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Projections of climate change are made using climate models 
forced by scenarios of increasing greenhouse gases and other 
factors that impact on the energy balance of the climate sys-

tem. The term ‘projection’ is used to imply a conditional depend-
ence of a climate prediction on emission scenario, as such scenarios 
are derived from studies that consider multiple socio-economic 
factors but do not consider the relative likelihood of different path-
ways. Climate science in general is starting to become more quan-
titative, for example, in attributing changes in the risk of certain 
weather or climate events1, and there is a desire to be more quan-
titative about projections, particularly when those projections feed 
into assessments of the impacts of climate change2. Recent national 
assessments of climate change have moved from being qualitative 
to being much more quantitative, with dedicated websites serv-
ing data to stakeholders3 to inform decision-making. Projections 
should be made on the basis of robust science, but should also 
account for the uncertainties that arise because of incomplete 
understanding of climate change and because of limitations in 
models and observations.

Climate models are approximations — albeit often highly 
informed and sophisticated — of the real climate system, and differ-
ent models produce different projections of future climate change. 
By quantifying the uncertainty in projections, we should gain a more 
in-depth understanding of climate models and of the climate system 
and a better appreciation of the limitations of current understand-
ing. Such an appreciation is required to also show where quantita-
tive information cannot be provided and where science and policy 
should proceed more qualitatively. Uncertainty quantification also 
provides a benchmark so that we can measure progress and hope-
fully reduce uncertainties.

Much effort has been expended by climate modelling groups 
worldwide to coordinate simulations with the most complex climate 
models, to collect the outputs and make them easily available to the 
scientific community4. The third incarnation of the Coupled Model 
Intercomparison Projection (CMIP3) ‘multi-model ensemble’ 
(MME) has been widely interrogated, resulting in an unprecedented 
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level of scrutiny of complex climate models and their projections. 
The CMIP5 database of new simulations is now being populated. 
The quantitative interpretation of projections from an MME is 
extremely challenging. Reviews5,6 highlight several techniques that 
have been proposed that must deal with the generic problem of 
trying to understand what an MME represents in terms of a sta-
tistical sample. Some studies have characterized the MME using 
techniques borrowed from weather forecasting in terms of the ‘reli-
ability’ of present-day simulations with respect to observations7,8 — 
the hypothesis that the observations can simply be regarded as one 
member of the MME without any special status — but those types of 
test cannot be applied to future projections to assess their reliability. 
Others have sought to address the issue of shared approximations in 
model formulation and exchange of information between model-
ling groups9.

Because of the difficulty in interpreting ad hoc collections of cli-
mate model projections, the climate change literature shows a range 
of different approaches for quantifying uncertainty in projections of 
future change. Some use simplified climate models, some use com-
plex models built from ‘first principles’, some use multiple observa-
tional sources to evaluate those models, others take simple trends 
or metrics of model skill, some rely on basic understanding of the 
climate system, others make intensive use of statistical techniques. 
Comparison of the different methods — their strengths, weaknesses 
and critical assumptions — is difficult because of their seemingly 
different formulations.

In this Perspective, some of the different methods that have been 
used to make quantitative climate projections (including their uncer-
tainties) are described and their assumptions, strengths and weak-
nesses are discussed. The work is inspired by some of the research 
that was discussed and undertaken during the four-month Isaac 
Newton Programme on Mathematical and Statistical Approaches to 
Climate Modelling and Prediction. Clearly a full explanation of the 
different methods would require considerable detail so the methods 
are only discussed at a basic level. The reader is encouraged to look 
at the original papers to gain further insight.
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Climate models, errors and uncertainties
Let us assume that any climate variable we are interested in can be 
described by a set of mathematical functions or a model. Climate 
models may be simplified or complex, may be derived from physi-
cal principles or empirical relationships, or may contain elements 
of both. Examples range from simplified energy-balance mod-
els (EBMs) through to complex climate or Earth-system models 
(ESMs). The climate variable might be the equilibrium climate sen-
sitivity (the amount of global mean temperature change for a dou-
bling of atmospheric carbon dioxide), the amount of Arctic sea ice 
or something more complex such as the amplitude and frequency of 
El Niño events. The model behaviour is controlled by what may be 
termed internal parameters (see Supplementary Information) and 
by ‘external’ forcing or boundary conditions of the climate system, 
for example, changes in concentrations of greenhouse gases, vol-
canic eruptions, orbital variations and so on. The model can be used 
to simulate the past and the future by specifying different external 
forcings/boundary conditions and the behaviour of the model can 
be changed by varying the input parameters. In addition there are 
observations of past climate.

In general, simplified climate models only produce output in 
terms of simple or aggregate variables such as global mean tem-
peratures, and have parameters that may similarly aggregate many 

physical processes. More complexity is required in the climate 
model to disaggregate in space and time and to simulate more com-
plex phenomena such as precipitation or sea ice. Simulations and 
projections of the smaller-scale climate variables that are needed 
to address many policy questions, and for variables related to, for 
example, extreme events, require the most complex ESMs running 
at high resolution.

Even the most complex climate models are approximations of 
the real climate system. Inadequacies or even ‘errors’ in models lead 
to inadequacies or errors in projections. Some inadequacies are 
inherent in the specification of the model (for example, processes 
that are judged to be of second-order importance that are deliber-
ately not included); others arise because limitations in computing 
power prevent the equations from being solved on a fine enough 
numerical grid, so sub-grid-scale processes must be parameterized. 
Complex models may simulate natural climate variability such as 
El Niño events (with varying degrees of success), but more simpli-
fied models may only simulate the forced response to a particular 
agent. For any climate projection there is both a systematic (epis-
temic) component of uncertainty and a random (aleatoric) compo-
nent. The approximate partitioning of the range of spread of models 
between systematic (response and forcing) and random sources of 
uncertainty will depend on the variable, the spatial scale and the 
projection horizon of interest10,11. There is some potential for con-
fusion as some studies may seek to quantify only the spread in the 
forced response of the climate system whereas some may seek to 
quantify both systematic and random components.

Quantifying uncertainty in projections
Ensembles of simulations of past and current climate, driven by esti-
mates of past radiative forcing/boundary conditions, may be gen-
erated at different internal input parameter values, precise values 
of which are typically not known (Fig.  1). Observations are then 
used to produce a metric of the model skill in simulating selected 
aspects of past climate. The metric compares the model output with 
observed climate fields and may involve many different climate vari-
ables, trends and fields that are related to different physical processes 
(see Supplementary Information). The more realistic regions of 
parameter space are accepted or up-weighted, based on heuristic or 
more formal criteria, as those which are likely to produce the most 
realistic future climate projections. Less realistic regions are rejected 
or down-weighted. The model is calibrated by determining suitable 
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Figure 1 | A schematic of the general framework for producing 
projections of future climate. The climate model, M, produces output in 
terms of a climate variable, c, and is controlled by the model parameters, 
p, and the input radiative forcing, R. The model may be run with different 
parameter values p1, p2, … to produce simulations of historical climate ch, 
and projections of future climate, cf. The dark-grey shaded area in the left 
diagram represents the space of plausible input parameters of the model 
that we would consider before doing any simulations. The dark-grey 
shaded areas on the right diagrams represent the spaces of historical 
simulated climate variables and future projections generated by 
running the model at that wide range of different input parameters. The 
simulations of historical climate may be compared with observations, o, 
using a metric, and taking into account observational errors. If one point 
in the climate model parameter space, p1, produces a better simulation 
of historical climate than another point p2, then the hope is that it will 
give a better (that is, less error-prone) simulation of future climate. Thus 
we can contract the space of historical climate change produced by 
the model (light-grey shading). Because there is a three-way mapping 
between this historical simulation space, the input parameters and the 
future projections, the parameter ranges are also constrained, as are the 
future projections, again represented by the light-grey shading.
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Figure 2 | A PDF for the climate sensitivity obtained using a simple 
EBM approach12. The thick black PDF shows the curve from the original 
study. The thin black curve is the climate-sensitivity PDF obtained if 
the standard deviation of the distribution of the radiative forcing input 
parameter is halved.
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values for the internal parameters that produce simulations of past 
climate consistent with the observations and their uncertainties.

Having calibrated the model, the parameters and/or their 
weights can be used to run an ensemble of simulations of future cli-
mate. The uncertainties in the projections are quantified in terms of 
probabilities. We say that both the input parameters and the projec-
tions are constrained by the observations. The climate model acts as 
a physically-based device to pass from historical or past climate and 
climate change to future projections. We expect that observations 
are not sufficient to constrain the parameters to single values so that 
multiple parameter combinations are consistent with the observa-
tions. The resulting projections will have uncertainties because 
of this.

The basic approach to producing projections with uncertainties 
is the same regardless of the complexity of the model and the climate 
variable of interest. Nevertheless, the implementation is affected by 
both factors. In general, the examples presented can all be couched 
in terms of a Bayesian approach with different assumptions and dif-
ferent techniques used in the implementation of the Bayes theorem. 
They are not presented in this way because that is not the way that 
the climate projection literature has evolved. Indeed, there has been 
a healthy debate within the community about the merits of such 
an approach and its implementation. What follows are examples of 
approaches drawn from different regions of the model complexity-
variable complexity space.

The global sensitivity of the climate system
The climate sensitivity is a key measure of the global mean tem-
perature response of a climate model. The equilibrium climate 
sensitivity may be expressed as the ratio of the radiative forcing 
and the climate feedback parameter. The time-dependent ver-
sion of the formula has been exploited to compute the effective 
climate feedback parameter from the historical trend in ocean 
heat uptake (interchangeable with the top-of-atmosphere flux 
imbalance), the historical radiative forcing and the historical tem-
perature change12. The study uses independent observations to 
derive distributions representing the uncertainty in global mean 
temperature trends and heat uptake. A distribution for radiative 
forcing is derived similarly, using calculations based on observed 
concentrations of greenhouse gases, aerosols, ozone, and natural 

factors such as solar input and volcanic stratospheric aerosols. The 
internal model parameters are then sampled from these distribu-
tions and the model is evaluated to give an ensemble of climate 
sensitivity estimates. This is mathematically equivalent to varying 
the model parameters widely and then weighting the parameters 
using their observed and calculated estimates (with some statisti-
cal assumptions). Thus the distribution of the climate sensitivity is 
constrained by the observations (Fig. 2).

The main strength of the approach is in its simplicity in exploit-
ing the global mean energy balance to produce a distribution of 
a key climate parameter, the climate sensitivity. Because of this 
simplicity it is relatively easy to perform sensitivity tests to see 
which of the model parameters is most influential in determining 
the relatively wide spread found in the study. This turns out to be 
the estimate of the radiative forcing: if, for example, the standard 
deviation of the forcing distribution could be halved then the fifth 
percentile of the climate sensitivity distribution would increase 
from 1.6 °C to 2.5 °C.

Unfortunately the method produces a relatively weak constraint 
on the distribution, particularly on the upper tail. This is because 
the climate sensitivity estimated in this way involves a ratio of tem-
peratures to fluxes and the denominator can get close to zero. (In 
fact, the distribution of the denominator in the equation for climate 
sensitivity admits negative values, leading to unrealistic negative 
climate sensitivities and a singularity that means that technically 
the distributions are not probability density functions (PDFs) — a 
similar problem is found in ref. 13 and is discussed in refs 14–18). 
A further obvious drawback is that the method is only good for 
producing estimates of the global climate sensitivity (and feedback 
parameter) and such distributions can be sensitive to previous 
assumptions for the distributions of parameters, which has been the 
subject of debate in the literature16,19.

Different estimates of the PDFs of the climate sensitivity have 
also been published20 and other studies have used reconstructions 
of climate from before the observational record21,22. A review of 
palaeoclimate estimates has also been performed23. The climate 
sensitivity is one of the most studied and quantified climate-pro-
jection-related variables. This is partly because model simulations 
suggest that it can be used to scale regional patterns of change24 and 
partly because of a historical attachment of climate modellers to 

Figure 3 | Global temperature anomalies. a, Global mean temperature anomalies produced using an EBM24,43 forced by historical changes in  
well-mixed greenhouse gases and future increases based on the A1B scenario from the Intergovernmental Panel on Climate Change’s Special Report  
on Emission Scenarios. The different curves are generated by varying the feedback parameter (climate sensitivity) in the EBM. b, Changes in global mean 
temperature at 2050 versus global mean temperature at the year 2000, obtained from the figure in a showing the relationship between past changes 
and future temperature changes. The histogram on the x axis represents an estimate of the twentieth-century warming attributable to greenhouse 
gases44. The histogram on the y axis uses the relationship between the past and the future to obtain a projection of future changes.
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the doubled carbon dioxide experiment performed with a complex 
atmosphere model coupled to a thermodynamic or ‘slab’ ocean. This 
attachment may diminish as so-called slab-models fall into disuse 
because of technical issues with their implementation.

Large-scale trends from attributable warming
The ASK25,26 method exploits the possibility, demonstrated using 
EBMs, that a bias in the temperature change in the future related 
to a particular forcing agent may be empirically related to the bias 
in the past change associated with that forcing agent by a scaling 
factor (Fig. 3). The method computes a correction factor or recali-
bration of simulated past changes that can be used to scale future 
projections assuming that the empirical relationship continues to 
hold. The uncertain elements of the approach are the scaling factor 
and the component of past change related to a forcing agent. In the 
global mean temperature case, the scaling factor may be relatively 
well constrained (Fig. 3b). The difficult parameter to assess is the 
past change that can be associated with a particular anthropogenic 
component such as carbon dioxide, as represented by the histo-
gram on the x axis in Fig. 3.

The observed record of global and large-scale temperature 
change is made of components forced by anthropogenic factors 
such as greenhouse gas and aerosols, external factors such as solar 
variability and volcanic eruptions and internally generated natural 
variability. Detection and attribution techniques seek to estimate 
these individual components of trends from the observed record, 
using complex climate model simulations in combination with 
regression techniques. Uncertainties arise because the responses 
to some forcing agents may correlate through time (for example, 
concurrent rises in greenhouse gases and aerosols) making it hard 
to estimate the regression coefficients, because of uncertainties in 
reconstructing past forcing agents, and because of potential errors 
in the complex model response to the forcing.

The ASK technique can therefore be thought of as generating 
an ensemble of future projections by sampling a large number of 
possible past trends that are attributable to a particular forcing 

agent. The parameters of the relationship between the past and the 
future and the attributable warming are constrained by observa-
tions and complex model studies and thus the projections are also 
constrained by those observations. By specifying the components 
of the radiative forcing separately, it is possible to make projec-
tions for combinations of radiative forcing that may occur in the 
future but that did not occur in the past.

Initial studies focused on global mean temperatures27 but 
have been extended to constrain continental-scale temperature 
changes25. The strengths of the approach are in the simplicity of the 
idea of extrapolating uncertainties in past trends. The complex-
ity arises in the need to separate the components of the observed 
trends into those associated with greenhouse gases, aerosols, natu-
ral forcing factors and internal climate variability. For global mean 
projections, this separation is the largest source of uncertainty26. 
For regional quantities, relationships between past and future 
trends may be weak and for some variables and for smaller-scale 
regions, such relationships may not be evident in the complex 
models used in the detection and attribution step.

In the example highlighted here, a simple EBM is used to 
obtain the relationship between past warming and future change, 
hence it is tempting to conclude that the projections only quan-
tify the uncertainty in the forced response. However, the estimate 
of the warming attributable to greenhouse gases is contaminated 
with natural variability (as we only have one realization of the 
real world) so some account is taken of the random component. 
Limitations on computer resource also mean that results are often 
obtained from initial-condition ensembles from a small number of 
different climate models. Hence there is a potential for modelling 
uncertainties to be undersampled.

Emergent constraints and process-based metrics
Data archives from MMEs can also be used to link errors in simu-
lating future and past change, in a similar spirit to the ASK tech-
nique. These data archives can be considered as representing our 
physical understanding of the climate system, as derived from cli-
mate models themselves. For some variables, simple relationships 
have been uncovered between future projection variables and past 
observed trends or variability. Future changes in September sea-
ice extent in the Arctic have an approximately linear relationship 
with the past trends in the CMIP3 models28 (Fig. 4). It is possible 
to empirically determine future trends using a simple scaling of 
the past trends, with some spread due to model errors and natural 
variability. The situation is similar to that seen in Fig. 3 except that 
the relationship is derived from complex climate model simula-
tions rather than a simple EBM. By constraining the parameters of 
the linear relationship using the observations, it is possible to pro-
duce a calibrated projection of future September sea-ice trends. 
Note that a different ensemble may produce a different relation-
ship or a wider spread, but at least the sensitivity of the projections 
can be tested by varying such assumptions.

This Arctic-sea-ice study provides an example of what we 
might call an emergent constraint, that is, a relationship between 
past trends and future trends, developed empirically from climate 
model output used to make projections of the future. If the empiri-
cal relationship can be understood on simple physical grounds, 
belief in it is strengthened. It provides justification for attaching 
more credibility to models that match the observed trend well over 
the recent period, and hence for treating the difference between 
modelled and observed trends as a metric for the purposes of 
weighting or correcting models. Such a metric might be consid-
ered to be an example of a process-based metric, that is, a metric 
that is used to evaluate a process (the sensitivity of sea-ice change) 
rather than simply a metric of how the model compares with real-
ity in terms of the spatial distribution of sea ice in the time aver-
age. However, a precise definition of what is process-based and 
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Figure 4 | Arctic sea-ice extent. The 2021–2040 trend in the September 
Arctic sea-ice extent computed from the CMIP3 model simulations28 of 
historical climate change and future climate change versus the modelled 
1979–2007 trend of the same variable (expressed as a percentage of the 
average 1900–1979) under the A1B scenario from the Intergovernmental 
Panel on Climate Change’s Special Report on Emission Scenarios (filled 
circles) and from perturbed physics ensembles30 (open circles).The solid 
black diagonal line shows the best fit between the historical trends and the 
future extents. The best estimate of the observed trend in September sea-
ice extent is shown by the vertical dotted line.
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what is not has not been provided in the literature and is an area 
that needs to be developed.

The main strength of the approach is in the simplicity and in 
the physical transparency. The main weakness is that it may not 
work in such a transparent way for all climate-projection vari-
ables —although other relationships have been found29. Also, care 
must be taken to test the validity of the relationship. In the case 
of September sea ice, as conditions become ice free in the simula-
tions, the trends become nonlinear and the use of a simple linear 
regression as in Fig. 4 would not be valid.

Bayesian projections with perturbed physics ensembles
Emergent constraints have only been found for a few climate-
projection variables and there is a further issue that projections 
of different variables produced in this way may be inconsistent 
with each other. Such issues have led to the development of the so-
called perturbed physics approach30–34. Uncertain parameters in a 
single climate model may be perturbed to produce alternative sim-
ulations of past and future climate and climate change (as in the 
case of the simplified climate model approaches described above).

In the perturbed physics approach, the input parameters are 
varied and the model is run using past and future radiative forcing. 
As in the general algorithm (Fig. 1) we can imagine a point in the 
parameter space that maps to a point in the past-climate space that 
is consistent with the observations as measured by some metric, 
that is, is within the observational error bound. A simulation from 
a second point of parameter space may be less consistent with the 
observations. When we look at the future projections made using 
the model run from the first point, we may assume that these are 
more likely than the projections made from the second point. By 
running many ensemble members with the model covering the 
parameter space, it is possible to build up a weighted-distribution 
of future projections where the weights relate to the metric35. A 
key step in such analyses is to decide what observations to use: the 
choice is often determined by the design of the perturbed physics 
ensemble. In much of the work that has been conducted, a version 
of the atmosphere model coupled to a simple slab ocean has been 
used, restricting the observations to mainly time-averaged clima-
tological fields36,37.

In practice, running enough simulations to adequately sam-
ple a complex model parameter space and, moreover, to test the 
sensitivity of the projections to different assumptions about the 

distributions of those parameters, is computationally challenging. 
The burden can be eased using emulators, which are statistical 
models of ensembles that map input parameters to outputs, so ena-
bling larger pseudo-ensemble calculations to be performed (albeit 
with loss of numerical accuracy)38. To combine the climate model 
outputs with the observations and emulators is a difficult statisti-
cal problem that is most easily handled in a Bayesian framework35.

A further refinement is to introduce a term to represent irre-
ducible or structural errors in a climate model. If we imagine a 
point in parameter space at which the model produces its best 
simulation of both past and future climate, then, unless the model 
is perfect, there will still be a mismatch between model outputs 
and reality. Specifying the structure of this mismatch remains one 
of the most challenging problems in climate projection. One pos-
sibility is to take the discrepancy from the MME as a lower bound 
on this ‘structural error’37.

The strengths of the perturbed physics/Bayesian approach are 
that, in principle, many different observational constraints can 
be brought to bear on the projections, and projections of many 
complex climate variables (for example, involving regional aver-
ages and extremes) may be produced39 (Fig.  5). Projections of 
several quantities simultaneously (joint projections) are also pos-
sible where the complex climate model provides the physical link 
between changes in those different variables. The main weakness 
is that to use the latest, most comprehensive of climate models, 
the implementation is expensive in terms of computing resources 
and requires a very high level of technical expertise. This makes it 
hard to understand in simple physical terms how the observations 
constrain the projections.

Making progress in quantitative projection
Simplified climate models (including empirical models derived 
from complex model output) can be easily used with formal statisti-
cal approaches to quantify uncertainty in projections but can only 
produce limited output: thus limited observations may be used to 
constrain parameters, and projections can only be made in terms of 
limited climate variables. As models become more complex, simu-
lations and projections of more complex variables may be made, 
widening both the possible observational data that may be used to 
constrain parameters and the range of variables for which projec-
tions may be generated. But it becomes more expensive to produce 
ensembles and harder to implement and understand the projections.
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Figure 5 | PDFs of 20-year average changes in Northern Europe. a, Surface air temperature and b, precipitation PDFs under the A1B scenario from the 
Intergovernmental Panel on Climate Change’s Special Report on Emission Scenarios derived using perturbed-physics ensembles and a Bayesian statistical 
approach39. Changes are expressed as anomalies with respect to the 1961–1990 period. In each case, the narrow PDF on the far left represents changes 
in the period 2000–2020. The PDF to the immediate right represents changes in the period 2020–2040. Successive PDFs are therefore representative of 
2040–2060, 2060–2080 and, finally, the wide PDF on the far right is for 2080–2100. Uncertainty grows with time.
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The use of metrics, skill measures, model ranking and even 
model weighting are starting to be more widely adopted in the 
climate model evaluation and projection literature. This is fine 
when such quantitative approaches are used as a guide to future 
model development or as a guide to the validity of some physi-
cal understanding derived from models, although care should be 
taken to fully understand why that metric is a useful measure. 
Where metrics are used in projections, it is not safe to assume that 
a weighted distribution of models is superior to an unweighted 
distribution without demonstrating that the metric does relate, in 
some physically plausible way, to the projection variable of inter-
est, and without testing the underlying assumptions40.

There is growing use in the community of terms such as pro-
cess-based metric and process-based evaluation, yet it is not pos-
sible to find a formal definition of process-based in the literature. 
It could be argued that surface fluxes are the processes that deter-
mine the spatial variations in surface air temperature change, 
so they should be used in a process-based metric of surface air 
temperature changes. But clouds have a leading-order impact on 
surface radiation, so should cloud effects be defined as the pro-
cess? It is unclear. Perhaps ‘process’ implies rates of change of one 
variable with respect to another — under climate change or under 
forced or free variations on shorter timescales29. Is the warming 
attributable to greenhouse gases process-based? A better charac-
terization of the concept is required.

The concept of the emergent constraint is appealing because 
of the clear physical interpretation. However the implementation 
may be challenging as we have yet to produce a generic math-
ematical algorithm or recipe that can be used in other cases in 
which all the assumptions are revealed and all sources of uncer-
tainty are considered. Perhaps the approach might be extended to 
account for nonlinearities or even assess the impact of inadequa-
cies that are common to all models. It is recommended that work 
is undertaken on both the theoretical underpinning and numeri-
cal implementation of the approach, so that it can be applied 
more widely.

If the behaviour of the complex models can be reproduced by 
fitting the parameters of a simple or intermediate models (physical 
or empirical) to the complex model output, then it is possible to 
use observations to constrain the smaller set of parameters from 
larger ensembles of the simple/intermediate model. We might 
consider this a form of ‘process-based emulation’, without being 
at all rigorous about the definition of such a term. Intermediate 
models exist for even quite complex phenomena such as the  
El Niño/Southern Oscillation41,42. They have generally been used 
to understand models and the real world, but could also be 
applied to the projection problem.

To conclude, it is possible to produce quantitative projections 
of climate change, combining models of varying complexity and 
observations, expressed in terms of probabilities that measure our 
current uncertainty in those projections. Of course, our knowl-
edge, as embodied in models and observations, may improve in 
time and thus we might be able to reduce those uncertainties. 
However, the possibility that new models, new observations or 
new theoretical research might alter the current set of projections 
considerably cannot be ruled out. For example, new feedbacks 
may be discovered or resolution thresholds are crossed so that 
previously parameterized process are directly resolved in models.
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