter these

differences coincide with regions of large bias in the
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present day climatology of the CMIP3 ensemble average

(Fig. 6d). Again this demonstrates the advantage of using

the ER method over the EM method in taking account of

unrealistic projected change related to present day bias.

In Fig. 7, the 95 % prediction interval is used to quan-

tify the precision of projections derived from the ER and

EM methods. Both methods show the largest prediction

intervals over regions of sea ice, up to 10 �C over the

Arctic. Compared to the EM method, the ER method gives

prediction intervals that are approximately 30 % smaller

over the Sea of Okhostk, the Bering Sea and the Labrador

Sea (Fig. 7c). Over the Arctic Ocean reductions in pre-

diction interval are smaller due to the weaker relationships

there. The most dramatic reductions in prediction interval

occur in the vicinity of the winter sea ice edge around

Antarctica (Fig. 7f). In particular, reductions of 50 %

extend across a sector of the Southern Ocean between 30�
W and 90� E. At the northern part of the Antarctic Pen-

insula the ER method gives reductions in prediction

interval of up to 30 %. This is a significant improvement

on the weighted projections shown in Bracegirdle et al.

(2008), which showed no reductions in inter-model spread

compared to unweighted projections around Antarctica. At

lower latitudes the ER method once again effectively

reverts to the EM method with ratios of approximately one.

3.2 Cross validation errors

Are the improvements in precision seen in the ER method

robust to other ways of quantifying precision? To answer

this question, cross validation tests of precision were con-

ducted. Cross validation has been used in previous studies

(Raisanen et al. 2010; Abe et al. 2011) and therefore allows

for more direct comparison with the results in this paper. In

cross validation, ‘observations’ are taken from a validation

model and the remaining models in the ensemble are used

to make a projection that can be verified against that val-

idation model. This is repeated with each model in turn

Fig. 5 Estimates of January

near surface temperature change

over the twenty-first century

from a the EM method and from

b the ER method. Model 10 is

excluded and ERA-40 is used

for the observed near-surface

temperature. c The difference

between b and a, with locations

of significant difference

indicated by hatching. A

difference is considered

significant if the EM-derived

projection lies outside the 95 %

confidence interval of the ER-

derived projection (e.g.

Fig. 2d). d The difference

between the present day

climatology in the CMIP3

ensemble mean and ERA-40
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taken as the validation model. The quadratic mean from

cross validation squared errors across all the models was

then calculated for projections derived from the ER and

EM methods. The root mean squared error (RMSE) for

January and July is shown in Fig. 8. The ratio of the ER to

the EM RMSE gives almost identical results to the ratio of

prediction intervals (compare Figs. 7, 8). The global plots

in Fig. 8 demonstrate that in their respective summer sea-

sons there is little difference in performance between the

two methods in the Arctic and Antarctic.

Away from the winter sea ice edge there are some

locations of RMSE reduction that may warrant further

study (Fig. 8e, f). In the Americas, both southern Brazil

(January only) and a region straddling southern Mexico

(January and July) show RMSE reductions of *10 %.

Over South Africa there are also reductions of more than

10 % in January. Over SE Asia there is a region of RMSE

reductions of 10–20 % in July. Over the southern Antarctic

Peninsula in summer (January) reductions of up to 30 %

are evident. These changes are relatively small, but other

predictor variables might give better results.

The reductions in cross validation error relative to the

EM method are slightly larger than error reductions

achieved by the weighting method of Raisanen et al.

(2010). They found a global all-month reduction in

quadratic mean squared error (MSE) of 4.7 % (from an

EM MSE of 1.157 �C) when grid point Ts was used for

predictor and predictand. Using the same 23 models (all

models listed in Table 1 apart from model 16) and

CMIP3 run numbers (only ‘run1’) as Raisanen et al.

(2010) we found a reduction of 6.0 % (from an EM MSE

of 1.187 �C). The slightly larger EM MSE found here

could be a consequence of the different grids used for

combining the model data. Use of the CSIRO-Mk3.5 grid

reduced the MSE error by 0.9 % for both ER and EM,

demonstrating a small sensitivity to the choice of grid,

but with no impact on the relative performance of ER

compared to EM.

Fig. 6 As in Fig. 5 but for

Antarctic winter (July)
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Compared to Abe et al. (2011), reductions in ER cross

validation error in projected Ts change are similar over the

Arctic Ocean (5–10 %) but larger along the Arctic ice

edge. At mid-to-high southern latitudes there is a large

contrast in results, with increases in RMSE of 10–15 %

reported by Abe et al. (2011) compared to the large

reductions found here. The reasons for this are not clear,

but it is likely that their exclusion of latitudes south of 60�
S in the domain used for calculation of SVD modes is a

contributory factor.

Since the above MSE results are based on only ‘run1’

from each model, a further sensitivity test was conducted to

assess whether including multiple ensemble members from

each model has a significant impact on the results. If, as

elsewhere in this paper, a mean of all ensemble members is

used for each model, the reduction in ER MSE compared to

EM MSE increases slightly to 6.4 %. This shows a slight

benefit of using the mean of multiple ensemble members

for each model, which will remove some of the sampling

error in extracting the background climate using 30-year

means from a single ensemble member.

3.3 Sensitivity to ensemble size

Would the addition of more models result in further

improvements in ER precision? How sensitive are the ER

results to the choice of models? In this section these

important questions are answered using a bootstrap

resampling method in which cross validation is applied to

randomly resampled sub-ensembles of different sizes. This

was performed as follows: (1) A validation model was

selected at random from 23 models (model 10 omitted). (2)

From the remaining 22 models, sub-ensembles of m

models (m = 2, 3, 4, …, 22) were then selected at random

(with replacement allowed). For each m, (1) and (2) were

repeated 1,000 times.

This resampling approach was used for area-weighted

averages of grid point projections over the Barents Sea in

January (region B) and a region to the northeast of the

Weddell Sea in July (region W) (Fig. 9). These are regions

of larger ER/EM difference and larger model bias in

Figs. 5, 6. For convenience, the RMSE values shown in

Fig. 9 are normalised by RMSEEM for m of 22. For region

Fig. 7 Width of the 95 % prediction interval for a, d the EM method, b, e the ER method and c the ratio of b to a, and f the ratio of e to d. The

upper row a–c shows results for January and the lower row d–f shows results for July
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B in January the median RMSEER is very large for small

m due to singularities in the regression when the same

model is chosen for all members of the sub ensemble.

However, this quickly reduces with increasing m. For

m larger than 6 the median RMSEER (solid line) is smaller

than the median RMSEEM (dashed line). The decrease in

median RMSEER with increasing m ceases for m of

approximately 12. The upper and lower quartiles also show

decreases, although smaller for the upper quartile. In region

W an m of only 3 is sufficient to give smaller median

RMSEER values compared to RMSEEM (Fig. 9b). This is

due to the very strong relationship over region W. An m of

only 6 is large enough to achieve close to maximum benefit

from the ER method, although the lower quartile decreases

slowly up to an m of approximately 14. By coincidence the

upper quartile of the RMSEER over region W is almost

identical to the median RMSEEM. As in the previous sec-

tion, it was found that the use of only one ensemble

member from each model had a negligible effect on the

results.

3.4 Quadratic regression

Can the ER precision be increased further by extending the

linear regression model to a higher-order (quadratic)

model? To answer this question a cross validation test for

Fig. 8 Cross validation errors averaged over 23 CMIP3 models

(model 10 excluded). The upper row a, b shows the RMSE for the

EM method, the middle row c, d shows the RMSE for the ER method

and the bottom row e, f shows data from the middle row divided by

data from the upper row. The left column (a, c, e) shows results for

January and the right column (b, d, f) shows results for July
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January was conducted with a quadratic regression model

(Fig. 10). This shows almost identical RMSE reductions in

the locations at which reductions occur in the linear case

(compare with Fig. 8e). Similar results were also found for

July (not shown). Linear regression therefore seems like a

good description of the relationships in Ts near the winter

sea ice edge. Figure 10 also indicates that the linear

assumption is a more suitable choice over other parts of the

globe. There are some regions of very large cross valida-

tion RMSE that are associated with the higher sensitivity of

the quadratic model to outliers. The example in Fig. 11

illustrates this by comparing the effect of excluding model

1 on linear and quadratic fits at 65� N, 105� W. In the case

of model 1 being chosen as the validation model, the

quadratic fit in Fig. 11b would be used to estimate the

change projected by model 1 (Fig. 11a). Clearly this would

give a much larger warming than actually occurs in model

1. The linear fit is much less sensitive to the exclusion of

model 1 (Fig. 11c, d).

4 Conclusions

This study has presented and tested an ensemble regression

methodology, which gives near-surface temperature pro-

jections over the polar regions that are more precise than

Fig. 9 Dependence of area-weighted cross validation RMSE error on

number of randomly selected models (with replacement) (m) for

a region B in January and b region W in July. For each m, 1,000

randomly selected model combinations were tested. Bold lines show

the median RMSE from these combinations with the upper and lower
quartiles shown by the thin lines. Results from the ER method are

shown by the solid lines and dashed lines show results from the EM

method. The RMSE errors are normalised in each plot by the median

EM RMSE with m = 22. Model 10 was omitted. Region B is defined

as an area-weighted spatial average over 70� N–80� N and 10� E–50�
E and region W is defined as 55� S–65� S and 20� W–20� E

Fig. 10 As in Fig. 8e, but with

a quadratic regression model
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those derived using equal-weight ensemble means. In

addition to improving on the performance of previous

weighting methods (Bracegirdle et al. 2008; Raisanen et al.

2010; Abe et al. 2011), the ER method avoids the addi-

tional complexity, computational expense and statistical

uncertainty associated with the calibration of explicit

model weights. The method has been successfully applied

to CMIP3 gridded multi-model ensemble data to produce

twenty-first century wintertime surface temperature pro-

jections under the SRES A1B emissions scenario.

Over the Arctic in January, the ER method gives less

warming than the EM approach along the sea ice edge due

to a widespread negative bias in present day surface tem-

perature in the CMIP3 models. Most notably the results

show 3 �C less warming over Barents Sea (*7 �C com-

pared to *10 �C) and 2 �C less warming over the Bering

Sea (*5 �C compared to *7 �C). For the whole Arctic

region (all grid points C60� N) the differences in warming

are negligible, with an area-weighted warming of 6.9 �C

given by the EM approach and ER giving 7.0 �C. In

addition, the ER method gives more precise projections

near the sea ice edge, with reductions in projection

uncertainty of approximately 30 % over the Sea of

Okhostk, Bering Sea and Labrador Sea.

For the Antarctic in July, the ER method gives 2 �C

more warming than the EM method (*7 �C compared to

*5 �C) over Southern Ocean across the Greenwich

Meridian. In contrast, there is 1 �C less warming along a

sector of the Southern Ocean that extends from the north-

ern Antarctic Peninsula to approximately 120� W. Probably

more important are the dramatic increases in precision

around the SH winter sea ice edge. Projection uncertainty

with the ER approach is almost half that of the EM

approach over the Southern Ocean between 30� W to 90� E

and up to 30 % over the northern Peninsula. An implication

of these results is that the current maximum of winter

warming over the Antarctic Peninsula and into West

Antarctica (Chapman and Walsh 2007; Thomas et al. 2009;

Steig et al. 2009) is not likely to continue under the

SRESA1B scenario. Precise projections of the climate of

Fig. 11 Scatter plots in a

similar format to those shown in

Fig. 2, but for 65� N, 105� W in

January. The top row a, b shows

results from a quadratic

regression and the bottom row
c, d from a linear regression.

Model 1 is included in the left
column (a, c) and omitted from

the right column (b, d)
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the Antarctic Peninsula and Greenland are important since

these are regions in which dramatic changes in ice mass

balance have recently been observed in connection with

atmospheric change (Marshall et al. 2006; Pritchard et al.

2009). There are also implications for changes in extreme

weather, in particular intense mesoscale winter cyclones

(polar lows). Less surface warming over the Barents Sea

would act to reduce the projected local increase in severity

of polar lows in the future (Kolstad and Bracegirdle 2008;

Zahn and von Storch 2010).

The ER methodology encompasses three important

elements: (1) linear regression of climate change response

on present day climate, (2) an assessment of leverage to

identify influential outliers in the regression and (3) the use

of cross validation to determine the point at which errors

stop decreasing with increasing ensemble size (or whether

a larger ensemble is required). Where there is no strong

relationship between the response and present day climate,

the ER approach yields the same projections as one would

find using EM. Our approach has the advantage that it is

simpler and less subjective than that of Raisanen et al.

(2010) and is more robust to overly influential models and

individual model biases than the approach used in Boe

et al. (2009). The linear model assumption was found to be

a good description of inter-model relationships near the

winter sea ice edge. Cross validation errors using a qua-

dratic regression model were similar to those calculated

using linear regression. Additionally quadratic regression

produced large errors at some locations due to a stronger

sensitivity to outliers. The second element, leverage, is a

powerful tool which enables the identification of outliers

that have a strong influence on the regression. In this study,

the leverage showed a clear influential outlier at high lat-

itudes in winter (Fig. 2). This model (model 10) singularly

accounts for a large part of previously documented inter-

model relationships between present day and future Ts over

NH mid-latitude oceans (e.g. Raisanen 2007; Knutti et al.

2010). In this case the leverage test was effective in

identifying a model that has previously documented prob-

lems with sea ice extent (e.g. Arzel et al. 2006; Connolley

and Bracegirdle 2007) and suggests that it is a useful tool

for quickly flagging potentially problematic models in new

multi-model datasets.

Another challenge when assessing new multi-model

datasets is the generally small number of models. In par-

ticular a small ensemble size causes problems in calibrating

model weights (Knutti et al. 2010; Raisanen et al. 2010).

However, here it was found that where relationships are

strong near the SH sea ice edge an ensemble size of only

approximately 6 is sufficient to give cross validation error

statistics that are nearly invariant under further increases in

ensemble size. Over the Barents Sea, where the relation-

ship is weaker, a larger ensemble size of approximately 12

is required. The required ensemble size therefore varies

depending on the location considered. The results may also

be specific to the CMIP3 dataset and variable considered.

For simplicity in introducing the ER method we have

focussed on time-mean grid point Ts for both predictor and

predictand. In principle any variable or combination of

variables could be used as the predictor. Raisanen et al.

(2010) assessed a range of predictors for future change in

Ts and found for instance that present day Ts variability

gave better results globally than the climatological mean. It

may therefore be possible to achieve further increases in

precision with different choices of predictor variable in ER.

In considering other predictors or predictands a clear

physical understanding of how the variables are related is

important. The future/present day correlations that have

been found in previous work are generally related to the

spatial movement of physical features under future emis-

sions scenarios, most notably the sea ice edges (Raisanen

2007; Knutti et al. 2010) and mid-latitude storm tracks

(Whetton et al. 2007; Giorgi and Coppola 2010; Kidston

and Gerber 2010). Position error of these features in sim-

ulations of present day climate will clearly have an impact

on predicted future change of related parameters as they

change position. It may therefore be useful to apply the ER

method to predictand variables relating to storm tracks,

particularly over the Southern Hemisphere. It is intended

that a more extensive analysis of other variables and sea-

sons will be conducted using the CMIP5 database once

sufficient data are available.
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Appendix: Influential items in regression

The regression model in (2) can be written in matrix form

as Y ¼ Xbþ e. Y is a column vector of n climate model

simulations of the climate response, X is the design matrix

with n rows and 2 columns: the first column is filled with

ones and the second column contains the present day val-

ues ðx1; . . .; xnÞ0 from each climate model. For quadratic

regression, a third column with ðx2
1; . . .; x2

nÞ
0

is added to X.

e is a column vector of n residuals.

T. J. Bracegirdle, D. B. Stephenson: Higher precision estimates

123



The regression model parameters are given by the two

row column vector b ¼ ðl; bÞ0, which is estimated to be

b̂ ¼ ðX0
XÞ�1X

0
Y using ordinary least squares estimation

(Draper and Smith (1998), p 125). The estimated values of

climate model responses are then given by Ŷ ¼ Xb̂ ¼ X

ððX0
XÞ�1X

0
YÞ ¼ HY, where H ¼ ðX0

XÞ�1X
0

is known as

the ‘hat matrix’ (Draper and Smith (1998), p205). The ith

diagonal element of the hat matrix Hii is called the leverage

of the ith item, and helps to quantify how influential each

item is on the overall fit (in our case, the items are the

climate model simulations). Items having large leverage are

known as influential items. One rule of thumb for labelling

cases as ‘‘high leverage’’ is if the leverage exceeds

3p/n where p is the number of predictor variables and n is

the sample size (Hoaglin and Kempthorne 1986). Influential

items can unduly modify regression estimates especially if

they are also outlier points with large residuals.
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