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How potentially predictable is northern European winter
climate a season ahead?
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ABSTRACT: We estimate the potential predictability of European winter temperature using factors based on physical
studies of their influences on European winter climate. These influences include sea surface temperature patterns in
different oceans, major tropical volcanoes, the quasi-biennial oscillation in the tropical stratosphere, and anthropogenic
climate change.

We first assess the predictive skill for winter mean temperature in northern Europe by evaluating statistical hindcasts
made using multiple regression models of temperature for Europe for winter and the January–February season. We follow
this up by extending the methodology to all of Europe on a 5° × 5° grid and include rainfall for completeness. These results
can form the basis of practical prediction methods. However, our main aim is to develop ideas to act as a benchmark for
improving the performance of dynamical climate models. Because we consider only potential predictability, many of the
predictors have estimated values coincident with the winter season being forecast. However, in each case, these values
are predictable on average with considerable skill in advance of the winter season. A key conclusion is that to reproduce
the results of this paper, dynamical forecasting models will require a fully resolved stratosphere. Copyright  2011 Royal
Meteorological Society and British Crown copyright, the Met Office
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1. Introduction

Forecasts for European winter are currently carried out
operationally within the Met Office using a combination
of dynamical and statistical methods (Graham et al.,
2005; Folland et al., 2006). A key component of the
forecasts is the use of the GloSea forecast system which
initializes a climate model with data from both the oceans
and the atmosphere (Graham et al., 2005). The skill of
such models is currently very limited (van Oldenborgh
et al., 2005) especially in the extratropics. This paper
is concerned with developing a multivariate method
involving a number of factors that have been shown to
influence European winter temperature and atmospheric
circulation using physically based studies. Some of these
factors are not accurately represented in the current
generation of seasonal forecasts and so the potential
sources of extra skill are appreciable. We only discuss
potential predictability and assume (and justify below)

* Correspondence to: C. K. Folland, Met Office Hadley Centre for
Climate Change, FitzRoy Road, Exeter, Devon, EX1 3PB, UK.
E-mail: chris.folland@metoffice.gov.uk
† The contribution of these authors was written in the course of
their employment at the Met Office, UK, and is published with the
permission of the Controller of HMSO and the Queen’s Printer for
Scotland.

that the winter mean numerical values of our influencing
factors are skilfully predictable prior to a winter forecast.

Predictability of winter atmospheric circulation and
surface climate over Europe has long been regarded as
quite low. A very good review of knowledge at the begin-
ning of the twenty first century of physical processes
that might contribute to extratropical winter predictabil-
ity, with emphasis on new insights into extratropical sea
surface temperature (SST) influences, was published by
Kushnir et al. (2002). They particularly emphasized a
larger likely role of extratropical sea surface tempera-
ture (SST) processes than was picked up by operational
models at that time. At about the time this paper was
published, a statistical method of forecasting winter con-
ditions over Europe using a mixture of extratropical
and tropical SST was published by Rodwell and Fol-
land (2002) (RF2002). This was based on studies of
interactions between the North Atlantic Ocean and the
atmosphere. Using the HadCM3 coupled climate model
(Gordon et al., 2000), evidence was found that a par-
ticular SST pattern over the Atlantic measured in May
skilfully modulated the North Atlantic Oscillation (NAO)
in the following winter. The pattern is influenced by prior
conditions of the NAO and is called the North Atlantic
tripole. The tripole is known to feed back on the NAO
(e.g. Rodwell et al., 1999). This May pattern tends to be
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present throughout the upper subsurface ocean in phase
with the SSTs, and the subsurface component tends to be
preserved under the near surface summer thermocline that
develops from May. The thermocline is destroyed around
the beginning of the following winter and the underlying
tripole pattern often reemerges.

The RF2002 forecasting method was limited to pre-
dicting the NAO. Here we use indices of the May SST
tripole derived by RF2002 to help predict north Euro-
pean temperature rather than the NAO. This is reasonable
because there is a strong relationship between the win-
ter NAO and north European temperature (Hurrell, 1995;
Junge and Stephenson, 2003; Scaife et al., 2005). Thus,
a positive (westerly) NAO pattern tends to create posi-
tive north European temperature anomalies. However, we
have not made any attempt to optimize a version of this
SST pattern that is the most highly correlated with north
European temperature.

The influence of the El Nino-Southern Oscillation
(ENSO) on winter North Atlantic atmospheric circulation
has only recently been partly elucidated. Early work (e.g.
Fraedrich, 1992) indicated weak effects on North Atlantic
atmospheric circulation and suggested that El Nino gave
a higher probability of a negative, blocked, index of the
NAO. In a detailed analysis of individual winters over the
last century, Toniazzo and Scaife (2006) explained these
weak results. They found that moderate El Ninos, as mea-
sured by Nino3, had a consistently strong effect on the
NAO, making it more negative than usual, in qualitative
agreement with previous results. However, they discov-
ered that strong El Ninos gave a different atmospheric
circulation pattern that did not project significantly onto
the NAO and have a considerably smaller effect on Euro-
pean temperature. They also provided a mechanism for
the strong El Nino effect on winter North Atlantic atmo-
spheric circulation; this causes a Rossby wave forcing
from the tropics through the troposphere. Recently, Ine-
son and Scaife (2009) and Cagnazzo and Manzini (2009)
have confirmed the influence observed during moder-
ate El Ninos on the NAO; extratropical planetary waves
drive downward propagating westward wind anomalies
from the stratosphere. Both studies found that the effects
of ENSO on North Atlantic atmospheric circulation are
strongest in later winter, essentially January–March. So
for the full conventional winter as defined here, Decem-
ber–February, we should expect a weaker effect on
European temperature with a slightly stronger effect in
January–February.

Evidence for La Nina influences, generally favouring
a positive NAO for stronger La Ninas, comes from
the observational analysis of atmospheric circulation
and La Nina, e.g. Moron and Gouriand (MG2004).
They show that the strongest 30 La Ninas over the
period 1873–1996 tend to create a positive NAO in
January and February, though in December the pattern
is somewhat different, with high pressure near the UK.
The effects appear weaker than for moderate El Ninos
but do reflect the weak modelling results of Davies et al.
(1997) concerning La Nina influences on North Atlantic

atmospheric circulation. MG 2004 found relatively little
difference between the 10, 20, and 30 strongest La Ninas.
The different influences of El Nino and La Nina in
the North Atlantic region in November and December
compared to January and February have recently been
confirmed in an observational cluster analysis by Fereday
et al. (2008). El Nino and La Nina SSTs are regularly
predicted in seasonal forecasts and skill is high in advance
of the Northern Hemisphere winter season, as shown in
dynamical seasonal forecast models (Jin et al., 2008).
Our use of a contemporaneous ENSO predictor with
the winter or January–February periods is realistic for
predictability studies.

Observational results suggest that major tropical volca-
noes cause a strong positive NAO in the winter following
the eruption, and thereby affect European winter tem-
perature (e.g. Robock and Mao, 1995; Fischer et al.,
2007). The effect in winter is counter-intuitive in that
such volcanoes cause a winter warming signal over north-
ern Europe due to advective warming from the induced
positive, westerly, phase of the NAO. This overwhelms
the direct surface cooling effects of the stratospheric
aerosols created by the volcano (Stenchikov et al., 1998).
We have used lists of major tropical volcanic erup-
tions compiled by Robock and Mao (1995), Fischer
et al. (2007) and Stenchikov et al. (2006) to select an
estimate of those European winters likely to be most
affected. The physics of this dynamical volcanic effect
continues to be debated after initial apparently skilful
attempts to simulate it (e.g. Graf et al. (1994) have not
always been successfully repeated. An excellent review
is provided by Robock (2000). We have not included
extratropical volcanoes as their effects on European tem-
perature are weaker (Robock and Mao, 1995). Evidence
from recent climate modelling research by Marshall et al.
(2009) shows that skilful modelling of volcanic effects
depends considerably on the initialisation of observed
conditions at the beginning of winter. This, of course,
is standard procedure in seasonal prediction. For the
large tropical volcanic eruptions starting with that of
Krakatau (in 1883) used here, it will be known quite
quickly whether such an eruption has created substantial
amounts of aerosol in the stratosphere. This is because
routine monitoring of volcanic eruptions is carried out,
for example, through the Smithsonian Global Volcan-
ism Program http://www.volcano.si.edu. The Program is
linked to data from nine Volcanic Ash Advisory Centres:
http://www.meteo.fr/vaac/. (both URLs as at Nov 2010).

The physics of the effects of the quasi-biennial oscil-
lation (QBO, Ebdon and Veryard, 1961) on climate, and
the mechanisms of the QBO, are extensively discussed by
Baldwin et al. (2001). A statistically significant effect on
surface atmospheric circulation in January was first seen
in observations by Ebdon (1975), which can be inter-
preted as an effect on the AO and the NAO, followed by
broadly similar results at 50 hPa (Holton and Tan, 1980).
Later, it was shown that tropospheric anomalies lagged
the stratospheric anomalies by 2–3 weeks (Baldwin and
Dunkerton, 1999). As indicated by Ebdon, the NAO/AO
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tends to be in a negative phase when the QBO is easterly
(Thompson et al., 2002). In this phase, there tends to be
widespread winter cold anomalies and extremes through-
out much of Europe, Asia, and North America (Hurrell,
1995; Thompson and Wallace, 2001). Studies of exist-
ing seasonal forecasts suggest that the QBO could be an
important source of missing predictability in current fore-
cast systems (Boer and Hamilton 2008). Model hindcast
experiments also provide evidence that the QBO in the
lower stratosphere influences the NAO and thus Euro-
pean temperature and that this effect is partly predictable
(Marshall and Scaife, 2009). These studies showed sta-
tistically significant and practically useful differences in
modelled north European temperature between sets of
winters with easterly and westerly phases of the QBO.
Surface temperature differences exceeded 1.5 °C in some
areas.

Finally, although the signal is only now clearly emerg-
ing, it is necessary to allow for anthropogenic warming
over Europe. This is not straightforward as nearby SSTs
and European temperatures have been influenced by inter-
decadal changes in the NAO which may be natural in
origin. Thus the winter NAO index increased strongly
between about 1965 and 1995 and strongly influenced
European surface temperature (Scaife et al., 2005, 2008),
though the NAO index has reduced since then (Tren-
berth and Jones, 2007). Our approach has been to use the
HadCM3 climate model forced with all major anthro-
pogenic influences including sulphate aerosols (similar
to experiments described by Stott et al., 2000) to esti-
mate the net anthropogenic warming effects over Europe,
deliberately choosing a model that failed to pick up win-
ter NAO trends in its simulations over the last 50 years
or more. This deficiency in HadCM3 has been turned
to good effect to estimate the European anthropogenic
warming signal in detail across the continent in the
absence of a strong circulation change. The overall effect
is not strictly monotonic as the model picks up some cool-
ing in the mid-twentieth century due to a sharp increase
of anthropogenic aerosols over Europe not offset by the
then slow anthropogenic greenhouse gas-induced warm-
ing (van Oldenborgh et al., 2009). Since then, European
aerosols have declined while anthropogenic greenhouse
gas forcing has accelerated (van Oldenborgh et al., 2009).
Modelled recent winter warming also increases east-
wards, away from the moderating influence of the North
Atlantic Ocean. However, because the average of six
model integrations used still contains some significant
effects of internal interdecadal to decadal variability over
Europe, we have fitted a quadratic curve to the data. This
simplification is not a serious one, remembering we are
not trying to recreate the observed winter temperature
observations but rather a representation of them with-
out the substantial observed interdecadal NAO effects.
However, the fitted curve may underestimate the slow-
ing of warming between the 1940s and 1960s due to
increasing sulphate aerosol effects, so this needs to be
borne in mind. Nevertheless, as can be seen from the

results presented in Section 3 below, this is not a seri-
ous deficiency. The model also picks up some European
cooling between 1861 and 1910. The latter is similar
in shape to the small decline in Northern Hemisphere
surface temperatures over the latter part of this period
(Brohan et al., 2006) and to a marked drop in annual and
winter half-year temperatures between these dates in cen-
tral Europe described by Böhm et al. (2010) using new
methods of bias adjustment to surface temperature data.
Folland (2005), showing the results of using the older
surface temperature data of Jones et al. (1999), indicates
a rather smaller observed drop for Europe as a whole
between 1872 and 1910. Overall, we regard the observed
data as adequately supporting the modelled late nine-
teenth century cooling. We are also encouraged to use
these model results because, globally, HadCM3 simulates
the observed interdecadal global mean surface tempera-
ture variations over the last 140 years very well (Stott
et al., 2000; IPCC 2007).

We use these model results to choose suitable data
sets to create forecasts of European winter temperature
over the whole continent. Our emphasis is on the well
attested atmospheric circulation relationships described
above. Thus, although we carry out some statistical tests
on the multivariate methods we create for predicting
north European temperature, they only provide a guide.
Note that Fletcher and Saunders (2006), and references
therein, have explored empirical correlations between the
NAO and various predictors in the preceding summer
half year and provide some observational hypotheses
for their results. Except for the RF2002 predictor, these
predictors are not independently verified with numerical
model experiments so are not included below and indeed
differ greatly. However, in the discussion of our results
in Section 5, we review one of their predictors, Northern
Hemisphere snow cover.

2. Development of the methods

2.1. Data

We use the HadCRUT3v (Brohan et al., 2006) dataset of
surface temperature. The data are available on a 5° × 5°

latitude–longitude grid. We use northern Europe area-
averaged temperatures over the region 15 °W, 45 °N;
30 °E, 65 °N as a test-bed for our methods. Temperatures
are calculated as anomalies from a 1971–2000 average.
Later in the paper a complete 5° × 5° grid covering
Europe is used for forecasts of the observed pattern
of surface air temperature over the whole continent.
Winters, here December to February, are allocated the
year in which January falls, and winters 1876–2008 or
1954–2008 are used in the regression equations described
below. The May North Atlantic SST tripole index, used
here for 1954–2008 is that calculated by RF2002 using
the GISST3.0 dataset, updated and improved from that
in Parker et al. (1995). Standardized indices of Nino 3.4
SST have been taken from HadISST (Rayner et al., 2003)
back to1876 because there is evidence of reliability of
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Figure 1. Predictor data time series including the complete series of smoothed modelled surface temperatures for northern and southern Europe.

this index back to that date as discussed for Nino3 in
Folland and Karl (2001). Because climate warming has
been very small in the Nino 3.4 region according to
HadCRUT3 and HadISST, we do not adjust the raw
data for climate trends. A test case where long-term
warming was removed showed only small changes in the
standardized index in any year.

Tropical volcanic data are based on the list of
Stenchikov et al. (2006). We assume, following Robock
and Mao (1995), that the influence of tropical volcanoes
on Northern Hemisphere winter climate occurs in the first
and second winters after the eruption. In addition, in 1902
there was an earlier major tropical eruption in May 1902
(Soufrière), which argues further for choosing the follow-
ing winters 1903 and 1904 rather than 1904 and 1905.
The first tropical volcano used is Krakatau, 1883, and the
last is Pinatubo, 1991. Because differences in the effects
of these volcanoes on European atmospheric circulation
and temperature are not currently well understood, we use
a simple index to identify these volcanic effects. Other-
wise, the index is set to zero when the volcanoes are not
operative.

The QBO data are those of the Free University
of Berlin, based on an update of Naujokat (1986)
and taken from http://www.geo.fu-berlin.de/met/ag/strat/
produkte/qbo/index.html (as at November 2010) though
few data are available after 2008. We use 30 hPa equa-
torial zonal wind speed following the dynamical mod-
elling results of Marshall and Scaife (2009). Hamil-
ton (1998), in a dynamical modelling study of the

QBO, noted that quite modest amplitudes of the QBO
at 40hPa affected the Arctic stratospheric circulation,
negative QBO values (corresponding to tropical easter-
lies at 40 hPa) weakening that circulation and positive
QBO values strengthening it. So we have used a con-
tinuous QBO index in the form of the 30 hPa near-
equatorial wind speed. Several months before a given
winter, QBO values can usually be well predicted for the
winter average using the method described by Gray et al.
(1992).

Finally, the estimates of European warming due to
anthropogenic effects have been taken from the mean of
an ensemble of six HadCM3 integrations with all forcings
as discussed in Section 1, to which smoothing has
been applied to remove spurious sampling fluctuations
of temperature on time scales of less than about three
decades. As described in Section 1, this coupled climate
model had no significant modelled trends in the NAO or
ENSO, so its estimates of winter warming over Europe
are virtually independent of the effects long-term changes
in the NAO pattern. Such estimates have been made
for every 5° × 5° area of Europe for each winter. The
forced warming estimates for the north European region
and slightly different values for the south European
region are the weighted average of constituent 5° × 5°

boxes where the weights are the relative areas of these
5° × 5° boxes. Figure 1 shows all the predictor time
series including the anthropogenically forced climate
warming estimates separately for northern and southern
Europe.
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2.2. Formulation and computation of linear regression
equations

The basic methodology uses ordinary least squares mul-
tiple regression where the predictor data from model
results are used to predict north European temperature
anomalies. We have checked this method against a for-
ward stepwise selection of variable method but prefer the
former method based on physical understanding, even
where the length of the data is insufficient for statisti-
cal significance. We present some statistical tests but do
not use them to weed out predictors. An example that
shows the need for a physical approach is climate warm-
ing. Methods based on data finishing at winter 1998 (not
shown) show considerably less significance for climate
warming, or even no significance at the 5% level. Data
ending in 2008 always show 5% significance, but we
consider the background climate change effects are real
throughout as continental-scale detection and attribution
studies strongly indicate this (Hegerl and Zwiers, 2007).
The climate change predictor is inserted as a continu-
ous temperature variable based on the model estimates
of north European temperature change.

The El Nino predictor index is a discontinuous variable
set to 0 if it is less than ±1 standard deviation of
its variability over 1876–2008. It is set to −1 for
all more negative values and to 1 for values between
one and 1.75 standard deviations (Toniazzo and Scaife
2006). Above that value the index is again set to zero.
The observational and dynamical studies quoted above
and longer observational data (Brönnimann et al., 2007)
support these choices.

Finally, the volcanic index is set to one for the
two winters following large tropical volcanic eruptions,
otherwise it is set to zero. The tripole SST index of RF02
has values that vary continuously. Note that no predictor
would have been included if its calculated sign was
inconsistent with the direction of its expected physical
effect, but this is not observed.

One limitation is that the tripole SST index is only
available since winter 1949 (Dec 1948–Feb 1949). This
is because the index was calculated from a maximum
covariance analysis between SST and 500 hPa height
(RF02) and the latter data are only available since
1948. However, a greater limitation is that a reasonably
homogenous QBO index is only available since 1954,
though the remaining indices are available since 1876.
To exploit the explanatory variables available before
1954, we perform ordinary least squares regression in
two stages: we first regress temperatures on the longer
1876–2008 series (volcanic index, Nino3.4 index and the
climate warming series) and then we regress the residuals
from this regression model onto the more recently avail-
able 1954–2008 SST and QBO series. The final statistical
model hindcasts for 1954–2008 are then constructed as
the sum of the two linear predictors. These two-stage
predictions are compared with the skill of regression
predictions developed over 1954–2008 alone. Note that
we only carried out this two-stage regression procedure
for results involving average north European temperature.

We noted above that ENSO relationships tend to
change between December and later in winter. So we
have also investigated prediction equations for the last
two months alone where we expect a stronger overall
ENSO relationship and perhaps some intraseasonal pre-
dictability. However, a two-month period suffers from
greater internal climate variability. The NAO underlies
a considerable part of the various predictor–predictand
relationships. Its effects on temperature anomalies are
generally of opposite sign in southern compared to north-
ern Europe, so this pattern will appear in many of our
mapped results in Section 4.

To avoid a large estimation uncertainty caused by
co-linearity, linear regression predictors should not be
highly correlated with one another. The only moderately
correlated predictors over 1954–2008 for north European
temperature are climate warming and the tripole SST
index (R = 0.41). This is due to the climate warming
trend being positively correlated with a general increase
in the North Atlantic SST index (and the winter NAO)
from 1965 to 1995, with only a moderate decrease in the
SST index since. However, they are still not correlated
at the 5% level due to the strong serial correlation
of climate warming. This lack of correlation between
explanatory variables allows us to carry out the regression
in two stages to take account of the information in the
explanatory variables available before 1954.

3. Results–north European winter temperature

3.1. December–February one-stage linear regression

For each predictor of DJF European mean temperature,
Table I lists linear regression coefficients and their nomi-
nal significance for winters confined to 1954–2008 for
the model with all predictors. The time series of the
predictors are shown in Fig 1. The standardized values
indicate the relative importance of the predictors. Val-
ues significant at the 5% level or better are indicated
with an asterisk. The multiple correlation has a value of
R = 0.53. These relationships have been cross-validated
to hindcast each value over 1954–2008, in turn. To
achieve this, all data with significant serial correlations
with the year being assessed have been removed. Here,
the relevant year being assessed together with the two
years on either side of it are omitted from both pre-
dictors and predictand. The cross-validated correlation
reduces R to 0.36. Thus the true variance explained is
13% rather than the 28% derived from the raw multiple
correlation. This can be explained as follows. Fitting a set
of predictors to a dataset without a cross-validation step
gives rise to the phenomenon of ‘artificial skill’. Arti-
ficial skill increases firstly as the number of predictors
increases. This component can be estimated using the
‘adjusted multiple correlation’ (Draper and Smith, 1998)
which decreases relatively further compared to the raw
multiple correlation as the number of predictors increases.
Here, using 5 predictors, the adjusted multiple correlation
for all the data over 1954–2008 falls to 0.45 or 20% of
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the variance explained. However, this is still not an unbi-
ased measure of the skill of future forecasts independent
of the data we have used. This is because the full struc-
ture of a time series is not picked up with limited data,
even though the series may be stationary in the long term.
A good estimate of true skill can be made using cross-
validation, though it can be difficult to apply cleanly (von
Storch and Zwiers, 1999). Cross-validation creates (in
principle) a time series uncorrelated with the year being
predicted which is then used to create a regression-based
hindcast. A separate forecast model is thus created for
each year. If data were much more numerous, separate
‘training’ and ‘testing’ periods might be better, and may
pick up a further loss of skill due to non-stationarity.
Here, we have limited data and cannot use this method.
Nevertheless, cross-validation still shows that the reduc-
tion in variance explained from 28 to 13% is substantially
greater than that obtained from discounting the effects of
artificial skill within the fixed historical time series alone.
It should be a good estimate of the predictability of cur-
rent and near future winters using the factors we have
chosen. In the more distant future, climate warming may
change these relationships.

Returning to Table I, factors 2–4, when positive,
cause warming of north European temperature through
an enhanced frequency of westerlies, while a positive
Nino 3.4 index, associated with El Nino, causes cooling
through an enhanced frequency of blocking. Table I
also shows how important it is to include climate
warming. Table I confirms that the May SST index of
RF2002, though designed to predict the North Atlantic
Oscillation, is still very useful for influencing north
European temperature. Although only significant at the
8% level over this period, its standardized regression
coefficient is the second highest at 0.25 and close to that
of climate warming, the most important factor.

We have compared this method with forward stepwise
regression (e.g. Afifi and Azen, 1979) over the same
period. The results (not shown) are quite similar except
that the volcanic and El Nino Indices are not entered
at the chosen level of significance, around the 5–10%
level. We conclude that climate warming, the NAO May

Table I. Statistics of one-stage linear regression methods for
north European temperature anomalies, winters 1954–2008.
[Correction added 9 February 2012 after original online pub-
lication: in Tables I–IV asterisks have been added to indicate

values significant at the 5% level or better.]

Regression parameter Standardized
regression
coefficient

Significance
regression
(fraction)

Climate warming 0.27 0.05∗
North Atlantic SST index 0.25 0.08
QBO index 0.20 0.12
Volcanic index 0.14 0.25
Nino 3.4 index −0.11 0.40

∗ Values significant at the 5% level or better

SST factor (here marginally the most significant factor,
now at the 5% level) and, less strongly but interestingly,
QBO equatorial winds at 30 hPa are the key predictive
factors for north European winter temperature on average.
Volcanic effects and El Nino or La Nina add only a little
additional variance statistically over the period sampled
because in many years they are inactive. However, they
are important in those years when they do occur. Given
more data and better ways of representing their effects
on north European temperature they are likely to become
statistically significant predictors.

3.2. Reconstructing the relative importance
of each factor over 1954–2008

Figure 2(a) shows the one-stage regression time series
for 1954–2008 based on all factors (red), observed north
European temperature (black), and the time series of each
individual predictor contribution. This gives their relative
contributions to north European temperature anomalies
in each year. Of particular interest are predictor contri-
butions for some extreme years. The very small linear
regression constant of −0.10 has to be accounted for
when discussing this breakdown. Since it is a constant
and the slope of the climatic warming factor is unaf-
fected, we have incorporated the constant in the climatic
warming curve in the diagram. The coldest winter in the
series, 1962–1963, is reproduced with the correct sign
and about half the observed amplitude; it is also the sec-
ond coldest simulated winter in the period, similar to
the coldest simulated, 1966. The QBO, North Atlantic
SST index and the cooler climate of the time combine in
nearly equal measure to make a very cold north European
1962–1963 winter likely. This leaves half the amplitude
of 1962–1963 due to internal variability or unexplained
factors. In more recent years, the cold winter 1995–1996
is contributed to by the North Atlantic SST index and a
negative QBO index, though again only half the ampli-
tude of the anomaly is explained. Very warm years seem
generally less well explained, though the largest positive
value in the series of the North Atlantic SST index con-
tributes appreciably to the very warm winter 1990, with
no contribution from the other factors. The biggest single
contribution to the last two very warm winters, 2007 and
2008, comes from climate warming with a smaller warm
contribution from La Nina in 2008. However, much of
the amplitude of these two winters is not explained by
our predictors.

3.3. Extended period 1876–2008

Table II lists comparable results to the first three columns
of Table I. The correlation between the results of the
regression equation created by the two-stage process and
the observations over 1954–2008 is, by definition, the
multiple regression coefficient for that period for the two-
stage process. This has a very similar value of 0.52 to
the one-stage regression. Thus, two-stage regression does
not explain extra variance but is consistent with one-
stage regression. However it is useful to show hindcast
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data compared to the original data (Figure 2(b)) back
to 1876. This shows that the climate warming factor is
quite realistic when compared to the behaviour of the
observations over the whole period and not surprisingly
is very significant at near the 0.5% level over this longer
period. The high-frequency signals from volcanoes are
relatively small since 1876 but also have better statistical
significance in Table II than in Table I, though the ENSO
signal does not, possibly because of poorer early SST
data. The multiple correlation value however is only 0.29

compared with 0.53 for the period 1954–2008, showing
the impact on hindcasting interannual variability of not
including the QBO and NAO SST predictors.

It is useful to compare these results with what may be
much closer to the best possible hindcasts. These have
been calculated by regressing an observed NAO index
on winter north European temperature over 1876–2008.
The observed NAO index uses the difference in PMSL
between Ponta Delgada, Azores, and Stykkisholmur,
Iceland (Figure 2 for this NAO time series) rather than

(a)

(b)

Figure 2. (a) Simulation (no cross-validation) of north European temperature anomalies, 1954–2008, using one-stage regression. The contribution
to the simulated temperature of each predictor is shown together with observed north European temperature (black). (b) Two-stage regression
simulations of winter mean north European temperature anomalies, 1876–2008. The red line is the simulation using predictors from 1876, the
green line using the observed NAO and climate warming and the blue line using predictors available. (c) Cross-validated multiple regression
hindcasts, 1954–2008, for north European winter mean temperature anomalies. Each hindcast is based on a set of predictors calculated from
all data except the winter being hindcast and the two years before and after. d) Residual errors (observed north European temperature minus
hindcast) from the cross-validated model and the model including the observed NAO, both for 1954–2008. The latter is based on a regression

over the whole period 1876–2008. Note large failures such as 1985.
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(c)

(d)

Figure 2. (Continued ).

Table II. Statistics of two-stage linear regression method for
north European temperature anomalies, winters 1876–2008.

Regression parameter Standardized
regression
coefficient

Significance
regression
(fraction)

Climate warming 0.24 0.006∗ (1876–2008)
North Atlantic SST index 0.30 0.02∗ (1954–2008)
QBO index 0.23 0.08 (1954–2008)
Volcanic index 0.13 0.12 (1876–2008)
Nino 3.4 index −0.06 0.50 (1876–2008)

∗ Values significant at the 5% level or better

the Rodwell and Folland 500 hPa NAO in order to
estimate the best possible relationship between north
European temperature and the NAO over a much longer

period. The fitted correlation over 1876–2008 gives R =
0.71. The best possible regression also needs to include
the climate warming signal. When this is included,
R = 0.74 and the resulting regression curve is shown
in green in Figure 2(b). This indicates that a perfect
knowledge of the NAO plus climatic warming (which
is only estimated in this paper) would explain just
over 50% of the variance of north European winter
temperature variability. However, some failures and a
reduced variance overall show that the NAO is by no
means a complete description of the influences on north
European winter temperature. In a few winters over
1876–2008, the observed NAO can be seen to be far from
an adequate predictor. There is little evidence in these
diagrams that any deficiencies in our climate warming
predictor are having much effect. The other climatic
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influences on north European winter temperature may or
may not be predictable, of course.

3.4. Cross-validated hindcasts

Figure 2(c) shows the cross-validated time series from
1954 to 2008 from the one-stage method. Some extreme
winters like 1963 (cold), 1990 (warm) and 1996 (cold)
are simulated with some skill though with less skill than
for the fitted hindcast model. The general warming over
the period is picked up well. There is some evidence of
a cold bias in the hindcasts before 1975, possibly larger
than can be explained by any cold bias in the climate
change predictor alone.

Figure 2(d) shows the residual errors for the cross-
validated hindcasts for 1954–2008 (blue) compared to
those from the hindcasts using the observed NAO and
climatic warming for the same period (red). The residual
errors are defined as the observed north European tem-
perature minus the hindcasts. The cross-validated residual
errors are strikingly well correlated with those from the
observed NAO model with R = 0.72, though the standard
deviation of the cross-validated model errors at 1.47 °C is
naturally substantially greater over the same period than
those of the model using the observed NAO at 1.06 °C.
Figure 2(d) indicates that an important component of the
errors in both models must arise from aspects of the win-
ter atmospheric circulation or SSTs that influence north
European winter temperature that are not picked up by
factors directly related to the NAO or the climate warm-
ing signal. Measurement noise in the data will, of course,
contribute to the errors as will internal climate variability
(Section 5). Nevertheless, Figure 2(d) indicates that pre-
dictive factors not included in this paper are likely to be
worth investigating.

Finally, we compare the cross-validated winter hind-
casts over 1954–2008 with persistence. The correlation
between the observations and persisted values from one
winter before is 0.31. Therefore, the cross-validated hind-
cast system correlation of 0.36 just beats persistence.
Another forecast strategy sometimes suggested is the per-
sistence of the average of the previous two years though
this is disadvantaged here by the QBO signal, making it
more likely that our forecast system will beat this skill
level. Indeed the correlation is 0.27, lower than for the
persistence one year ahead.

3.5. January–February one-stage linear regression

The time series of JF north European temperature is
unsurprisingly quite similar to that of DJF. If the DJF
series consisted of the JF series and an uncorrelated D
series, the correlation between JF and DJF would be 0.67,
assuming all months had equal length. The actual correla-
tions are 0.94 (1876–2008) and 0.96 (1954–2008), show-
ing substantial persistence (due probably to interannual
forcing factors) from D to JF. In fact, Keeley et al. (2009)
estimate from winter NAO data that it is likely, in agree-
ment with this result, that a substantial fraction, perhaps
70%, of the interannual variability of the winter NAO is

Table III. Statistics of one-stage linear regression methods for
north European temperature anomalies, January and February

1954–2008.

Regression parameter Standardized
regression
coefficient

Statistical
significance

(fraction)

Climate warming 0.35 0.02∗
North Atlantic
SST index in
previous May

0.14 0.33

QBO index 0.14 0.27
Volcanic index 0.15 0.25
Nino 3.4 index −0.12 0.34

∗ Values significant at the 5% level or better

externally forced which would contribute to persistence
of north European surface temperature through the win-
ter. We use the same values of the predictors as for DJF
because there is little extra skill in estimating these for
JF alone, even close to the JF period. Table III shows the
results in the same format as Table I. The multiple corre-
lation value is slightly less at 0.50, and the cross-validated
value of R is now 0.31 calculated in the same way as
for December to February. Thus, just under 10% of the
JF north European temperature variance is explained by
one-stage linear regression over 1954–2008. A stepwise
regression done as for DJF gives only climate warming
as a significant predictor. So despite the similarity in the
JF and DJF datasets, predictors other than climate warm-
ing have lower predictive power, particularly the North
Atlantic SST index.

Thus, the most important change in JF from DJF is
the loss of the skill of the NAO SST predictor, which
suggests that it has more skill for early than late winter
temperature. This would be expected as the re-emerging
SST pattern from the previous May will be progressively
modified during the following winter. Compared to
Table I, the ENSO predictor is a little stronger in Table III
as expected from its more consistent effects on European
climate in later winter (e.g. Fereday et al., 2008), though
significance remains low. Climate warming has clearly
become an important predictive factor in both JF and
DJF, an important result for European winter temperature
forecasting that agrees with the results of Liniger et al.
(2007) and Boer (2009).

3.6. January–February two-stage linear regression

Table IV shows the results. The January–February mul-
tiple correlation between the simulated values and the
observations is again slightly lower than for the one-
stage regression at 0.48. Otherwise the relative weights
of the predictors are similar, though the significance
of the volcanic index is greater, as expected from the
longer data series. This is also seen for DJF in Tables I
and II.
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Table IV. Statistics of two-stage linear regression method for
north European temperature anomalies, January and February

mean, 1876–2008.

Regression parameter Standardized
regression
coefficient

Statistical
significance
(fraction)

Climate warming 0.23 0.008∗ (1876–2008)
North Atlantic
SST index in
previous May

0.22 0.10 (1954–2008)

QBO index 0.18 0.18 (1954–2008)
Volcanic index 0.14 0.11 (1876–2008)
Nino 3.4 index −0.06 0.47 (1876–2008)

∗ Values significant at the 5% level or better

3.7. January–February cross-validated hindcasts

We do not show a figure but recap that the cross-
validated correlation skill is, as expected, lower in the
shorter period January–February than in winter at 0.31.
Nevertheless, this value is still significant despite the
substantial loss of skill from the May North Atlantic SST
predictor. Note that this factor, appropriately, has lower
weight than in DJF, so it really does have less influence
on the hindcasts. Again, we compare the cross-validated
JF hindcasts over 1954–2008 with persistence. The
correlation between the observations and persisted values
from one winter earlier is 0.33. Therefore, the hindcast
system correlation of 0.31 does not beat persistence.
Persistence of the average of the previous two years
gives a correlation of 0.30, again comparable to the cross-
validated hindcasts.

4. Results–spatially varying predictability
of temperature and rainfall

A similar regression methodology is now used to con-
struct spatially varying predictions of European winter
temperature and European winter rainfall. For tempera-
ture, we use the CRUTEM3 dataset on a 5° × 5° grid
(Brohan et al., 2006), and for rainfall, the dataset of New
et al. (2000). The same factors of anthropogenic warm-
ing, ENSO, volcanoes, and the QBO are used to produce
a hindcast set of European winter temperature anomalies
for the period 1954–2008. The method first identifies
the regression pattern associated with each of the predic-
tors by regressing observed values of the 500 hPa NAO
used by RF2002, the occurrence of a moderate El Nino or
moderate to strong La Nina, the QBO and the occurrence
of volcanic eruptions, as described above, against DJF
surface temperature anomalies and DJF rainfall anoma-
lies. Anomalies are calculated relative to a climatology
for 1971–2000. The observed regression patterns are
weighted by the predicted values for each of the predic-
tors for a given year. In this way, the spatially varying
method mirrors the hindcasts for the simple area mean
predictions above. Thus, for the NAO SST method the

pattern weighting is the loading of the May predictor pat-
tern in the observed May tripole SST anomalies and for a
moderate El Nino and moderate or strong La Nina index
we take the corresponding average temperature or rain-
fall pattern for these indices (otherwise it is absent). For
the QBO we take the observed QBO anomaly, assume
this is predictable and weight it in a comparable way to
the NAO index. For climate change we use the compa-
rable regression weights, and for volcanic eruptions the
pattern is fixed and is applied if the volcanic index is
regarded active as in Section 3. The pattern weighting can
of course be positive or negative for the NAO method,
the El Nino/La Nina method, the QBO and for climate
change. It is always the same sign for a volcano.

The patterns are cross-validated by removing the year
in question when calculating the regression patterns for
each of the predictors. This allowed us to verify that
the predictor patterns varied only slightly over the 55
winters due to the addition or removal of single events.
We have not modified the cross-validation method used
for the map patterns to use the more severe method of
Section 3. This is because it was found that omitting just
the year in question, or the two years before and after
in addition, made almost no difference to cross-validated
skill in Section 3. This was found to be R = 0.36 in
winter for both cross-validation methods.

4.1. December–February

Regression patterns for each of the predictors are shown
in Figures 3–7. Anthropogenic climate change generates
warming throughout the European region in these esti-
mates (Figure 3) and is strongest in the continental inte-
rior. Note that Figure 3 is again based on the HadCM3
results and that the standardized values are based on the
period 1861–2039 for both temperature and rainfall. Thus
the pattern of Figure 3 includes some projected data well
into the twenty first century. For precipitation, there is
an anthropogenic signal for enhanced precipitation over
northern Europe and a slight drying over southern Europe
and the Mediterranean region. Changes in the NAO pre-
dictor (Figure 4), the volcanic predictor (Figure 5), the
QBO (Figure 6) and ENSO (Figure 7) all lead to a dipo-
lar signal in European temperature with northern Europe
and southern Europe showing opposite signed signals.
Similar dipolar signals are also found in precipitation,
albeit shifted slightly northwards. Very similar signals
have been identified in numerous modelling and observa-
tional studies of European climate variability and relate
strongly to the North Atlantic and Arctic Oscillations.
This result further indicates that our predictors are largely
indicative of the spatial pattern of influence of the NAO
rather than those of other circulation patterns that may
be important for north European temperature.

Taking the whole set of European winters from 1954
to 2008, we first assess the degree to which our predic-
tors can explain winter interannual variability. Figure 8
shows that if the values of the predictors for the com-
ing winter were precisely known (this includes knowing
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(a)

(b)

Figure 3. Spatial patterns over Europe for predicted winter temperature
and rainfall resulting from systematic climate change. The values
correspond to a modelled one standard deviation of the increase in north
European mean temperature for 1861–2039 as in shown in Figure 1,
together with the corresponding one standard deviation of the rainfall
change over 1861–2009. Temperature anomalies in °C and precipitation

anomalies in mm/day.

the 500 hPa NAO value precisely) then correlations of
northern European temperature of around 0.7 would be
achievable. Of course, while our predictors are well esti-
mated several months ahead, they cannot be precisely
known and, in particular, the NAO shows only lim-
ited predictability from the North Atlantic SST index
used here (RF2002). A more realistic estimate which
uses the forecast NAO value available in the previous
June (Figure 8, lower) indicates that cross-validated cor-
relations of around 0.4 are achievable, assuming other
factors such as the winter average QBO and ENSO are
known fairly accurately before the winter starts. This is
a good assumption as we indicated earlier. As mentioned
in Section 2, the QBO can usually be forecast quite accu-
rately from current and recent QBO data about 3 or even
more months in advance of the start of winter using
the method of Gray et al. (1992). The state of ENSO
in winter is also usually well predictable 1–3 months

(a)

(b)

Figure 4. Spatial patterns over Europe of temperature and rainfall for
a plus one standard deviation value of the observed NAO index. Units

as in Figure 3.

in advance of the start of winter using the Glosea 3
coupled dynamical seasonal forecasting model (Graham
et al., 2005) or the new Glosea 4 model (Arribas et al.,
2009, 2011). The typical value of R = 0.4 is similar to
the cross-validation result for area mean north European
temperature described earlier. Results for precipitation
(Figure 9) and for January–February are broadly similar
but indicate reduced correlation skill, presumably due to
the higher proportion of internal and unpredictable vari-
ability in both precipitation and in the shorter 2-month
means for temperature discussed earlier.

In conclusion, the cross-validated correlation of about
0.4 represents a significant increase beyond the skill of
current dynamical seasonal forecast systems for winter
over Europe (Junge and Stephenson, 2003; Rodwell and
Doblas-Reyes, 2006). Thus, over the period 1989–2002,
a set of hindcasts for the winter NAO from the state-
of-the-art Glosea4 model (Arribas et al., 2011) only had
a correlation of about 0.2 with the observed winter
NAO. This is not statistically significant and represents
considerably less variance explained than implied by this
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(a)

(b)

Figure 5. Spatial patterns of predicted (a) temperature, and (b) rainfall
anomalies over Europe for the unit value of the volcanic index
for temperature and rainfall. Units as in Figure 3. These are fixed

anomalies for a volcanic winter.

paper. Thus, the May NAO SST factor used in this
paper alone provides a cross-validated correlation of 0.45
between its hindcast NAO and the observed NAO over
winters 1949–1998 (RF 2002).

4.2. Reconstructed and hindcast temperature maps
for individual years, December–February

Examples of very cold (1963) and very mild (1990) years
are given in Figure 10, along with an example of a cold
year which followed a run of mild years (1996). Notwith-
standing the potential role of unpredictable atmospheric
variability, in each of these successfully forecast cases,
the fact that the reconstruction explains the observed
anomaly suggests that our estimates of the different influ-
ences are quantitatively large enough to explain a con-
siderable proportion of the observed anomalies in these
years, though some of the apparent signal might in reality
be noise.

Other years in Figure 10 were poorly forecast by our
simple method. In the case of 2008, the reconstruction
is able to explain the observed warm anomaly very well

(a)

(b)

Figure 6. Spatial patterns over Europe of predicted temperature and
rainfall for plus one standard deviation value of the of QBO index.

Units as in Figure 3.

but the hindcast failed. The NAO SST index prediction
in this year was particularly poor and much cooler than
observed and this mainly gave rise to the poor hindcast.
This failure reflects the likelihood that although there is
a clear potential for significantly improved predictions of
the NAO and European winter temperature, NAO pre-
dictability may remain relatively limited, at least partly
due to substantial internal extratropical winter climate
variability (Stephenson et al., 2000). Substantial internal
variability, and therefore limited predictability, affects not
just the NAO, as underlined by the discussion in Kush-
nir et al. (2006), but other north Atlantic atmospheric
circulation patterns as well. However, offset against this
to some extent are the intriguing insights of Keeley et al.
(2009) who indicate that a substantial fraction of seasonal
NAO variability may be externally forced. However, this
is not a definite indication of a similar level of predictabil-
ity as the forcings may be unpredictable. Finally, the last
row in Figure 10 shows a case (1971) where neither the
hindcast nor the reconstructions were able to reproduce
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(a)

(b)

Figure 7. Spatial patterns of predicted (a) temperature, and (b) rainfall
over Europe of a positive unit index for an El Nino for temperature
and rainfall. This is a fixed anomaly for a (moderate) El Nino with this

index value.

the observed anomaly. This is one of many broadly simi-
lar cases as indicated by Figure 2(d), as it is by no means
the worst case. In this particular case, the limited set of
predictors in our simple statistical model was unable to
explain the observed anomaly. So we must assume that
either another factor or simply internal unpredictable vari-
ability in the European circulation was responsible for the
relatively mild winter of 1971 over much of Europe.

5. Discussion

The residuals of our one-stage regression models for
1954–2008 in DJF and JF show a strong spectral peak
(not shown) with a broad maximum around 7–8 years
(slightly sharper for JF), with no other spectral peak
of comparable size. This is similar to the period
(6–10 years) of a known spectral peak in the winter NAO
(Hurrell and Van Loon, 1997; Venegas and Mysak, 1997)
and hints at a possible missing influencing factor on Euro-
pean winter climate, though this spectral peak may really
be rather ill-defined. Figures 1(b) and (d) also indicate

Figure 8. Correlation skill for near-surface temperature reconstructions
given perfect predictor data (upper) and hindcasts (lower). Correlations
were assessed over 1954–2008. Reconstructed correlation skill uses the
observed values of the predictors to assess the maximum amount of
variability that can be explained by our predictors. Hindcast skill uses
predicted values of the NAO from May SST patterns (RF2002) and

other predictors as described in the text.

that, in some winters, factors other than those considered
here may be particularly important or alternatively that
internal climate variability may be dominant in some win-
ters. Further research would be especially worthwhile to
investigate these winters more closely, e.g. as identified
by Figure 2(d) for northern Europe.

The factors identified here as being important for the
winter circulation over Europe include the influence of
the stratosphere. The stratosphere was shown to be a
fundamental component of longer time scale interactions
between the tropospheric NAO and the tropospheric AO
by Ambaum and Hoskins (2002). Recently Maycock
et al. (2011) have shown that climate models without
a fully resolved stratosphere are unlikely to pick up
the interactions between sudden stratospheric warmings
and the troposphere correctly. To further check this, we
have calculated the cross-validated correlation of the
winter (DJF) hindcasts with observed north European
temperature omitting the QBO and also the moderate
El Nino index as capturing this component of ENSO
influence on European winter climate has been shown
to be crucially dependent on stratospheric interactions by
Ineson and Scaife (2009). The value of R = 0.31, about
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Figure 9. Correlation skill for winter rainfall for reconstructions (upper)
and hindcasts (lower). Correlations were assessed over 1954–2008.
Reconstructed correlation skill uses the observed values of the predic-
tors to assess the maximum amount of variability that can be explained
by our predictors. Hindcast skill uses predicted values of the NAO from

May SST patterns and other predictors as described in the text.

10% of the variance, can be contrasted with the 13% of
the variance explained by all factors discussed above. So
the physical studies and our results imply that a model
with a realistic representation of stratospheric variability
is required to fully capture the level of European winter
predictability described by this paper.

Although data are too few to investigate this purely
statistically, there may be a need to modify the Atlantic
SST predictor when El Nino and possibly La Nina is
active. It is well known that El Nino tends to favour
a strong winter storm track and enhanced rainfall over
the southern USA extending into the western subtropical
Atlantic (Ropelewski and Halpert, 1986, 1996; Smith and
Ropelewski, 1997) commonly seen to cause some cooling
of SST in that region. At the same time, anomalous
atmospheric descent is favoured over the western tropical
Atlantic; that area of the Atlantic warms as well as
the tropical Atlantic further east due to reductions in
the trade winds associated with El Nino (Curtis and
Hastenrath, 1995), though maximum tropical Atlantic
warming often occurs after boreal winter. These effects
might sometimes disrupt the re-emergence of the May
SST field in El Nino winters. So the RF2002 method

may be less skilful when El Nino is moderate or strong
in winter, and possibly when La Nina is strong when
broadly opposite effects on SST anomalies might be
expected. Progress requires appropriate observational and
dynamical modelling studies to clarify how the previous
May north Atlantic subsurface temperatures are modified.
Such studies will be helped by the recent development of
several improved subsurface ocean datasets (Domingues
et al., 2008; Ishii et al., 2009; Levitus et al., 2009). So
far, observed data have not been sufficient to carry out
such studies and they would need to take account of
the variable effects of El Nino on winter North Atlantic
climate found by Toniazzo and Scaife (2006) and Ineson
and Scaife (2009). In the meantime, it will be obvious
before winter starts whether the re-emergent SST pattern
has been disrupted. Such knowledge can be used inform
a revised forecast.

A possible predictor which we do not include is pre-
winter season Northern Hemisphere snow cover anoma-
lies. Some skill was reported by Cohen and Fletcher
(2007) for empirical forecasts of winter land surface
temperatures over the Northern Hemisphere, including
Europe on its own, using a combination of October snow
cover and sea level pressure anomalies. This effect has
since been looked at in a climate model (e.g. Fletcher
et al., 2009) using a Siberian snow cover anomaly in
October and November. This was shown to force the
stratosphere which in turn forced the AO in a manner
quite like the process described by Ambaum and Hoskins
(2002). The main forcing effect appears to act through
the surface albedo change associated with snow cover
anomalies. Thus, October snow anomalies may have at
least as big an effect as the November ones (Fletcher
et al., 2009). So there may well be some predictability
of the Northern Hemisphere winter atmosphere circula-
tion from preceding autumn snow cover. This may also
be a further example of the need for accurate strato-
spheric–tropospheric interactions.

Curiously, however, Saunders et al. (2003) had already
indicated that Northern Hemisphere summer (June–July)
snow cover anomalies might have a larger predictive
power for the winter NAO than snow cover in preceding
autumn. According to their observational analysis, pre-
dictive power peaks in the preceding summer (for the
NAO) and reduces in the following autumn, a counter-
intuitive result. Albedo effects would of course maximize
in summer, but it is not easy to see how such effects
could persist through to winter. Further research is clearly
needed to explain and quantify the predictive influence
of snow cover, especially given Keeley et al.’s (2009)
estimate that more interannual forcing of the NAO may
exist than explained in this paper.

Finally, although our results are presented in terms of
the skill of ‘best estimate’ forecasts, the methodology can
readily be extended to investigate the skill of probability
forecasts. This is the form in which dynamical seasonal
forecasts are usually made, based on a fairly large
ensemble of forecasts starting from a range of different
initial conditions.
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Figure 10. Examples of hindcast, reconstructed and observed winters. Examples of very cold (1963), very mild (1990) and a large observed
departure from the previous year (1996) are shown in the first three rows. Both the hindcast and the reconstruction reproduced the observed
anomaly in these years quite well. The penultimate row shows 2008 when the reconstruction explained the observed anomaly quite well but the
forecast was poor. The last row shows 1971 when both the reconstruction and the hindcast failed to reproduce the observed anomaly pattern,
though small parts of northern Europe had the correct sign of the anomaly. This is a fairly typical error, averaged over northern Europe, as

indicated in Figure 2(d).

6. Summary and conclusion

Practically useful potential predictability of winter cli-
mate over Europe a season ahead has been identified
using a small set of predictors based mainly on dynamical

studies together with supporting observational data.
Predictability identified here exceeds the levels in current
dynamical forecast systems, e.g. as indicated above by
Arribas et al. (2011). Our study indicates some sources
of predictability that are usually not well represented in
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current dynamical forecast systems. These include much
of the skill inherent in the May Atlantic SST predictor,
despite being available in the initial conditions, and much
of the influence of the QBO. In addition, current dynam-
ical models are poor at picking up the signal from mod-
erate El Ninos, though our statistical model may also
underestimate this source of skill, especially in January
and February.

In future, it may be advantageous to use the new
ENSEMBLES high resolution climate data set (Haylock
et al., 2008). Averaged over the north European region,
the HadCRUT3v and ENSEMBLES temperature data are
highly correlated with R = 0.95 for DJF, and R = 0.96
for JF. So the main conclusions of our paper would be
little affected by using the better ENSEMBLES dataset
and the data are also limited to a start date of 1950. They
could, though, add significant value to the patterns in
predictability maps.

We do not advocate our simple methods as an alterna-
tive to dynamical seasonal forecasts because dynamical
methods are potentially capable of describing nonlinear
interactions between the predictable components of the
climate system. Our simple linear regression methods
cannot do this. However, they are likely to be useful
until dynamical forecast systems improve considerably.
Improvements to dynamical methods are becoming more
urgent as winter climate over Europe is now clearly
changing under the influence of global climate warm-
ing: forecasting under conditions of non-stationarity may
lead to different responses which can be modelled in a
dynamical framework but cannot be included in simple
linear statistical methods. Thus, although our potential
predictability model does include the non-stationarity of
the warming signal, it cannot include future changes in
the responses of the climate to factors already identified,
or possible new forcing factors like a permanent large
reduction in winter Arctic sea ice extent.

In conclusion, this study points toward the phenomena
to which dynamical models need to respond skilfully, and
where appropriate process-based model developments
are needed. This is likely to require the extension of
current dynamical seasonal forecasting models up to
the mesosphere, at the same time ensuring an accurate
climatology in the stratosphere and the troposphere. It is
also likely to require substantially improved horizontal
resolution as current low-resolution models are not likely
to respond correctly to North Atlantic SST patterns and
strong SST gradients (Minobe et al., 2008). Thus, even
the most recent Met Office model, Glosea4, does not
appear to pick up much of the winter signal of the NAO
SST tripole (A. Arribas, personal communication), and
we have identified this as one of our most important
winter predictors. Finally, there is the prospect of better
worldwide initialisation of dynamical seasonal forecasts
now that the ARGO array (Wilson, 2000; Gould and
Turton, 2006), which measures the temperature and
salinity of the top 2000 m of the ocean is now essentially
complete, worldwide.
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