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 R eliable projections of weather variables from 
climate models are required for the assessment 
of future climate change impacts (e.g., f lood-

ing, drought, temperature-related mortality, and 
crop yield). Assessments of such impacts are made 
by driving impact models with relevant weather 
variables from climate model simulations (e.g., daily 
temperature for temperature-related mortality as-
sessment). However, it is generally necessary to adjust 
(calibrate) the variables to correct for climate model 
biases rather than to drive impact models with raw 
climate model output. Climate models are imperfect 
representations of reality, and so systematic discrep-
ancies occur between climate model simulations and 
observations. Model discrepancies arise from many 
sources, such as structural uncertainty caused by 
representing the atmosphere by a finite number of 
variables, uncertainties in physical and subgrid-scale 
parameterization schemes, and uncertainty in how 
best to choose the model parameters.

Various calibration methods have been used in 
climate change studies, but few of the published stud-
ies carefully investigate the sensitivity of their results 
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to the choice of calibration method. In this article, we 
show how existing approaches fall into two distinct 
calibration pathways (“bias correction” and “change 
factor”) and then show how the choice of pathway can 
produce substantially different climate projections of 
European daily surface air temperatures. Such dif-
ferences have the potential to produce significantly 
different impact outcomes and hence are an important 
source of additional uncertainty that needs to be ac-
knowledged. While it is common practice to adjust for 
biases in the mean, increasingly projections are made 
in terms of the distributions of variables. Account must 
therefore be taken of discrepancies in the ability of the 
model to reproduce the whole probability distribution 
of observed weather variables. We focus here on the 
simplest example of calibration of the probability dis-
tribution of variables separately at different grid-point 
locations, but it is noted that other studies have also 
developed multivariate calibration using multivariate 
regression (e.g., downscaling and forecast assimilation 
approaches) and pattern matching methods based on 
empirical orthogonal functions.

A Simple Framework of Two Cali-
bration Pathways. Consider the simplest 
case of a single weather variable (e.g., daily tempera-
ture at a grid-point location) that is observable over 
a short recent present-day time period, and over a 
future time period, denoted by random variables Xo 
and X′o, respectively. Furthermore, assume that we 
have climate model simulations of the variable over 
these two periods, which will be denoted by Xm and 
X′m. For future climate assessment, one needs to infer 
the distribution of future observations X′o given avail-
able data samples of Xo, Xm, and X′m. Figure 1 shows 
that there are two very distinct calibration pathways: 
mapping of future climate simulations X′m to find 
X′o (“bias correction”), and mapping of present-day 
observations Xo to find X′o (“change factor”).
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The bias correction strat-
egy assumes that the model 
discrepancies stay constant 
in time [i.e., the relationship 
between the distributions 
of Xo and Xm is the same as 
the relationship between the 
distributions of X ′o and X ′m 
(Figs. 1a,b)]. This allows pre-
dictions of future observables 
to be obtained by mapping 
from future model simu-
lations, X ′o = B(X ′m), with a 
transfer function given by 
B(X′m) = Fo

-1[Fm(X′m)], where 
Fm( . ) is the cumulative dis-
tribution function (CDF) of 
Xm and Fo

-1( . ) is the inverse 
CDF (the “quantile function”) 
of Xo.

The change factor strate-
gy is based on the alternative 
assumption that the change 
from present-day to future in 
the observation distribution will be the same as the 
change in the model distribution [i.e., the relationship 
between the distributions of Xo and X′o is the same as 
the relationship between the distributions of Xm and 
X′m (Figs. 1c,d)]. This allows predictions of future 
observables to be obtained by mapping historical 
observations, X′o = C(Xo ), with the transfer function 
given by C(Xo ) = Fm′

-1[Fm(Xo )] where Fm′
-1(  . ) is the 

inverse CDF of X′m. 
The probability distribution of future observables 

depends on the choice of strategy: the CDF of predicted 
future observable X̂′o is given by Fo′(x) = Fo{Fm

-1[Fm′(x)]} 
for bias correction, whereas it is given by Fo′(x) = 
Fm′{Fm

-1[Fo(x)]} for change factor. It is not obvious which 
strategy is better since both sets (or maybe neither set) 
of assumptions might be valid. Furthermore, it is not 
easy to empirically assess the assumptions (i.e., model 
biases are invariant with time for bias correction, and 
changes in modeled variable with time are consistent 
with changes in observations for change factor). We shall 
show below that this fundamental indeterminacy in the 
choice of calibration strategy is an additional and impor-
tant source of uncertainty in climate projections.

Different Projections from the 
Two Pathways. In addition to the choice of 
strategy, the transfer function for either strategy needs 

to be estimated, and this can be done in a variety of 
different ways. The simplest “quantile matching” ap-
proach uses the empirical quantiles of the datasets (i.e., 
values sorted in ascending order) to find the transfer 
functions. This approach can be problematic if the data 
have different ranges or many tied values. The problem 
can be alleviated using parametric approaches where 
the CDFs are assumed to have known functional forms 
(e.g., the normal distribution). For the sake of illustra-
tion, in what follows we estimate the transfer functions 
using a hybrid “semiparametric” approach, whereby 
the predicted future distribution is estimated by the 
empirical distributions of the variables after adjusting 
for changes between the location (e.g., mean), scale 
(e.g., variance), and shape (e.g., skewness) parameters 
of such distributions. The location parameters, μo, μm, 
and μ′m (for Xo, Xm, and X′m, respectively), may be esti-
mated by the mean or median of the data samples. The 
corresponding scale parameters, σo, σm, and σ ′m, may be 
estimated by the standard deviation or the interquartile 
range of the data samples. For the case where Xo and Xm 
have distributions with the same shape, then the bias 
correction strategy simply becomes X̂′o = μo + s

s
o

m

(X′m 
- μm). Likewise, if Xm and X′m have distributions with 
the same shape, then the change factor strategy gives 
the alternative transformation X̂′o = μ′m + ′s

s
m

m

(Xo - μm). 
Surprisingly, these two strategies yield different ex-

Fig. 1. (a,c) Schematic diagrams showing the two main pathways for calibrating 
climate model projections: bias correction and change factor. (b,d) Examples 
of probability density functions (PDF) of the variables involved. The PDF of 
present-day observed (Xo), present-day modeled (Xm), and future modeled 
(X′m) variables are shown as labeled. For illustration purposes, these variables 
have different location and scale but the same shape. Note that the dashed 
orange lines denoting the PDF of calibrated future projected variable (X′o) 
depend upon which pathway is used.
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pressions for the population 
mean of the future observa-
tions: μo + s

s
o

m

(μ′m - μm) for bias 
correction compared to μ′m + 

′s
s

m

m

(μo - μm) for change factor. 
The difference in predicted 
distribution due to the choice 
of strategy is fundamental 
and occurs with whichever 
method is used to estimate 
the transfer functions.

One special case is worth 
noting. If we further as-
sume Xo, Xm, and X′m to have 
equal scale (σo, σm, and σ ′m 
are equal), then for bias cor-
rection, future observations 
of a weather variable are 
estimated by subtracting the 
difference between the mean 
of present-day observations 
and model simulations from 
future model projections. 
This is equivalent to what 
climate modelers refer to as 
“removal of mean bias.” On 
the other hand, for change 
factor, future observations 
are estimated by adding the 
change in the mean of model 
simulations and present-
day observations. This is 
essentially the widely used 
simple technique of “adding 
model anomalies to observa-
tions.” For equal scale, the 
two strategies yield identical 
probability distributions 
for the future observables. 
However, for unequal scale, 
implicit calibration by use of 
“anomalies” can give differ-
ent results depending on the 
pathway.  

The equal scale assumption is hard to justify, 
since variance as well as mean are often found to 
differ between model simulations and observations, 
and to change in climate-model projections (see for 
example Fig. 2.32 in Folland et al. 2001). The location 
and scale approach is therefore more justifiable than 
simply location adjustment for calibration in impact 

assessments. For location and scale adjustment, 
the two calibration strategies can give different 
distributions of future observations—the popula-
tion mean of estimated X̂′o for the two strategies are 
not necessarily identical (Figs. 1b,d). This implies 
that any impact assessments based on these climate 
projections are also likely to differ.

Fig. 2. Maps showing summary statistics for present-day observed (Xo) and 
model-simulated (Xm) summer daily mean air temperatures in Europe: (a) and 
(b) mean (°C); (d) and (e) standard deviation (°C). The difference in the sample 
mean and the ratio of standard deviation are shown in (c) and (f), respectively.
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Example: Calibration of Tempera-
ture Projections for Europe. We 
illustrate the ideas by the calibration of summer (June–
August) daily mean surface air temperatures in Europe 
projected by the Hadley Centre regional climate model 
HadRM3. Daily air temperature is an important vari-
able for many climate change 
impacts, such as drought, 
heat-related mortalities, and 
electricity demand. HadRM3 
has a minimum horizontal 
grid spacing of 25 km and is 
forced at the boundary by the 
output of Hadley Centre cou-
pled ocean–atmosphere glob-
al climate model HadCM3. 
Historical external forcings 
of greenhouse gases, aerosols, 
solar irradiance, volcanic 
eruptions, and ozone, and fu-
ture greenhouse gas concen-
trations from the IPCC SRES 
A1B scenario, are used to 
drive HadCM3. For observed 
surface air temperatures, we 
use the gridded European 
surface observational data 
set E-OBS, which has a grid 
identical to that of HadRM3. 
In this example, we define 
“present day” to be the 30-yr 
period from 1970 to 1999, and 
“future” to be from 2070 to 
2099. For each grid point, the 
location and scale parameters 
of Xo, Xm, and X′m in the trans-
fer functions are estimated 
by their sample mean and 
standard deviation, respec-
tively. The effect of trend over 
these short 30-yr time slice 
periods is negligible com-
pared to natural day-to-day 
variability, and so the values 
may be assumed to be almost 
identically distributed with 
constant location and scale.

We first compare spatial 
maps showing sample statis-
tics of location and scale of 
observed and HadRM3 sim-

ulated present-day temperatures (Fig. 2). Although 
the spatial patterns of observed mean temperatures 
are generally well simulated by HadRM3 (Figs. 2a, b), 
the regional climate model has a warm bias of around 
2°–4°C over southern Europe and has a small cold 
bias over parts of Scandinavia (Fig. 2c). The model 

Fig. 3. (a,b) HadRM3 projected changes in the mean of summer daily mean 
air temperatures in 2070–2099 calibrated by bias correction (BC) and change 
factor (CF) (X′o) relative to present-day observations (Xo) (in °C). (c) Differ-
ence between the changes calibrated by the two strategies [(a) minus (b) in 
°C]. (d)–(f) As in (a)–(c), respectively, but for the 0.99 quantile.
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also overestimates the present-day variance over most 
parts of continental Europe, especially in the south, 
where the standard deviation of modeled daily mean 
temperatures is more than 50% greater than that of 
observed temperatures (Fig. 2f). This comparison 
confirms the need for calibration of both location 
and scale before HadRM3 temperature projections 
are used for any impact assessments.

Because of the warm biases in the climate model 
simulations, the increases in the mean of daily mean 
temperatures in the period 2070–2099 relative to pres-
ent-day observations estimated by the two calibration 
strategies are both lower than the raw model projec-
tions, especially in southern Europe (not shown). The 
warming in mean temperatures estimated by bias cor-
rection (Fig. 3a) is generally lower than that by change 
factor (Fig. 3b), by around 2°C over southern Europe 
(Fig. 3c). To put this 2°C difference in the mean of 
temperatures in context, this is comparable to the dif-
ference in the projected globally averaged temperature 
increase for different emissions scenarios by the models 
in IPCC AR4, for example between SRES scenarios A2 
and B1 (see Fig. 10.4 in Meehl et al. 2007).

For many climate change impacts, changes in the 
tails of distributions of weather variables are often more 
important than changes in the mean. In our case of daily 
temperatures, an example is that the daily number of 
heat-related deaths increases substantially at higher air 
temperatures. Here we examine the changes in the 0.99 
empirical quantile of the daily mean temperature, which 
corresponds to the temperature with a return period of 
approximately one summer (i.e., hottest day of the year). 
For most places, both calibration strategies suggest that 
the increase in the 0.99 quantile between present-day 
and future is larger than the corresponding increase in 
the mean, but they give noticeably and even qualitatively 
different spatial patterns of warming. For bias correction 
(Fig. 3d), the largest increase in the 0.99 quantile occurs 
over northern Europe, including southern Scandinavia, 
northern Germany, the United Kingdom, western Rus-
sia, and also the northern coast of Spain. In contrast, 
the increase is more spatially uniform for temperatures 
calibrated by change factor (Fig. 3e). The warming 
predicted using bias correction is more than 3°C lower 
than that estimated by change factor in southern Europe 
(Fig. 3f). This is mainly related to the difference in the 
mean of temperatures calibrated by the two strategies 
(refer to Fig. 3c). In the north, however, the bias correc-
tion strategy estimates more pronounced warming of 
the 0.99 quantile of temperatures than change factor, 
by up to 4°C in some places. Examination of spatial 

maps of sample skewness statistics (not shown) reveals 
that there are two reasons for such a difference. First, 
HadRM3 simulated present-day temperatures are more 
positively skewed compared to observations in parts of 
this region, a feature observed in simulations of a num-
ber of other regional climate models. Second, HadRM3 
projects temperatures to become even more positively 
skewed with time over northern continental Europe. 
The transfer functions used here have not accounted for 
such differences in shape, and how such differences can 
be calibrated is beyond the scope of this article.

Concluding Remarks. This article has 
identified and discussed the assumptions behind 
two distinct strategies used in calibrating climate 
projections: bias correction and change factor. In an 
example of European temperature projections by a 
regional climate model, we have shown that the two 
strategies give substantially different spatial patterns 
of warming. It is, however, not obvious which strategy 
gives more plausible results for use in impact assess-
ments. This gives rise to an additional source of un-
certainty due to calibration indeterminacy. Previous 
impact assessments have identified various sources 
of uncertainties in impact projections: uncertainty 
in future greenhouse gas emissions, uncertainty 
related to the choices of parameters and structure of 
climate models, uncertainty in impact modeling, and 
uncertainty in adaptation actions. In addition to these 
known uncertainties, impact modelers should also be 
aware of the possible uncertainty associated with the 
choice of calibration strategy and should explore the 
sensitivity of impact projections to different strategies 
as part of their impact assessment. When adopting 
a particular calibration strategy, impact modelers 
should also carefully assess whether the underlying 
assumptions in the calibration method are valid.

Given the importance of calibration in impact 
assessments, further research in this area is clearly 
required. For example, it can be argued that the 
simple assumptions underlying both bias correction 
and change-factor strategies are rather unrealistic, 
and so more rigorous statistical frameworks need to 
be developed and tested (e.g., Bayesian models that 
are capable of predicting true climate by properly 
accounting for model discrepancy and observational 
errors). Furthermore, the bias correction strategy 
presented here assumes no changes in climate model 
biases with time. As this assumption may not be ap-
propriate for certain physical processes—such as the 
relationship between temperature and soil moisture—
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further work is needed to explore the possibility of 
performing calibration taking nonstationarity in 
biases into account.
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