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Abstract Three different resolution (50, 12, and 1.5 km) regional climate model10

simulations are compared in terms of their ability to simulate moderate and high11

daily precipitation events over the southern United Kingdom. Among the three12

simulations, the convection-permitting 1.5-km simulation is carried out without13

convective parametrisation. As in previous studies, increasing resolution (espe-14

cially from 50 km to 12 km) is found to improve the representation of orographic15

precipitation. The 50-km simulation underestimates mean precipitation over the16

mountainous region of Wales, and event intensity tends to be too weak; this bias17

is reduced in both the 12-km and 1.5-km simulations for both summer and winter.18

In south-east England lowlands where summer extremes are mostly convective, in-19

creasing resolution does not necessary lead to an improvement in the simulation.20

For the 12-km simulation, simulated daily extreme events are overly intense. Even21

though the average intensity of summer daily extremes is improved in the 1.5-km22
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simulation, the 1.5-km simulation has a poorer mean bias with too many events23

exceeding high thresholds. Spatial density and clustering of summer extremes in24

the south-east England are poorly simulated in both the 12-km and 1.5-km simu-25

lations. In general, we have not found any clear evidence to show that the 1.5-km26

simulation is superior to the 12-km simulation, or vice versa at the daily level.27

Keywords High resolution models · Dynamical downscaling · Hydroclimate ·28

Precipitation29

1 Introduction30

With ever increasing computing power, dynamical climate model simulations can31

be performed at unprecedented high resolutions. There are many apparent ben-32

efits to high resolutions - most notably in the better representation of coastlines33

and topography. However, many atmospheric processes remain unresolved and re-34

quire parametrisation, for example convection and cloud systems (Arakawa, 2004).35

Parametrisation schemes, in particular the cumulus convection scheme (Molinari36

and Dudek, 1992; Hohenegger et al, 2008), are often designed for coarser reso-37

lutions and may become less valid at increasingly high resolution. Molinari and38

Dudek (1992) argue that assumptions for traditional convective schemes begin to39

break down at horizontal resolutions of about 50 km. Therefore, an improvement40

in the representation of atmospheric processes by solely increasing resolution is far41

from certain.42

Despite the high importance of accurate precipitation projections (in terms of43

social and economic impact), precipitation is among the most challenging climate44

variables to model, as precipitation is dependent on the representation of a wide45

range of processes. Precipitation can be caused by local convective instability,46

forced ascent near elevation changes, and synoptic variability (”weather patterns”),47

and relies on a number of model parametrisation schemes (e.g. convection, land-48

surface, boundary-layer, and cloud micro-physics schemes) for its representation in49

dynamical models. The modelled behaviour of these processes is likely to respond50

differently to resolution changes.51

The varied geography of Britain leads to significant precipitation variations in52

a relatively small area (Wigley et al, 1984). Due to the different precipitation pro-53

cesses (orographic, convective, and synoptic-scale depressions) that are involved,54

one may expect a range of model sensitivities to horizontal resolution across the55

UK. Thus the UK provides a good test platform for assessing the precipitation56

sensitivity to model resolution.57

There have been many studies testing model sensitivity to resolution changes58

considering various atmospheric and hydroclimate fields, with changes in mean59

bias and variance often used as the metric to assess model skill. Giorgi and Mar-60

inucci (1996) suggest that changes in topographic representation with resolution61

are the main cause of model sensitivity. Antic et al (2006) further argue that such62

sensitivity tends to lead to an improvement in the simulated climate. However,63

Laprise et al (2008) shows that while downscaling to higher resolution does tend64

to increase spatial variations (i.e. high spatial resolution fine features), the spa-65

tial variance increases are sensitive to domain size and do not necessarily improve66

deterministic skill (skill in simulating specific events) even if the climate repre-67

sentation is improved (overall statistics from the accumulation of many events).68
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Increase of inter-annual variability with increasing horizontal resolution from 5069

km to 25 km is noted in Rauscher et al (2010); the same study also finds that70

resolution increases lead to a reduction of the ratio of convective to total precipi-71

tation and an improvement in seasonal precipitation over topographically complex72

regions. For Britain, the 25-km simulations showed a marked improvement in the73

spatial patterns of JJA precipitation.74

The above work tends to focus on regional simulations that are of relatively75

coarse resolution (25+km). Molinari and Dudek (1992) argue that some convective76

processes begin to be partially resolved by the model at resolutions of about 20−77

25km. Over the UK, however, grid scales of ≈ 1km are needed to give a satisfactory78

representation of the majority of convection (Roberts and Lean, 2008), although79

even at this scale not all convection is fully resolved. Such ’convection-permitting’80

resolutions are now commonly used for short-term weather forecasting, and these81

have shown considerable improvements in the representation of convective and82

topographically enhanced precipitation (Roberts and Lean, 2008; Roberts et al,83

2009). There are relatively few studies applying such high resolutions for longer-84

term climate simulations, and such studies tend to be limited to a small domain or85

a given season (Hohenegger et al, 2008; Wakazuki et al, 2008; Knote et al, 2010).86

In this study, we assess the first 17-year extended length climate simulation at87

convection permitting scales over a region of the UK.88

High resolution climate models typically span a limited area, and are forced at89

the lateral boundaries by reanalyses or a coarser-resolution global climate model90

(GCM). The regional climate/mesoscale model (RCM) develops its own local cli-91

matology in the interior of the domain, conditional on these lateral boundary92

conditions (LBCs). In a one-way nesting approach, which is typically used, the93

RCM does not feed information back to the driving model, with the assumption94

that the regional model does not diverge strongly from the driving model in terms95

of its representation of the large-scale conditions. The higher resolution RCM only96

aims at adding information to what is not resolved by the driving model (Jones97

et al, 1995, 1997). An obvious alternative to the one-way nesting approach is the98

more computational expensive two-way nesting, in which the higher resolution -99

smaller domain model interacts with the lower resolution - larger domain model.100

Similar to two-way nesting, variable resolution stretched grid models can be em-101

ployed, where the modeller uses higher horizontal resolution in regions of interest102

(Déqué and Piedelievre, 1995).103

The question that we seek to answer in this paper is “Does increasing model104

resolution lead to a better representation of the character of intense precipitation105

events?” While changes of variance and means are important, changes in the fre-106

quency and intensity of precipitation extremes are of equal concern as well, due to107

their relevance to floods and droughts. Model representation of event frequency,108

intensity, and extremes is far more important than the mean in a social and eco-109

nomic context (Meehl et al, 2000). Low probability “tail” extreme events are rare110

such that their contributions to the climatological mean are comparatively small.111

However, they may contribute strongly to inter-annual variations and anomalies112

for specific years. The social impact of such events also depends on local geography,113

antecedent hydroclimate conditions (i.e. soil moisture and groundwater levels) and114

mitigation measures (i.e. flood and drought management). Furthermore, changes115

in the mean do not always reflect changes in such rare ”tail” events (Allen and116

Ingram, 2002; Allan et al, 2010). Over the UK, regional climate models have been117
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shown to project increases in the magnitude of extreme rainfall events (Fowler118

et al, 2007; Fowler and Ekström, 2009). Characterising the sensitivity of extreme119

rainfall events to model resolution changes is thus important.120

In this study, we seek to understand the sensitivity of simulated extreme rainfall121

to horizontal resolution using high resolution regional climate simulations carried122

out with the Met Office Unified Model. In particular, we compare 50-, 12-, and123

1.5-km simulations. The 1.5-km simulation corresponds to the first extended cli-124

mate simulation at convection-permitting scales over a region of the UK (southern125

UK, hereby SUK). We focus on precipitation events over SUK using the following126

metrics:127

– Extreme event occurrences - in both space and time128

– Intensities of such events129

– Spatial organization and density (as in the expected number of events per grid130

box, see Appendix) of such events131

We do not limit ourselves here to only rare events (such as daily precipitation132

heavier than 50 + mm/day), and also consider events that are more “moderate”133

(20 + mm/day). This study complements Kendon et al (in press), which analysed134

the same set of simulations. In summary, Kendon et al (in press) have found135

that the 12-km RCM precipitation tends to have lighter, more widespread and136

persistent precipitation relative to the 1.5-km RCM. The 1.5-km RCM is also found137

to have a better diurnal cycle. Here we focus only on daily precipitation (which138

is in contrast with the hourly precipitation focus in Kendon et al (in press)). The139

analyses here uses different metrics, and are seasonally and regionally stratified.140

Data from an additional 50-km RCM is also included.141

This paper is divided into eight sections. In section 2, we present an overview of142

the modelling system and observational data that we have used. We then present143

our analysis methodologies in section 3. In sections 4 to 7, we compare the dif-144

ferences between the model simulations and observations with the use of different145

metrics. Finally, we conclude and discuss our results in section 8. There is also an146

appendix that discuss our methodologies in more detail.147

2 Regional modelling system and observations used148

Our simulations follow Kendon et al (in press) with the addition of a 50-km sim-149

ulation. Here we analyse data for the period 1991 to 2007 from the three different150

resolution (50km, 12km, and 1.5km) RCM simulations. All three simulations are151

different configurations of the Met Office Unified Model. An overview of the three152

simulations is presented in Table 1.153

2.1 50-km and 12-km HadGEM3-RA154

The 50-km and 12-km simulations are limited area versions of the non-hydrostatic155

Hadley Centre Global Environmental Model version 3 (HadGEM3-RA) (Walters156

et al, 2011). The model dynamical core uses a semi-implicit semi-Lagrangian157

scheme to solve the non-hydrostatic and compressible dynamical equations (Davies158

et al, 2005). The model uses a staggered Arakawa-C horizontal grid (Arakawa and159
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Lamb, 1977), and has 63 Charney-Phillips terrain-following hybrid vertical lev-160

els (Charney and Phillips, 1953). The higher resolution 12-km simulation uses a161

shorter time-step than the 50-km simulation (see Table 1).162

Both simulations use the Met Office mass-flux CMODS 4A convection scheme163

(Gregory and Rowntree, 1990), the updated Wilson and Ballard (1999) cloud164

microphysics scheme for large-scale precipitation (LSP) without prognostic rain,165

and the Wilson et al (2008) PC2 prognostic cloud scheme. For the land surface,166

the Met Office Surface Exchange Scheme 2.2 (MOSES2) (Essery et al, 2001) is167

employed. For sea surface temperatures (SSTs), we have prescribed observed high-168

resolution 0.25◦ daily SSTs (Reynolds et al, 2007).169

Both simulations are forced by the ERA-Interim reanalysis (Dee et al, 2011) at170

the lateral boundaries. The ERA-Interim has a T255 (≈ 0.75◦ or ≈ 80km) spatial171

resolution and 60 hybrid vertical levels. Temporally, the (re-gridded) reanalysis is172

prescribed to the lateral boundaries every 6 hours. An illustration of the simulation173

domain is shown in Fig. 1a. The simulation domain covers Europe and parts of174

North Africa with the United Kingdom about a third of the way from the western175

boundary.176

2.2 1.5-km RCM177

The 1.5-km regional climate model uses a modified version of the non-hydrostatic178

Met Office operational UK variable-resolution model (UKV). Like the HadGEM3-179

RA, UKV is also one of the configurations of the Met Office Unified Model. It180

has a grid spacing of 1.5km in the interior with a transition to 4-km at the edges.181

This gives a 1 : 3 downscaling ratio near the boundaries. This variable resolution182

rim reduces instabilities near the lateral boundaries. The operational 1km UKV183

has been shown to improve UK orographic and convective precipitation relative184

to coarser 12km simulations (Roberts et al, 2009; Roberts and Lean, 2008; Lean185

et al, 2008).186

The majority of the model physics in the 1.5-km simulation is the same as187

in the 12-km and 50-km simulations, but there are some important differences.188

Similar to the 50-km and 12-km HadGEM3-RA simulations, the 1.5-km simula-189

tion shares the same dynamical core (Davies et al, 2005). The same land surface190

(Essery et al, 2001) scheme and prescribed SSTs are used in all three simulations.191

Unlike the coarser simulations, however, the 1.5-km simulation uses no convective192

parametrisation, nor the prognostic cloud scheme (see Kendon et al (in press) for193

details). Time stepping and the number of vertical levels also differ (see Table 1).194

The 1.5-km simulation uses the (Wilson and Ballard, 1999) cloud microphysics195

scheme with prognostic rain. The Smagorinsky-Lilly model (Smagorinsky, 1963;196

Lilly, 1962) is used to represent sub-grid turbulent diffusion.197

The simulation is driven by the 12-km RCM simulation, with no feedback198

from the 1.5-km simulation back to the 12-km simulation (’one-way nesting’; see199

section 1). Unlike the two coarser resolution simulations, the 1.5-km RCM domain200

is limited to SUK (see Fig. 1b) where convective events are observed to be the201

most common in Britain. Due to the small size of the 1.5-km domain, we expect202

strong similarities in the regional atmospheric conditions between the 1.5-km and203

12-km simulations over the SUK. For inter-comparisons, we upscale the 1.5-km204

simulation results to the 12-km and 50-km scale.205
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2.3 Observations206

The National Climate Information Centre daily UK gridded precipitation (Perry207

et al, 2009) is used as a reference to compare all three model simulations. The208

daily gridded dataset begins in 1958 and ends at the present day, and here we use209

data from 1991 to 2007. Between 1991 and 2007, the dataset has used approx-210

imately 2500-3500 surface gauge observations that are scattered over England,211

Wales, Scotland, and Northern Ireland. Approximately two-thirds of these gauges212

are in SUK.213

Quality control is performed through computerized and manual comparisons of214

individual daily station values against the daily all-station average and daily values215

from nearby stations. Any stations that have failed quality control are excluded216

from the computation of the gridded values. The gridding of the gauge data to a217

5km×5km grid uses a cubic inverse-distance weighting interpolation using stations218

within 50km radius of the grid box.219

There are three notable issues for such a dataset:220

– Values are undefined over water;221

– Station gauge observations can only sample events that occur over the gauges222

themselves, and may not sample specific localized events;223

– Gauges are often located in valleys, and that leads to an underestimation of224

precipitation in the vicinity of high topography;225

To address the first issue, we restrict all our comparisons to land points only.226

The second and third issues are fundamental limitations to rain gauge data -227

one can only detect local events if they are sampled by the gauges. The under-228

sampling of convective and orographic precipitation extremes will cause the area229

averaged gridded values to be less than the true area-averaged value. Ensor and230

Robeson (2008) show that gridded gauge precipitation produces reasonable annual231

precipitation estimates, but selectively degrades the representations of high and232

low precipitation events.233

We intend to investigate this problem in further detail in the near future with234

other observation datasets (see section 8). We expect the problem is more likely235

to affect rare (once every few years) localized extremes. Such extremes are more236

common in JJA when localized convection is the most common. During DJF,237

the under-sampling is expected to be lesser of a problem as extremes are more238

associated with large-scale precipitation.239

3 Methodologies240

In order to compare between model simulations and daily observations, we have241

re-gridded our observations and model simulations to the 12-km and 50-km grid:242

– The 1.5-km simulation is upscaled to both 12-km and 50-km scales when com-243

pared against the 12-km and 50-km simulations;244

– The 12-km simulation is upscaled to the 50-km scale when compared against245

the 50-km simulation;246

– The 5-km gridded observation dataset is upscaled to the 12-km and 50-km247

grids.248
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Since we are only interested in days that have (significant) precipitation events,249

we only include days with events exceeding given minimum thresholds. The ex-250

amined thresholds are: 1.0, 5.0, 10.0, 20.0, 30.0, 40.0, and 50.0mm/day. We also251

estimate spatial scales and the clustering of precipitation events with the Ripley252

K-function (Ripley, 1977). A description of the Ripley K-function can be found in253

the appendix.254

Both parametric and non-parametric statistical significance tests are used in255

our analysis. For basic comparisons between climatological seasonal means, we256

have employed the Student-T test at the 5% level. Since there are 17 years of257

data, the degrees of freedom for the Student-T test are dof = 17 − 1 = 16.258

For the comparisons between event intensities, we have used a 1000 member259

bootstrap (Efron and Tibshirani, 1993; Wilks, 1997), and test at the 10% sig-260

nificance level. We define a precipitation subset (P ′) in which a daily threshold261

(pTHRESHOLD) has been exceeded (Equation 1). The average event intensity (
˙

P ′
¸

)262

is defined to be the expected daily intensity within the subset (Equation 2):263

P ′ = {P > pTHRESHOLD} (1)
264

˙

P ′
¸

=

PN(pTHRESHOLD)
n=1 P ′

n

N
(2)

265

N (pc) =
˛

˛P ′
˛

˛ (3)

In which P is the set of all non-zero precipitation values. N is the number of266

elements in subset P ′. Both P ′ and N are functions of pTHRESHOLD. P can be267

a set that is formed all values for all grid points (as in Figs. 6 and 7) or at each268

individual grid point (as in Figs. 4 and 5 in which we have denoted event counts269

(per year) at each grid point as n).270
˙

P ′
¸

can be computed with the original dataset and a bootstrap. The bootstrap271

re-sampling is performed in 3-month seasonal blocks for each year (e.g. 1991 JJA,272

1992 JJA, ..., 2007 JJA). We randomly select 17 seasons (out of the total of 17273

years) with replacement, such that some years may be represented more than274

once and some not at all. We re-sample in seasonal blocks to account for possible275

auto-correlation. Wilks (1997) suggests that the block length can be estimated276

through independent sample number estimation assuming the process is a 1st-277

order autoregressive process. Such estimation is difficult practically as the auto-278

correlation of daily precipitation is caused by a number of mechanisms which act279

at a range of time scales: from 1-5 day synoptic variations to soil-precipitation280

feedbacks that operate over time scales of weeks and months. A seasonal block281

assumes that the precipitation intensities from the same season of the previous year282

to be independent of the precipitation intensities of the present season. Generally,283

long block sizes lead to Type-II errors - not enough null hypothesis rejections (i.e.284

significance tests favour higher probabilities for null hypothesis for non-difference285

between models and observations) (Wilks, 1997).286

The re-sampling procedure is repeated 1000 times to produce 1000 simulated287

17-season datasets. The original dataset is one out of
`2n−1

n

´

(for n = 17,
`2n−1

n

´

∼288

109) possible outcomes from the re-sampling. For each bootstrap, we compute289

the intensity differences between the two compared datasets. The null hypothesis290

is that the differences are zero. We estimate the top and bottom 5% percentile291

(corresponding to a two-tail 10% significance test) of the 1000 differences from292
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the bootstrap, and check if the top (or bottom) 95% differences have same signed293

differences. If the sign is the same, we reject the null hypothesis.294

4 Simulated climatologies295

We first examine the difference in precipitation climatologies between the obser-296

vations and models. This also serves as an introduction to the UK climate for297

unfamiliar readers. Shown in Fig. 2 and Fig.3 is the observed 3-month seasonal298

mean precipitation (and the three model-simulated fractional departures from the299

observed values) at both the 50-km and 12-km scale.300

For all seasons, observed precipitation is highest over the Welsh mountains301

and south-west England. Lower amounts are observed in the lowlands to the east.302

Therefore for further analysis, we divide our SUK domain into two sample regions303

using the “Tees-Exe Line”1 (see Fig. 1b). This line separates the meteorologically304

wetter and topographically higher north west (NW) and the meteorologically drier305

and topographically lower south east (SE). The models (at all three resolutions)306

tend to have negative (positive) precipitation bias over the NW (SE). However,307

the biases show seasonal variations, which are similar for all three simulations.308

The Tees-Exe Line also separates the east which is subject to relatively more309

intense local extremes than the west. To the east of the line, the 100-year-return310

level event is on average 2.5− 3.2 times more intense than the 2-year-return level311

event2, while the same ratio is lower (2.0− 2.5) to the west of the line (Faulkner,312

1999).313

The observations show that SON (MAM) is the wettest (driest) three-month314

period for SUK. JJA and DJF, which we will examine in detail here, have precipi-315

tation amounts in between SON and MAM. JJA and DJF are chosen for thorough316

analysis as they represent two different precipitation regimes: primarily convective317

rain concentrated to the east of the Tees-Exe Line during JJA, and frontal precip-318

itation concentrated to the west during DJF (Maraun et al, 2009). Over highland319

regions, DJF precipitation is higher than JJA. Over the lowlands, the highest320

JJA precipitation values are lower than the highest DJF precipitation values over321

Southern England; however, over eastern England and East Anglia, JJA is wetter322

than DJF. For the models, the NW dry bias is largest during SON and DJF when323

highland precipitation is higher, and the SE wet bias is largest during MAM when324

lowland precipitation is highest.325

By examining Fig. 2 and Fig. 3, it appears that increasing the model resolution326

has a positive impact on orographic precipitation in the NW. When resolution is327

increased from 50-km to 12-km, the (negative) bias over Wales is reduced. Mi-328

nor reductions of positive bias are noticeable in the SE. Even though the 1.5-km329

simulation is driven by the 12-km simulation, the patterns of their bias differ sig-330

nificantly - the 1.5-km simulation is notably wetter than the 12-km simulation.331

Positive biases over the SE are higher in the 1.5-km simulation. The 1.5-km simu-332

lation does show (negative) bias reduction for orographic precipitation over Wales333

for SON and MAM. This improvement in orographic precipitation is consistent334

with what has been found in previous studies (see section 1).335

1 The line joining the mouths of the River Exe and the River Tees in UK
2 Often called the “growth rate” in hydrology.
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For the SE, there appears to be little value in going to a higher model reso-336

lution; in fact, results here in terms of seasonal mean precipitation show that the337

resolution increase has a negative impact on the bias. These results are consistent338

with Kendon et al (in press), and the excessive precipitation in the 1.5-km model339

is thought to be due to the inherent under-resolving of convection at the 1.5-km340

scale. However, we will show that resolution increases lead to changes in other341

important precipitation statistics.342

5 Localized event frequencies343

The climatological mean (and model biases in the mean) does not convey any344

information about the frequency and intensity of events. To begin our discussion,345

we have plotted the observed and simulated annual June-November (JJA+SON)346

and December-May (DJF+MAM) occurrences of precipitation events exceeding347

20mm/day (Fig. 4) and 50mm/day (Fig. 5). We have plotted frequencies on both348

the 12-km and 50-km grid. The use of half year divisions is based on the similarities349

of occurrence frequencies between JJA and SON and between DJF and MAM350

(not shown). We expect the frequencies of these types of events to increase with351

decreasing grid size (evident when comparing panels a against d, and c against e352

in both figures). At a coarse grid size (i.e. the 50-km grid scale), area averaging353

favours events that are widespread as localized convective events are filtered out354

by area averaging.355

Both observations and models indicate that one may expect between 1-10 20+356

mm/day events per year (JJA+SON and DJF+MAM) at the 12-km and 50-km357

grid scale with the highest frequencies over the western part of our domain. On358

the east side of the Tees-Exe Line, event frequencies at both thresholds are higher359

in JJA+SON than in DJF+MAM, but such seasonal variations are not as evident360

over Wales and south-western England. All models captured the higher frequency361

of event occurrences observed over Wales, the east-west gradient of the frequency,362

and the seasonal variations in the south-east.363

Frequencies for 20+mm/day events are higher everywhere for the 1.5-km (12-364

km) simulation in SUK when compared with the 12-km (50-km) simulation. For365

the 1.5-km simulation, the increase in the number of events is most evident along366

the southern and south-eastern England coast in both JJA+SON and DJF+MAM,367

and the increased frequencies are higher than the observed estimates. The increase368

of 20 + mm/day event frequencies in the 12-km simulation (when compared with369

the 50-km simulation) occurs both to the west and the east of the Tees-Exe Line.370

The 12-km simulation is also superior to the 50-km simulation in terms of capturing371

the high frequencies over the Welsh highlands.372

As one moves to the 50 + mm/day threshold, event occurrences decrease (Fig.373

5). Typically there are no more than 1-2 events per year (JJA+SON and DJF+MAM)374

at any grid point for the 17 years of analysed data (sometimes just once within375

all 17 years of data; the 0.025 events/year contour in Fig. 5 is chosen based on376

1
17 × 1

2 ≈ 0.025). Similar to the 20+mm/day threshold, observations show an east-377

west gradient in occurrence number with the highest frequencies observed over the378

Welsh highlands. In the 50-km simulation, there are too few 50 + mm/day events379

to discern such a gradient. The southern / south-eastern coast event increase that380

is evident at the 20 + mm/day threshold within the 1.5-km simulation is also evi-381
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dent at the 50 + mm/day threshold for both JJA+SON and DJF+MAM, leading382

to an increased bias with respect to observations.383

Given the above analysis, there is a clear improvement in the model simulation384

of the occurrence of heavy precipitation when model resolution is increased from385

50-km to 12-km in both the orographic regime to the west and lowland regime386

to the east. However, there is little value of increasing the resolution from 12-km387

to 1.5-km as biases worsen. However, Figs.4 and 5 convey no information about388

spatial structures and average intensities of 20+mm/day and 50+mm/day events.389

6 Excess intensity and event-based statistics390

In this section, we examine the average intensity (
˙

P ′
¸

, see Equation 3) of events391

exceeding various thresholds from 1mm/day to 50mm/day. The results are pre-392

sented in Fig. 6 and Fig. 7 for JJA and DJF respectively. As in previous figures,393

results are presented with data that are upscaled to 50-km (left panels) and 12-km394

(right panels). We have plotted up to the 50mm/day threshold due to the rarity395

of 50 + mm/day events in the 50-km simulation (as indicated in panel c of both396

figures).397

6.1 JJA398

At the 12-km grid scale, in both the SE and NW subregions, the 12-km simulation399

simulates precipitation intensities that are 10% − 20% higher than observations400

for thresholds above 30mm/day, and the differences are statistically significant at401

the 10% level. The 1.5-km simulation simulates a lower and closer-to-observation402

intensity for the same 30 + mm/day thresholds. When the comparisons are made403

at the 50-km scale, both the 12-km and 1.5-km simulations show SE intensities404

that are 5-10% higher than observations.405

For lower thresholds (below 10mm/day, where all events above this threshold406

are included), only the 1.5-km simulation has higher (≈ 20% for the SE) average407

intensity than the observations. That is true for both the NW and SE subregions.408

The other two (12-km and 50-km) simulations have either intensities that are lower409

(NW) or that are not statistically different (SE) from observations.410

The 50-km model simulation underestimates event intensities. Over the NW,411

this underestimation is significant for events exceeding thresholds up to 30mm/day,412

and becomes insignificant at higher thresholds. By contrast over the SE, this413

underestimation only becomes significant at higher thresholds (40mm/day and414

50mm/day).415

6.2 DJF416

DJF precipitation intensities are better simulated by the 12-km and 1.5-km simu-417

lations than by the 50-km simulation, with the negative intensity bias in the NW418

reduced or eliminated entirely in the higher resolution simulations. The 50-km sim-419

ulation has consistently lower intensities in the NW than observations; differences420

at all but one threshold (40mm/day) are statistically significant at the 10% level.421
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For the 12-km simulation, intensities of higher threshold NW events are well sim-422

ulated at both the 12-km and 50-km scale, and are not statistically different from423

observations at any threshold above 10mm/day. Unlike the 12-km simulation, the424

1.5-km simulation tends to show positive biases of about 5%−10% across multiple425

thresholds when the data is upscaled to the 12-km scale. At the 50-km scale, the426

1.5-km simulation has positive biases in two (20mm/day and 40mm/day) out of427

seven thresholds.428

At lower thresholds (below 10 + mm/day), all three simulations have lower429

NW intensities than observed at the 50-km grid scale. The biases are reduced430

for the 1.5-km and 12-km simulations if the comparisons are made at the 12-km431

scale. Since the differences disappear or are reduced at higher thresholds (above432

10mm/day), this shows that all simulations have deficiencies in the simulation of433

moderate events (1 − 10mm/day).434

SE precipitation intensities that are simulated by the 50-km and 12-km sim-435

ulations are not statistically different from observations. The 1.5-km simulation436

simulates higher intensities in the SE at both 12-km and 50-km grid scale. In Fig.437

3, it is notable that the 1.5-km simulation also has the highest SE DJF positive438

bias among the three simulations.439

6.3 Event occurrences as a function of intensity threshold440

Total event numbers (across all grid boxes and days) are shown in the lower panels441

(c,d) in both Fig.6 and Fig. 7. The number of events decreases with increasing442

intensity threshold, as would be expected, and the decrease rates are highest for443

the 50-km simulation. The number of NW and SE 1+mm/day events is comparable444

for all model resolutions and observations, but the number of 40+mm/day events445

in the 50-km simulation is up to an order of magnitude less than the two other446

simulations and observations.447

Panels Fig. 6 c,d and Fig. 7 c,d are integrated measures of event occurrence448

in both time and space. In order to partition out temporal occurrences, in Table449

2, we present the number of days which have at least one event greater than the450

threshold at the 12-km scale. For the 50-km scale (not shown), higher (40mm/day451

and 50mm/day) threshold events are lacking especially for the 50-km simulation.452

For JJA (Fig. 6 c,d), the total number of events in the 50-km simulation and the453

observations are consistently lower than in the 12-km and 1.5-km simulations for454

thresholds above 40mm/day. However, we expect the estimated observed counts455

to be lower than the true value (see section 2.3), so the positive event number456

biases in the 12-km and 1.5-km simulations may be less than shown. The 50-km457

simulation itself has less counts than the observations; using the same argument458

as above, the underestimation by the 50-km simulation may actually be higher459

due to under-sampling by the observations. A comparison between Table 2 and460

Fig. 6 indicates that in the 1.5-km simulation the excessive number of events is461

partially due to the large number of days having at least one event somewhere462

in the SUK domain. For the 12-km simulation, results are more curious as the463

number of days having at least one event is less than in the observations until the464

50 + mm/day threshold. We shall show that the spatial density of events is the465

cause of the discrepancy.466
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For DJF, the 1.5-km and 12-km simulations are more realistic than the 50-467

km simulation in simulating the number of events over the mountainous NW,468

especially with thresholds of 30 + mm/day or higher. At the 12-km scale, the469

1.5-km simulation has 2 − 5 times more SE events than the observations for the470

30 + mm/day and 40 + mm/day thresholds. It is worth noting that such heavier471

SE DJF precipitation events are rare when compared with JJA, and the number472

of DJF events for the whole domain (SE + NW) is mostly attributable to the NW.473

All three model simulations are able to capture that NW-SE difference.474

6.4 Section summary475

Here are some of the key results from this section:476

– Both the 12-km and 1.5-km simulations and observations have higher precip-477

itation intensities and event numbers than the 50-km simulation in both JJA478

and DJF;479

– The 1.5-km simulation has more realistic intensities for JJA intense precipita-480

tion events than the 12-km simulation;481

– The 12-km simulation has more realistic intensities for DJF intense precipita-482

tion events than the 1.5-km simulation;483

– The 1.5-km simulation has a larger number of events than the other two model484

simulations and observations across many thresholds;485

– For most thresholds above 20mm/day, the 12-km (1.5-km) simulation has fewer486

(more) days in JJA with at least one precipitation event in the SUK domain487

compared to observations.488

Our results indicate that the 50-km simulation performs least well in compar-489

ison to the higher resolution simulations in simulating intense daily precipitation.490

However, a mixed picture is shown between the two higher resolution simulations.491

7 Spatial density and clustering492

We have presented the temporal occurrences of intense precipitation events; and493

in this section, we examine the spatial characteristics of intense daily precipitation494

events. Clustered local precipitation events pose a larger risk than scattered events495

in triggering flooding. Thus the realistic simulation of the spatial characteristics496

of precipitation is essential for using models as a flood risk assessment tool.497

Using the NW and SE regional division, we compute the average spatial density498

(Tables 3 and 4)3, the number of near neighbours, and spatial clustering. The499

spatial density is the total number of precipitating grid points with the threshold500

exceeded divided by the total number of defined grid points (see Equation 5 in501

Appendix). The spatial density can then be averaged across all days that have at502

least 2 grid points that have exceeded the threshold (see Equation 17 in Appendix).503

Clustering is a localized (an area subset of the whole domain) density enhance-504

ment (excess density above the average density of the whole domain). Density and505

3 Only 1.5-km model simulated SE DJF 50 + mm/day event statistics are shown due to the
lack of events in the other datasets.
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clustering are two different concepts; clustering may exist in the absence of “high”506

densities. A schematic that illustrates the differences between density and cluster-507

ing is shown in Fig. 8. As in density, we present the time average values only (see508

Equations 18 and 19 in Appendix).509

Clustering is assessed by calculating the area normalized Ripley K-function510

(also known as the Besag L-function; see appendix) of precipitation events exceed-511

ing two specific thresholds (20 + mm/day and 50 + mm/day). High spatial den-512

sity values may arise from many individual disorganized single grid-point showers513

(with low clustering) or many clustered “precipitation blobs” (non-zero Besag L-514

function). The results are presented in Fig. 9 and Fig. 10 for JJA, and Fig. 11 and515

Fig. 12 for DJF. Shown are:516

– The estimated number of near neighbours4 and Besag L-function assuming517

events are not clustered (left panels, dash line)518

– The actual number of near neighbours (left panels, solid line) and Besag L-519

function as observed in the gridded observations (right panels), 12-km and520

1.5-km simulations521

In a nutshell, the right panel (Besag L-function) measures the excess of clus-522

tered points (left panels, solid lines) above the background (left panels, dashed523

lines).524

Here we limit our comparisons to only the 12-km horizontal scale. This is525

because coastlines and island geography become too coarse at the 50-km scale,526

and the poor simulation of rare high-intensity events by the 50-km model. For527

example, East Anglia and Cornwall-Devon are only 1-3 grid points wide at the528

50-km scale (see Fig. 2).529

7.1 JJA530

In general, the clustering and spatial density are much better simulated in the531

NW than in the SE by both simulations. For the NW, both models are reasonably532

successful in simulating the average clustering at both thresholds (Figs. 9 a and 10533

a, dashed lines). Naturally, clustering over the NW is tied with orography, and a534

better simulated clustering in the NW is not surprising. The 20 + mm/day events535

are also better handled than the 50 + mm/day events.536

By comparison with the NW, both models are more challenged to simulate537

the spatial density and clustering over the SE. Figs. 9 and 10 (lower panel c,538

dashed lines) show that both the 12-km and 1.5-km simulations tend to simulate539

precipitation that is spatially too dense at both thresholds in the SE. Both models540

are more successful in reproducing the observed clustering at the 20 + mm/day541

threshold (Fig. 9 d) than at the 50 + mm/day (Fig. 10 d). For the 50 + mm/day542

threshold, there is severe underestimation of clustering in the SE, but the same543

is not evident at the 20 + mm/day threshold. In general over the SE, the 12-km544

simulation gives a better representation of the average spatial density than the545

1.5-km simulation, whilst the 1.5-km simulation gives a better (but still poor)546

representation of clustering for the 50 + mm/day threshold.547

4 The average spatial event density multiplied by the surface area
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The excessive density in the 12-km simulation over the SE at the 20+mm/day548

threshold compensates for the reduced number of days of event occurrence - leading549

to an overall comparable total number of events between the 12-km simulation and550

observations (Fig. 6 d). For 50+ mm/day events, both too many days with events551

and the excessive spatial density contribute to the excessive number of events in552

the 12-km and 1.5-km simulations.553

We note that observed clustering peaks at around 4-10 grid points (for both554

thresholds) in the SE. This is consistent with length scales of organized mesoscale555

convective events (≈ 101 − 102km).556

7.2 DJF557

Relative to JJA, both models generally show much better skill in simulating the558

spatial densities and clustering in DJF. For the DJF 20+mm/day threshold (Fig.559

11), the SE clustering (panel d) in the 12-km and 1.5-km simulations is similar,560

with both simulations tend to underestimate observed clustering at “large” (r ≥ 10561

grid points) radii. The observed spatial density of 20+mm/day events is in between562

the values simulated by the 12-km and 1.5-km simulations in both NW and SE563

(panels a and c, dashed lines; Tables 3 and 4 column c). This is different to the564

situation in JJA, where both simulations have SE spatial densities that are too565

high relative to observations.566

For 50 + mm/day events, the simulated clustering in the NW (Fig. 12b) is567

higher for both simulations (with the 1.5-km simulation closer to observations).568

This is in contrast with JJA (Fig.10 b) when the simulated clustering is lower569

than observed. Both simulations simulate spatial densities that are higher than570

observed (Fig. 12 a, dashed lines; Table 3 column d).571

We have not shown the clustering and near neighbour number counts for DJF572

SE 50+mm/day events for 2 out of the 3 datasets. There are only 1 and 3 DJF SE573

50 + mm/day events between 1991 and 2007 that have spatial scales more than 2574

or more grid points for the observations and 12-km model simulation respectively.575

The difference in the number of events can be seen in Fig. 5 j-l. The probability of576

having a 50+mm/day event in the SE during DJF+MAM is highest for the 1.5-km577

simulation with most events concentrated along the southern coast of England. In578

summary, the lack of DJF SE 50 + mm/day events in the 12-km simulation and579

observations is consistent with the event frequency differences between the two580

models and the observations.581

7.3 Section summary582

The above results reveal a few important points:583

– With the exception of the 1.5-km model simulated NW DJF 20 + mm/day584

spatial density, all examined model simulated spatial densities are either higher585

or comparable to observations.586

– Despite the higher spatial density, both simulations tend to underestimate587

spatial clustering of 50 + mm/day events over the SE in JJA.588



Hi-res RCM simulations of UK precipitation 15

Similar to the results for precipitation intensities, there are no clear improve-589

ments to precipitation clustering and spatial density from increasing the model590

resolution from 12 km to 1.5 km. The simulation of the SE during JJA has been591

especially challenging for both simulations - overall spatial density is overesti-592

mated for both thresholds, and spatial clustering (organization) of daily extremes593

(50+mm/day) is poor. Due to the nature of the observations, the observed cluster-594

ing may be underestimated, and this suggests model discrepancies may be larger.595

We note the above picture may change if different accumulation periods are ex-596

amined (hourly or multi-hourly), and is suggested by the results in Roberts and597

Lean (2008).598

8 Discussions and Conclusions599

We have presented a number of event-based metrics in this paper. These have been600

chosen to gauge differences in the model simulations across different resolutions.601

Key results include:602

– Increasing model resolution from 50 km to 12 km is beneficial to the simu-603

lation of DJF orographic precipitation. The 50-km simulation underestimates604

the occurrence and intensity of heavy precipitation and has a negative mean605

precipitation bias over orography. This is reduced in the 12-km simulation.606

– Seasonal biases in precipitation totals increase when resolution is increased607

from 12 km to 1.5 km.608

– Moderate-to-heavy daily precipitation occurs too often in the 1.5-km simula-609

tion - especially in SE England. The average intensity of the JJA (DJF) daily610

extremes is better simulated by the 1.5-km (12-km) simulation. Both the 12-611

km and 1.5-km simulations have too many days with extreme (50 + mm/day)612

JJA precipitation.613

– Both 12-km and 1.5-km simulations overestimate JJA spatial density of events614

over the SE for two thresholds examined here (20+mm/day and 50+mm/day).615

On top of the overestimation, there is clear deficiency for both simulations in616

capturing the appropriate spatial clustering for SE JJA 50 + mm/day events.617

In general, there are some improvements in simulating daily intense precipita-618

tion when model resolution is increased from 50 km to 12 km. When resolution is619

further increased to 1.5-km, there is no further clear cut improvement. Compar-620

isons between the 12-km and 1.5-km simulation give a mixed picture: better JJA621

daily extreme intensity in the 1.5-km simulation versus smaller seasonal biases in622

the 12-km simulation in multiple seasons. We acknowledge that there are many623

ways to compare model simulations, and one of the objectives of this study is624

trying different ways to do the comparison.625

Improved representation of precipitation in DJF over orography between the626

50-km and 12-km is a result consistent with other similar studies (see section 1).627

Our results indicate that boreal summer (JJA) precipitation away from orography628

may or may not have benefited with increasing resolution depending on the metric629

used.630

The summer of SE UK represents the convective precipitation regime over UK.631

The 1.5-km simulation shows an improvement over the 12-km simulation in the632

simulation of average intensities of high threshold JJA events, but such events are633
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too common in the the 1.5-km model (event day counts are too high, Table 2).634

Spatial clustering and density are deficient in both simulations especially at the635

high thresholds.636

Daily precipitation extremes are linked to multi-hour slowly moving (frontal or637

convective) precipitating systems. Short duration and/or fast moving precipitation638

systems do not lead to extreme daily accumulations (but they may be linked to639

extremes at shorter time scales). The above argument suggests that a different640

result may be obtained if the analysis is performed for accumulations over shorter641

periods. The above also highlights that a good simulation of precipitation duration,642

spatial organization and temporal evolution of precipitation systems is essential643

to give reasonable extremes in the model climate.644

The 12-km simulation has fewer JJA heavy precipitation days, and the 12-km645

heavy events have a more “outbreak” nature than the 1.5-km simulation. The 12-646

km simulation has less days with moderate-high precipitation. When moderate-647

high daily precipitation events are triggered, they become overly intense (daily648

totals are too high) and widespread (spatial density of grid points above a mod-649

erate/high daily threshold is too high).650

In JJA, for more moderate thresholds (20+mm/day), the 12-km model appears651

to have the best simulated intensity. However, the 12-km simulation has nearly 20-652

25% less days with any such events. Therefore, it is hard to conclude if the 12-km653

simulation is any better than the 1.5-km simulation in simulating more moderate654

daily events.655

For the metrics that we have compared, the 12-km simulation appears to out-656

perform the 1.5-km simulation in DJF. On the whole, boreal winter (DJF) heavy657

precipitation is easier to simulate than boreal summer (JJA) precipitation. Simu-658

lated intensities, spatial densities and clustering are all better simulated in DJF.659

Our results indicate that there is no benefit in increasing model resolution higher660

than 12 km for DJF for the used models within the context of regional climate661

modelling. Similar results have been demonstrated for other regions of the globe662

(Hong and Leetmaa, 1999). This is due to the dynamical processes that drive win-663

ter precipitation events - caused by fronts and synoptic depressions with scales of664

the order of 102 − 103km. That is 2-3 orders of magnitude larger than 1.5 km.665

An important question remains unanswered - the value of increasing model666

resolution above 12-km for JJA precipitation. Results presented here for daily667

precipitation are mixed, but Kendon et al (in press) have shown clear improve-668

ments when the same data is examined at the sub-daily time scale in metrics such669

as diurnal variability, duration, and spatial extent. Many of the remaining biases670

at 1.5 km may be explained by the fact that the 1.5-km simulation is “convection671

permitting”; i.e. even at 1.5 km, convection is still under-resolved.672

Our results indicate that the 1.5-km model simulates too many heavy precip-673

itation events in JJA (too many event counts, spatial density that is too high).674

This is a result consistent with Lean et al (2008). With convection under-resolved,675

the explicitly-resolved convective motion and vertical mass flux become too in-676

tense. That is because cloud-scale up- and down-drafts are still under-resolved677

where grid box vertical motion is either all up or all down. This is in contrast with678

CP-enabled model simulations where vertical convective motion is parametrised679

under the presumption that cloud-scale convective motions (mixed between up680

and downward motion) are not resolved, and the thermodynamical and dynamical681

consequence of the unresolved convective motions are estimated and feedbacks to682
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the larger model resolved scale. The use of Smagorinsky-Lilly turbulent diffusion683

(Smagorinsky, 1963; Lilly, 1962) has alleviated problems with convective showers684

being too intense in the 1.5-km simulation. However, this is still an active research685

area in “convective permitting” models. Another option is to increase resolution686

yet further (e.g. to ∼ 102m); this would lead to considerable increases in compu-687

tational cost, and also the suitability of other model physics would then need to688

be re-examined, especially the representation of the boundary layer and the land689

surface scheme.690

We have not discussed the sensitivity of our results to domain size and bound-691

ary changes. Such sensitivity is well discussed in the literature (Jones et al, 1995;692

Seth and Giorgi, 1998; Leduc and Laprise, 2009); that is large (small) domains give693

the model greater (less) freedom to develop its own features. The current work can-694

not explore such sensitivity, and running many high resolution RCM simulations695

are computationally expensive. The 1.5-km RCM domain is ∼ 1000km wide - small696

in comparison with the domain sensitivity study by Leduc and Laprise (2009). It is697

intriguing to ask how such domain size sensitivity manifests itself in high resolution698

RCM simulations. The last question should be explored in the future.699

Gridded gauge observations may underestimate clustering, variance, and inten-700

sity for specific events, particularly in summer when extremes are more localised.701

In order to estimate the degree of underestimation of clustering and intensity of702

local extremes in the observations, one requires independent high-resolution esti-703

mates of daily/hourly precipitation. We intend to revisit this problem again in the704

near future using radar and hourly gauge data (Golding, 1998).705

We have not discussed inter-annual variability in this paper. Out of the 17706

years that we have analysed (1991-2007), 2007 was a major flood year in the SUK707

(Blackburn et al, 2008). The models do not capture the heavy rain in central and708

western UK that was seen in observations (not shown). The 2007 UK floods were709

caused by two synoptic events, whose tracks and precipitation patterns are not well710

captured by the simulations despite the use of reanalysis data as lateral boundary711

conditions. We note that, however, reanalysis information is only fed in at the712

edge of the European domain, and one should not expect exact agreement in the713

positioning of events over the UK - not only between models and observations,714

but also between models themselves.715

Any type of model projection for future climate change needs to be carefully716

interpreted in the context of an understanding of model strengths and limitations.717

Even with increases in model complexity (such as increasing the horizontal reso-718

lution as shown here), many limitations can still exist in their simulations for the719

current climate.720

Appendix: The Ripley K function721

The Ripley K-function (Ripley, 1977) is a measure of spatial clustering which com-722

pares the number of near neighbours with the average spatial density of the whole723

region of interest (Fig.3). Given any (time-varying) map (e.g. gridded precipita-724

tion), one marks all the events with ones (1) and non-events with zeroes (0). We725

denote that map (effectively a matrix/vector) with I:726
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I(x, y, t) =

(

1, if P ≥ Pc

0, if P < Pc

(4)

, where Pc is the threshold. The average spatial density of the events is simply727

defined as:728

̺(t) =
N(t)

A
(5)

In which, N is the total number of events, and A is the area of the map (e.g.729

the number of grid points). By definition, ̺(t) ≤ 1 (̺(t) = 1 implies events are730

occurring at every single grid point). The average number of near neighbours is a731

function of distance (or area which is proportional to the distance squared), and732

is given as:733

V (r, t) =
1

N

N
X

i=1

N
X

j=1

(−(δij − 1))I(dij ≤ r, t) (6)

Index i represents the summation over all existing events, and index j repre-734

sents the other events. dij is the distance between them:735

dij = |xi − xj | (7)

We have used the Kronecker delta function:736

δij =

(

1, if i = j

0, if i 6= j
(8)

Therefore, −(δij − 1)) denotes the self-exclusion during near neighbour count-737

ing. If there is spatial clustering of events, the number of near neighbours (V (r, t))738

to any existing event is higher than the value expected by computing the average739

background density:740

V (r, t) > ̺(t)πr2 − 1 (9)

The Ripley K-function is defined as the number of near neighbours divided by741

the average density:742

K(r, t) =
V (r, t)

̺(t)
(10)

The Ripley K-function has the dimensions of area (radius squared), and is the743

non-clustered area (grid boxes) needed to match the number of events as observed744

in a localized clustered area. By definition, it is not defined if there is only one event745

(i.e. there are 0 near neighbours). If spatial density is perfectly uniform, then the746

Ripley K-function is exactly the geometric area of a circle with radius r. If events747

occur as Poisson processes in space (i.e. each events occurring independently with748

each other), the Ripley K-function is approximately but not exactly the same circle749

geometric area. If events are clustered, then the Ripley K-function at a given radius750

exceeds the geometric area of the circle given with the same radius:751
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K(r, t)

(

≈ πr2, if events are not clustered

> πr2, if events are clustered
(11)

Simulation study by Ripley (1979) show that the spatial Poisson process null752

hypothesis can be rejected at the 0.05 and 0.01 level if the observed supermum753

(maximum) Besag L-function exceeds a total area (A) dependent threshold:754

supr(L(r)) ≥ 1.42

√
A

N
, p = 0.05 (12)

supr(L(r)) ≥ 1.68

√
A

N
, p = 0.01 (13)

In the present analysis, all individual K-functions that the null hypothesis755

cannot be rejected at the 0.05 level are excluded from the time average.756

The above assumes that event sampling is not limited by domain specifications.757

In our datasets, we have undefined points because of:758

– No observations outside of model/observation domain;759

– Observations over water are undefined, and model non-land points are masked760

out.761

This leads to under-sampling as there are unobserved events over the undefined762

area. Therefore, a correction factor (w) (Ripley, 1977) should be used on V(r). We763

denote the corrected V(r) with a “hat”.764

V̂ (r, t) =
1

N

N
X

i=1

N
X

j=1

w|δij − 1|I(dij ≤ r, t) (14)

K̂(r, t) =
V̂ (r, t)

̺(t)
(15)

We have used an area based correction by Besag (1977) (discussed in the765

postscript of the original Ripley paper) due to its easy implementation with com-766

plex coastlines (problem degenerates to counting undefined grid boxes). Given a767

circle with radius r with only an area Â within the defined domain (over land and768

within the SUK domain), the correction factor is defined as:769

w(r, x0, y0) =
πr2

Â(r, x0, y0)
(16)

Functions V and K are generally time dependent (maps of daily precipitation).770

We compute daily ̺, V, and K values, and present only their time-averaged values.771

〈 ˆ̺〉 =
1

T

T
X

t=1

̺(t) (17)

772

D

V̂
E

(r) =
1

T

T
X

t=1

V̂ (r, t) (18)
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773

D

K̂
E

(r) =
1

T

T
X

t=1

K̂(r, t) (19)

If events are not clustered, K(A) is a linear function (K(A = πr2) ≈ ̺A).774

Since the area (A) is known for any given radius (r), K-function is often plotted775

as a square root (the Besag L-function) (Besag, 1977).776

L(r) =

r

K(r)

π
− r (20)

Clustering is largest where L(r) is largest, and unclustered data will have777

L(r) ≈ 0. Note that both the K- and L-function are normalized in a way that778

they do not favour higher average spatial density. Both functions only measure the779

inflation of local density due to event clustering.780

Since zonal (δx) and meridional (δy) grid point distances can only take on781

whole number values (0, 1, 2, 3, ...; “quantized grid space”), and can be diagonal.782

r is defined as:783

r(δx, δy) =
p

δx2 + δy2 (21)

Note that L(r) and K(r) are functions of r. We have assumed the clustering and784

density to be isotropic (independent of direction), which is not true in general for785

precipitation (such as frontal and orographic precipitation). The sampled region786

is also assumed to be uniform. That is the same as saying the mechanisms behind787

rainfall within each region is assumed to be the same everywhere. We mimic that788

by sampling only the north-western orographic or south-eastern convective rain789

regions. That is, of course, only an approximation; non-uniformity clearly exists790

within each of the regions - such as non-uniform topography, changing land surface791

types, and irregular coastlines. A perfect stationary region is impossible to obtain,792

and we approximate that by slicing our domain with the Tees-Exe Line.793
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Fig. 1: The Europe/North African (left) and southern UK (SUK) (right) domain. The inner
domain is marked as a square on the left panel. Surface height (m, in the 12-km simulation)
for the SUK domain is contoured with a 100-metre interval. For SUK, the north west (south
east) sub-domain is coloured in light (dark) blue. There are a total of 464 (638) grid points in
the north-west (south-east) sub-domain.
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Fig. 2: Observed 1991-2007 climatological daily precipitation (mm/day) at the 50-km scale
(panels a-d) for different 3-month periods: March-April-May (MAM), June-July-August (JJA),
September-October-November (SON), and December-January-February (DJF). The 50-km
and 12-km (upscaled to 50-km) simulation’s fractional departure from the observed values
are shown in panels e to l. Only differences that are significant at the 5% level and larger than
±0.1 are shown.
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Fig. 3: Same as in Fig. 2, but at the 12-km scale and the comparisons are made against the
12-km and 1.5-km simulations.
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Fig. 4: Average frequencies (days/year) that daily precipitation surpasses the 20 mm/day
threshold during JJA+SON (upper half, a-f) and DJF+MAM (lower half, g-l) between 1991
and 2007 at each grid point. Panels a-c (JJA+SON) and g-i (DJF+MAM) show the frequencies
for observations, 50-km and 12-km simulations at the 50-km scale with observations and 12-km
daily amounts pre-upscaled to 50-km scale. Panels d-f (JJA+SON) and j-l (DJF+MAM) show
the same at the 12-km scale for observations, 12-km and 1.5-km simulations.
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Fig. 6: The fractional differences in average intensity relative to observations (
〈P ′

MODEL〉
〈P ′

OBS
〉

, upper

panels) and average event counts per year ( NMODEL

Number of years
and NOBS

Number of years
, lower panels)

for precipitation exceeding a range of thresholds, for all JJAs between 1991 and 2007. For the
upper panels, filled symbol indicates the fractional differences are significant at the 10% level.
No symbols are drawn if there are zero samples from either the model or observations (see
lower panels c and d). For average event counts, y-axis is plotted with a logarithmic scale.
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a) DJF : 1991 - 2007 (@50km)
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Fig. 7: Same as in Fig. 6, but for all DJFs between 1991 and 2007.
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(a) (b)

Fig. 8: Shown above is a schematic of (a) non-clustered and (b) clustered precipitation. The
spatial density of (a) is the same as (b); there are thirty precipitating grid points (dark spots)
enclosed within the same area. For (a) the non-clustered case, individual grid point “showers”
are approximately spaced at regular spatial intervals. For (b) the clustered case, precipitation
organize into clustered “blobs” (light grey circles). One would expect (gridded) precipitation
to cluster in space across a of spatial scales. If horizontal resolution is small enough (≈ 1km,
clustering can be caused by convective clouds occupying more than one grid point. Precipitation
and clouds are also clustered in the meso- (fronts, organized convective storms, orographic
precipitation), synoptic- (mid-latitude and tropical low pressure systems), and planetary scales
(ITCZ, monsoon systems).
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Fig. 9: The time average of three spatial descriptive statistic for JJA days with at least 2
grid points that has exceeded the 20mm/day threshold are shown. Days with clustering that
cannot be rejected at the 5% level with the Poisson process null hypothesis are excluded. In
the left panels (a and c), solid lines are the observed number of events (plus itself) from an
existing event, and the dashed lines are the expected number of events (plus itself) if spatial
density is uniform in space. In the right panels (b and d), the Besag L-function (local increase
of spatial density due to spatial clustering) are plotted. Black, red, and green represent gridded
observations, 12-km RCM, and 1.5-km RCM estimates respectively. The upper panels (a and
b) are for the NW, and the lower panels (c and d) are for the SE.
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Fig. 10: Same as in Fig. 9, but the threshold is set to 50 mm/day.
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Fig. 11: Same as in Fig. 9 with the 20mm/day threshold, but for DJF instead of JJA.
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Fig. 12: Similar as in Fig. 10 with the 50mm/day threshold, but for DJF instead of JJA. For
SE, only 1.5-km model simulated values are shown; there are only 1 and 3 DJF SE 50mm/day
valid events (events that have more than 1 grid point) in the observations and the 12-km model
simulations respectively. The 1.5-km simulation has 12 SE events.
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Table 1: Description of model simulations: RCM horizontal resolution (δx), model used, time-
step (δt), number of vertical levels (Nz), simulation domain, lateral boundary conditions,
convective parametrisation

δx Model δt, Nz Domain LBC CP
50km HadGEM3-RA 720sec, 63 Eur.+N. Africa ERA-Int. CMODS
12km HadGEM3-RA 300sec, 63 Eur.+N. Africa ERA-Int. CMODS
1.5km modified UKV 50sec, 70 SUK 12-km RCM No CP

Table 2: The number of JJA and DJF days (out of the total number of valid JJA and DJF
days) where there is at least one daily-threshold excess event anywhere in domain at the 12-km
scale

— (a) (b) (c)
Threshold Obs. (12-km) 12-km RCM 1.5-km RCM

20+ mm/day (JJA) 544 / 1564 405 / 1564 564 / 1564
30+ mm/day (JJA) 314 / 1564 215 / 1564 359 / 1564
40+ mm/day (JJA) 163 / 1564 148 / 1564 233 / 1564
50+ mm/day (JJA) 75 / 1564 97 / 1564 149 / 1564
20+ mm/day (DJF) 528 / 1534 429 / 1534 540 / 1534
30+ mm/day (DJF) 304 / 1534 218 / 1534 303 / 1534
40+ mm/day (DJF) 166 / 1534 98 / 1534 157 / 1534
50+ mm/day (DJF) 88 / 1534 56 / 1534 79 / 1534

Table 3: Average 20 +mm/day and 50 + mm/day event density (events per grid box) for JJA
and DJF for the NW

— (a) (b) (c) (d)
Season JJA JJA DJF DJF

Threshold 20 + mm/day 50 + mm/day 20 + mm/day 50 + mm/day
OBS 0.096 0.035 0.136 0.043

12-km RCM 0.091 0.047 0.143 0.042
1.5-km RCM 0.106 0.034 0.100 0.053

Table 4: Average 20 +mm/day and 50 + mm/day event density (events per grid box) for JJA
and DJF for the SE

— (a) (b) (c) (d)
Season JJA JJA DJF DJF

Threshold 20 + mm/day 50 + mm/day 20 + mm/day 50 + mm/day
OBS 0.076 0.034 0.083 —

12-km RCM 0.090 0.043 0.090 —
1.5-km RCM 0.104 0.046 0.080 0.031
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