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Previous studies demonstrate statistically significant associations between disease and climate variations, high-
lighting the potential for developing climate-based epidemic early warning systems. However, limitations include
failure to allow for non-climatic confounding factors, limited geographical/temporal resolution, or lack of evalu-
ation of predictive validity. Here, we consider such issues for dengue in Southeast Brazil using a spatio-temporal
generalised linear mixed model with parameters estimated in a Bayesian framework, allowing posterior predic-
tive distributions to be derived in time and space. This paper builds upon a preliminary study by Lowe et al. but
uses extended, more recent data and a refined model formulation, which, amongst other adjustments, incorpo-
rates past dengue risk to improve model predictions. For the first time, a thorough evaluation and validation of
model performance is conducted using out-of-sample predictions and demonstrates considerable improvement
over a model that mirrors current surveillance practice. Using the model, we can issue probabilistic dengue
early warnings for pre-defined ‘alert’ thresholds. With the use of the criterion ‘greater than a 50% chance of
exceeding 300 cases per 100,000 inhabitants’, there would have been successful epidemic alerts issued for 81% of
the 54 regions that experienced epidemic dengue incidence rates in February–April 2008, with a corresponding
false alarm rate of 25%. We propose a novel visualisation technique to map ternary probabilistic forecasts of
dengue risk. This technique allows decision makers to identify areas where the model predicts with certainty a
particular dengue risk category, to effectively target limited resources to those districts most at risk for a given
season. Copyright © 2012 John Wiley & Sons, Ltd.
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1. Introduction

Weather and climate variability often influence the transmission of many infectious diseases, particu-
larly for those spread by arthropod vectors such as malaria and dengue [2]. Some vector-borne diseases
demonstrate seasonal patterns and display inter-annual variability, which can partly be explained by
meteorological factors [3]. Therefore, climate information could potentially be valuable in early warning
systems for epidemic-prone diseases, to provide public health decision makers and the general public
with as much advance notice as possible about the likelihood of an epidemic. This would allow the
implementation of timely preventative measures. Such early warning systems require statistical and/or
biological models that incorporate the impact of climate variables on disease transmission. Because of
time lags involved in the climate–disease transmission system, lagged observed climate variables could
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provide some predictive lead for forecasting disease epidemics. This lead time can be extended by using
forecast climate in disease prediction models. This is a topic of particular interest given the increas-
ing international scientific effort being invested in refinement of seasonal forecasting models and online
access to such predictions (e.g. http://eurobrisa.cptec.inpe.br/).

Recent epidemiological studies have demonstrated statistically significant associations between
climate variations and various infectious diseases (for a review, see [4]) and have highlighted the
potential for developing climate-based early warning systems (e.g. [5]). However, developing statisti-
cal models based on past empirical data that adequately capture associations between climate-sensitive
disease and climatic factors can be problematic. To measure how much variation in disease risk can
be attributed to climatic factors, it is necessary to carefully consider non-climatic confounding fac-
tors to avoid drawing misleading conclusions in estimating climate–disease associations. Some relevant
information can be obtained from census data and other routinely collected sources, but data on many
localised confounding factors are scarce on a scale suitable to address the needs of public health services.
Therefore, statistical climate–disease models need to make due allowance for latent structure relating to
unobserved temporal and/or spatial confounding factors.

Another major barrier to developing such models is the relatively short length of available time series
of good-quality disease data and the lack of spatial resolution at the sub-national level in such datasets.
Epidemics are often sudden and unexpected, and prevention and control strategies need to be accurately
targeted in both time and space if they are to stand a chance of being effective [6]. When sufficient
space–time data are available, it is usually a mixture of multi-scaled observations, differentially aggre-
gated or averaged in time and space. This implies the need to allow for complex correlation structures
in the model formulation and possibly multi-level (hierarchical) structure. Further complications can
also arise when disease–climate relationships exhibit ‘threshold’ or ‘extreme’ dependencies, rather than
average behaviour.

An important further requirement is the evaluation of statistical disease models. Another requirement
is a proper assessment of predictive performance along with an evaluation of the practical application of
the model in a public health context. The tendency of a disease forecasting system to issue false alarms
(issuing an epidemic warning when no epidemic is later observed) or to miss an epidemic can have seri-
ous consequences, not only in terms of morbidity and mortality but also in terms of economic cost and
the willingness of the public to rely on subsequent warnings [7]. In all cases, model performance should
be validated using out-of-sample data [6].

Researchers increasingly apply mathematical process models, as an alternative to statistical models,
to interpret and predict the future incidence and control of infectious diseases (e.g. [8–10]). Whereas sta-
tistical models are driven by data and use empirical (or ‘descriptive’) relationships between the disease
and climate variables, process-based models use largely deterministic differential equations to repre-
sent the dynamical evolution of the disease life cycle and incorporate climate influences as parameters.
As process models are based on underlying physical and biological processes, some have argued that
they are potentially more powerful than their purely data-driven, ‘descriptive’ statistical counterparts.
They can, for example, be applied to regions where reliable data are lacking or to predict future dis-
ease behaviour based on postulated climate scenarios. However, in practice, a lack of full understanding
of the biological mechanisms involved or the omission of significant aspects of the vector or parasite
life cycle (because of the lack of information in the literature) and also the availability of data for
model input and model validation [11] can limit such models. Often, selection of parameter settings is
according to a limited number of site-specific field or laboratory studies, which may not be applicable to
different regions.

Notwithstanding some of the potential theoretical advantages of process-based models, we argue that
such approaches can result in a false determinism. Where the emphasis is on a non-trivial prediction
problem, then the ‘honest’ answer needs to be a probability distribution, and ‘descriptive’ statistical
climate–disease models based on past empirical data can provide exactly that, offering a valuable, viable,
and effective approach to developing practical epidemic early warning systems. Such models have the
advantage of being able to incorporate a sufficiently wide range of both climatic and non-climatic (con-
founding) explanatory variables [12] and make the best use of routinely available data. We also show that
judicious use of sufficiently sophisticated modern statistical modelling methods can address or reduce
the various potential difficulties that may be associated with developing such models, that is, unobserved
confounding factors, complex correlation structures, proper evaluation of predictive power, and so on.

We illustrate this in the context of developing an early warning system for dengue fever in Southeast
Brazil. Brazil is used as a case study to show how a well-specified statistical model, which is capable
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of providing probabilistic forecasts and practically useful early warnings of future and geographically
specific risk of dengue epidemics, can be developed. In the 21st century, Brazil became the coun-
try with the most reported cases of dengue fever in the world. More than three million cases were
reported from 2000 to 2005 [13], representing 78% of all cases reported in the Americas and 61%
of all cases reported to the World Health Organization (WHO). Large areas of Brazil have highly
favourable climate for the proliferation of Aedes aegypti mosquitoes and dozens of metropoles with
high human population densities living in substandard conditions with deficient sanitation services
[13]. Brazil also has some of the worlds best laboratory-based surveillance capabilities for dengue/
dengue haemorrhagic fever [14]. However, data from this surveillance system are not routinely nor
effectively exploited in any early warning systems to predict epidemics. Therefore, Brazil serves
as an excellent ‘test bed’ for which to develop a climate-based early warning system for dengue
epidemics. We focus our analysis on the Southeast region of Brazil where dengue is most prevalent and
there are a large number of densely populated urban centres that could benefit from a climate-informed
dengue early warning system. This is also the region of Brazil where previous work has reported
climate influences to be significantly associated with observed spatio-temporal variability in dengue
risk [1].

Although the specific model details and results in subsequent sections relate to our Brazilian case
study on dengue, we believe that the general methodological framework and considerations we describe
are more widely applicable, both outside of Brazil and to climate-sensitive diseases other than dengue.

2. Dengue

Dengue fever is currently one of the most important emerging tropical diseases in the world in terms
of morbidity and mortality [15, 16]. It is an acute mosquito-borne viral disease characterised by
fever, headache, severe muscle and joint pains (hence commonly referred to as ‘break-bone fever’),
rash, nausea, and vomiting [17]. Most dengue infections do not result in death, but a small portion
develop into the more serious and potentially deadly illness dengue haemorrhagic fever/dengue shock
syndrome. The characteristics of which are spontaneous haemorrhage, increased permeability of the
blood vessels, and circulatory failure, leading to shock. Fatality rates in untreated dengue haemorrhagic
fever/dengue shock syndrome can be as high as 50% [18]. Global incidence of dengue has grown dra-
matically in recent decades, and according to the WHO, about two-fifths of the world’s population are
now at risk, with an estimated 50 million dengue infections worldwide every year. Dengue is caused
by any of the four closely related dengue virus strains or serotypes (DENV-1, DENV-2, DENV-3,
and DENV-4), belonging to the family Flaviviridae [19]. Infection with one serotype provides life-
long immunity against further infection from that same serotype but no protection against the other
serotypes. In fact, researchers have hypothesised that sequential infections with other serotypes
increases the risk of more severe manifestations including dengue hemorrhagic fever and dengue shock
syndrome [20].

The vector responsible for major dengue epidemics is the domestic, container-breeding A. aegypti
mosquito [21]. The resurgence of epidemic dengue fever and the emergence of dengue haemorrhagic
fever in the last few decades have been closely tied with population growth, urbanisation, and air
travel [22, 23]. Dengue incidence is usually associated with warmer, more humid weather. Rainfall may
influence dengue incidence through the filling of containers out in the open (e.g. old tyres), which cre-
ates potential breeding sites for the mosquito, although the subsequent cycle also depends on temperature
and humidity [24]. The occurrence of a dengue epidemic requires a large number of mosquitoes along
with many people with no immunity to one of the four dengue serotypes and an opportunity for the two
to interact. The many potential drivers of dengue, both extrinsic, such as climate, and intrinsic, such
as population immunity, are often difficult to disentangle. This presents a challenge for modelling of
dengue risk in space and time.

Despite significant progress in vaccine development [25, 26], there is no tested and approved vaccine
to protect against dengue. Therefore, disease control and prevention have mainly focused on vector
control activities and surveillance [13, 27]. Although there is no specific treatment for dengue, appro-
priate medical care frequently saves the lives of patients with the more serious dengue haemorrhagic
fever. The current dengue surveillance system in Brazil relies on observing early cases of dengue in
December/January to estimate epidemic potential later in the austral summer [1]. However, this pro-
vides neither quantitative estimates nor a long predictive lead time. The greater the lead time available
for forecasting disease risk, the greater is the opportunity for effective disease risk intervention, such
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as preparing healthcare services for increased numbers of dengue patients and educating populations to
eliminate mosquito breeding sites. As the lead time of a dengue prediction model could potentially be
extended by using climate, or even forecasts of the climate, the development and the evaluation of a
climate-informed dengue early warning system for Brazil is a worthwhile endeavour.

3. Data

3.1. Dengue, demographic, and cartographic data

We obtained dengue fever data (counts of notified cases per calendar month) from January 2001 to
December 2009 at municipality level from DATASUS (http://dtr2004.saude.gov.br/sinanweb/novo/).
The dataset includes all notified dengue cases from hospitals and clinic doctors from both the private
and public health systems. Individual data are locally entered into the electronic information system
and subsequently transmitted to state and national levels [27]. Cases are laboratory confirmed where
possible or otherwise based on syndromic definition. A network of laboratories, capable of diagnos-
ing dengue infections, has been implemented in all Brazilian states. The network is responsible for
confirmation of cases to support epidemiological surveillance [28]. However, this network is not acces-
sible to all municipalities within the states. To address this issue, we aggregated dengue counts to the
lower-resolution microregion level, where a microregion typically consists of one large city and sev-
eral smaller municipalities (there are 160 such defined microregions in Southeast Brazil). This alleviates
problems of misreporting due to variation in availability of health services/epidemiological facilities at
the municipality level.

The Brazilian Ministry of Health define yearly dengue incidence rates (DIR) as the number of new
dengue cases per 100 000 inhabitants for a geographical area. To calculate incidence rates using the
dengue count dataset described, we obtained yearly population estimates for Brazilian microregions from
2001 to 2009 from the Brazilian Institute for Geography and Statistics (IBGE) (http://www.ibge.gov.br/).
These estimates are based on the 2000 census and take into account changing demographic components
such as births, mortality, and migration. Although the models in subsequent sections are specified for
counts of dengue cases, we report results in this paper in terms of DIR for ease of interpretation.

Figure 1a shows the time series of annual DIR for the 2001–2009 period for Southeast Brazil. Two
major epidemics occurred in the late austral summer of 2002 and 2008, whereas considerably fewer
dengue cases were reported in 2004 and 2005. Figure 1b illustrates the spatial distribution of DIR accord-
ing to the three risk categories: high (more than 300 cases per 100 000), medium (between 100 and 300
cases per 100 000), and low incidence (less than 100 cases per 100 000).

We obtained national cartographic data such as altitude and area from IBGE and census data for
microregions related to levels of urbanisation from an aggregated database, SIDRA (http://www.sidra.
ibge.gov.br), which is maintained by IBGE and included variables such as the percentage of urban popu-
lation, households with at least one bathroom, refuse collection, and water supply provided by a network.
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Figure 1. (a) Annual dengue incidence rate (DIR) for Southeast Brazil from January 2001 to December 2009.
(b) Map of low (less than 100), medium (between 100 and 300), and high (greater than 300) dengue incidence

per 100 000 inhabitants per year in each microregion over the period 2001–2009.
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3.2. Climate data

We obtained the observed gridded (2:5ı � 2:5ı latitude–longitude grid) average monthly rate of
precipitation data from the Global Precipitation Climatology Project (GPCP) [29]. The dataset is a
combination of gauge observations with satellite estimates from 1979 to present. We obtained the
reanalysis gridded (2:5ı � 2:5ı latitude–longitude grid) monthly mean surface air temperature data
from the National Centres for Environmental Prediction/National Centre for Atmospheric Research
(NCEP/NCAR) Reanalysis. The NCEP/NCAR Reanalysis project uses a state-of-the-art analysis/
forecast system to perform data assimilation using past data from 1948 to the present [30]. We extracted
precipitation and temperature data from both the GPCP combined rain gauge–satellite dataset and the
reanalysis project for the period 2000–2009 and refer to them as ‘observed’ climate variables in the
remainder of this paper.

We obtained a time series of the Oceanic Niño Index (ONI), defined as the 3-month running mean of
sea surface temperature anomalies in the Niño 3.4 region (120ıW–170ıW and 5ıS–5ıN), based on the
1971–2000 base period, from the NOAA Climate Prediction Centre (http://www.cpc.noaa.gov/products/
analysis_monitoring/ensostuff/ensoyears.shtml). Warm (El Niño) and cold (La Niña) episodes of the
El Niño Southern Oscillation [31] are based on a threshold of ˙0:5ıC for the ONI. During the study
period of interest, we observed the following episodes: weak La Niña (2000–2001), moderate El Niño
(2002–2003), weak El Niño (2004–2005 and 2006–2007), moderate La Niña (2007–2008), and strong
El Niño (2009–2010).

We collated the multi-sourced spatio-temporal datasets using the statistical computing software R [32]
and reconciled data at the microregion level (i.e. dengue, demographic, and cartographic data) and grid-
ded climate data by assigning a grid point to each microregion on the basis of the shortest Euclidean
distance between the microregion centroid and neighbouring grid points.

It should be noted that the nature and the availability of both dengue and climate data for Brazil
mean that the dataset is collated at the relatively coarse spatial resolution of the microregion. Therefore,
the model formulated in subsequent sections will not be able to capture sub-microregion variations in
dengue, which are likely influenced by localised meteorological conditions. Rather, the aim in this paper
is to identify large-scale variations in dengue that could be attributed to seasonal variations in temper-
ature and precipitation, which are, in part, driven by the El Niño Southern Oscillation. That said, the
ability to provide early warnings of epidemics at the microregion level remains valuable from the point
of view of public health decision making and intervention.

4. Model formulation and estimation

Several studies have reported associations between spatial (e.g. [33]) and temporal (e.g. [34,35]) patterns
of dengue and climate. However, these reported associations are not entirely consistent, possibly reflect-
ing the complexity of climatic effects on transmission and/or the presence of non-climatic confounding
factors. Few studies have included non-climatic factors that can affect dengue transmission such as
measures of socio-economic deprivation or levels of urbanisation (e.g. [34, 36, 37]). Many studies do
not account for seasonality in the model (e.g. [38, 39]), which can result in misleading inference about
dengue–climate relationships. Some models include climate-related explanatory variables with multiple
possible time lags (e.g. [40]), which can lead to overfitting [12]. Most studies have not tested models
on out-of-sample data (e.g. [41]). In addition, studies have not always employed appropriate response
distributions for count data for modelling dengue cases (e.g. [42]). Otherwise, they made little allowance
for extra-Poisson variation (overdispersion), which is commonly encountered when modelling disease
counts and requires attention in model fitting [43].

The model developed in this paper responds to the various points raised earlier and, in doing so,
refines approaches used in other related studies (e.g. [44] in spatio-temporal analysis of the relationship
between annual malaria incidence and selected climate covariates at a district level in Zimbabwe). In
particular, this paper builds upon the potential for climate-based dengue early warning systems in Brazil
as reported in a previous preliminary study by Lowe et al. [1], but using extended and more recent data
along with important developments to the earlier model. The latter includes a negative binomial formu-
lation rather than the more common Poisson assumption, which we find necessary to capture residual
overdispersion not accounted for by spatial and temporal random effects, and also incorporates 3-month
lagged dengue risk to significantly improve model predictions by allowing for the dynamic nature of
any evolving epidemic and for unmeasured spatio-temporal factors, such as the introduction of a new
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serotype. Further, we now use 3-month averaged lagged climate information, rather than individual lags,
which enables the use of seasonal 3-month average climate forecasts with a 1-month lead in predictions,
so opening up the potential for a 4-month predictive lead time for dengue epidemics in an operational
public health context. The extended dataset used in this paper also allows, for the first time, a more
rigorous evaluation and validation of model performance using out-of-sample data to test the efficacy of
the model to predict future epidemics. In particular, we suggest here that a valuable benchmark of the
performance of any formulated model is to compare out-of-sample predictions with those obtained from
a model pertaining to a similar prediction lead time, but representing surveillance practice involving only
lagged dengue risk (as is typical public health practice). Finally, the paper goes on to introduce a novel
visualisation technique, not reported elsewhere in this context, to map seasonal probabilistic forecasts of
dengue risk derived from the developed model using pre-defined risk category thresholds. This technique
allows decision makers at the local and regional levels to identify areas where the model predicts with
certainty a particular dengue risk category (high, medium, or low, as defined by the National Dengue
Control Programme in Brazil) and hence effectively target limited resources to those districts most at
risk for a given season.

The basic modelling framework we adopt here is a negative binomial [45,46] generalised linear mixed
model (GLMM), where for each spatial location or microregion, s D .1; : : : ; 160/, and monthly time
index, t D .1; : : : ; 108/, the count of dengue cases, yst , follows a negative binomial distribution with an
unknown scale parameter, �, and mean, �st D est�st . Here, est is the expected number of cases, a known
offset (based upon the population of microregion s at time t multiplied by the global dengue rate for the
whole dataset). Then, �st is the unknown relative risk for microregion s at time t . We then sought a
suitable specification for the log relative risk, log �st , via a linear predictor involving climate covariates,
non-climate confounding factors, and appropriate spatial and temporal random effects as discussed later.

A series of models of varying complexity, using different subsets of variables, were tested in arriving
at a final specification for the form of the linear predictor for log �st . These extensive exploratory analy-
ses included the use of formal model selection algorithms based on the AIC, supplemented by graphical
analyses of fitted values and residuals, examination of model fit with and without climate information,
and consideration of the range of other routine model diagnostics. We do not report that model selection
process in detail here but simply comment on some of the issues that were encountered in the process
and how we decided to resolve them.

First, considering pure time dependence, we included potential terms in t and powers of t into the
linear predictor to allow for any global temporal trend in DIR over the 108-month period covered by
the data (years 2001–2009). We did not find these to be significant during this period in the presence
of the other variables considered. However, DIR does have a marked annual cycle in Southeast Brazil,
which peaks in March. To allow for this, an autocorrelated monthly effect was included in the model
as a categorical variable for month t 0.t/, where t 0.�/ denotes an indicator function that assigns a month
marker to the time index t (t 0.t/ D 1; : : : ; 12). For convenience, we set August as the reference level
(t 0.t/ D 1) because the DIR for this month is generally the lowest, so for September, t 0.t/ D 2 and so
on. An alternative and possibly equally effective approach would have been to use parametric harmonic
terms to model the annual disease cycle, but here, we preferred the potentially more flexible inclusion of
individual autocorrelated monthly random effects.

Second, previous studies on DIR in Brazil (see [47] for further details) have shown dengue to be
significantly associated with a number of climate factors such as temperature, precipitation, and the
ONI, with time-lagged values of these variables. For example, Figure 2 shows scatter plots of precipita-
tion/temperature/ONI and DIR for every month (2001–2009) and microregion in Southeast Brazil. There
is a weak positive association between precipitation and dengue incidence (Figure 2a) and temperature
and dengue incidence (Figure 2b). Further, there is a slight negative relationship between ONI and DIR
(relationship consistent at lags ranging from 2 to 6 months previous, Figure 2c). We included all of these
influences as potential explanatory variables in the linear predictor for log �st . Precipitation and temper-
ature covariate lags 1–3 were all found to be statistically significant, and these time lags are consistent
with previous findings (e.g. [40, 41, 48, 49]). Rather than selecting a particular lag or including all three
lags separately, which could result in overfitting, we combined these variables into 3-month average pre-
cipitation and temperature variables, over the 3 months preceding the dengue month of interest. This is
equivalent to a 2-month lag when considering the mid-point of the 3-month average. As our model is
intended to be used as an early warning system, this aligns with the fact that temperature and precipita-
tion would in practice be obtained from seasonal climate forecasting systems, which are typically issued
as seasonal (e.g. December–February average) rather than monthly forecasts. The AIC model selection
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Figure 2. Scatter plot between log(DIR) and (a) precipitation, (b) temperature (averaged over 3 months previous
to dengue month), and (c) Oceanic Niño Index (ONI) (lagged 4 months previous to local climate variables). Solid
curve, linear model fit; dashed curve, local polynomial regression fit. Note points stratified by calendar month for

dengue incidence rate (DIR).

favoured ONI with lags of both 2 and 6 months prior to the dengue month of interest (or 4 months prior
to the averaged temperature and precipitation effects). We selected ONI with a lag of 6 months prior to
the dengue month of interest for inclusion into the model as this provides increased lead time, which
could be advantageous for a dengue early warning system.

Third, in regard to non-climate factors, we included a range of cartographic, demographic, and socio-
economic variables related to the urban environment (Section 3). Altitude and population density proved
to be most important in line with previous findings on DIR in Brazil (see [47] for further details). We
found altitude to have a significant negative association with the dengue relative risk, whereas population
density was positively associated, as might be intuitively expected.

Fourth, models to predict vector-borne diseases have often included autoregressive time series terms
(e.g. [40,50,51]), based on the idea that current incidence can be partly explained by past values. Clearly,
autoregressive terms with 1- or 2-month lag offer little, if any, advance warning of an impending epi-
demic because in practice the collation of such data may not be feasible in advance of the period
for which the forecast is valid. However, the number of dengue cases observed several months previ-
ously might indicate the presence of increased mosquito populations or the circulation of a new dengue
serotype to which the human population is not immune. A lagged dengue relative risk term could then
act as a surrogate for unobserved and unmeasured spatio-temporal confounding factors in the model.
Accordingly, we tested the variable ´st D log .yst�3=est�3/, the log ratio of observed to expected
dengue cases, that is, the log standardised morbidity ratio, lagged by 3 months, in the model. This lag
was selected as a compromise between the longest lag plausible to provide predictive skill and the short-
est lag possible to allow enough time to provide an early warning of a dengue epidemic. For example, a
dengue prediction for March would be based on the dengue risk reported in the previous December. As
the inclusion of an autoregressive term causes the first three observations in each microregion to be lost,
we fitted the model to the dataset for the period April 2001–December 2009 (105 months).

Finally, unobserved confounding factors such as population immunity, quality of healthcare services,
and local health interventions are very likely present and important. The inclusion of unstructured ran-
dom effects in the linear predictor of dengue relative risk can help to account for such unknown or
unobserved confounding factors in the disease system. At the same time, it is appropriate to include some
additional structured random effects into the model to allow for temporal and/or spatial correlation [52].
Such random effects introduce an extra source of variability (a latent effect) into the model, which
can assist in modelling overdispersion in addition to the single-scale parameter in the negative bino-
mial model. Additionally, spatially structured random effects allow for correlated heterogeneity between
microregions. We can impose a spatial dependency structure by assuming a prior distribution for the
spatial effects, which takes the neighbourhood structure of the area under consideration into account.
Prior information that allows for local geographical dependence causes the relative risks in an area to be
shrunk towards a local mean, according to the relative risks in neighbouring areas [53]. A typical choice
for a spatially structured prior is a conditional intrinsic Gaussian autoregressive (CAR) model [54]. The
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short annual time series precluded the inclusion of spatio-temporal dependence in the model in the form
of random effects representing interactions between time and the different geographic zones.

When all of the preceding are taken into account, the final model to emerge from the model selection
process comprised a combination of non-climate covariates, lagged climate variables and dengue risk,
and spatially and temporally structured and unstructured random effects. We formulated the model as a
Bayesian GLMM as follows:

yst j�s; �s; !t 0.t/ � NegBin.�st D est�st ; �/; s D 1; : : : ; 160; t D 1; : : : ; 105

log.�st /D log.est /C log.�st /

D log.est /C ˛C
3X
jD1

ˇjxjst C

2X
jD1

�jwjst C ı´st C �s C �s C!t 0.t/

˛ � U.�1;C1/

ˇj � N.0; 106/; j D 1; : : : ; 3

�j � N.0; 106/; j D 1; 2

ı � N.0; 106/

�s � N
�
0; �2�

�

�sj�j¤s � CAR
�
�2�
�

!1 D 0; !t 0.t/j!t 0.t/�1 � N
�
!t 0.t/�1; �

2
!

�
; t 0.t/D 2; : : : ; 12

	� D 1=�
2
� � Ga.0:5; 0:0005/

	� D 1=�
2
� � Ga.0:5; 0:0005/

	! D 1=�
2
! � Ga.0:5; 0:0005/

� � Ga.0:5; 0:0005/:

The variables xjst ; .j D 1; : : : ; 3/, represent the selected climate influences: precipitation (j D 1)
and temperature (j D 2) averaged over the previous 3 months (equivalent to a 2-month lag) and the
ONI 4 months previous to the local climate variables (j D 3). The variables wjst are altitude (j D 1)
and population density (j D 2). Variable ´st is the log dengue standardised morbidity ratio 3 months
previously. Spatial random effects are composed of spatially unstructured �s and structured compo-
nents �s . The spatially unstructured random effects, �s , are assigned independent diffuse Gaussian
exchangeable priors, and the structured random effects, �s , are assigned a CAR model prior. As the
formulation of the CAR used here is improper, we maintained identifiability by applying a ‘sum to zero’
constraint to �s; s D 1; : : : ; 160, and assigning a uniform flat prior U.�1;C1/ to the model inter-
cept, that is, a prior distribution that assigns equal likelihood on all possible values of the parameter.
This is equivalent to re-centering �s about zero (with equivalent adjustment to the intercept parameter)
at the end of each MCMC iteration, leading to a more stable numerical behaviour (see [55] for more
details). We included a first-order autoregressive month effect !t 0.t/ with month 1 (August) set to 0
(!1 D 0) and subsequent months following a random walk or first difference prior [56] in which each
effect is derived from the immediately preceding effect. We take independent diffuse Gaussian priors
(mean 0, precision 1 � 10�6 ) for the fixed effects ˇj .j D 1; : : : ; 3/, �j .j D 1; 2/, and ı. We used a
gamma prior for the scale parameter �. Following [57], we used weakly informative independent gamma
hyperpriors with shape parameter 
 D 0:5 and inverse scale parameter � D 0:0005 for the precisions�
	� D 1=�

2
� ; 	� D 1=�

2
� ; 	! D 1=�

2
!

�
of the hyperpriors for the spatial and temporal random effects.

We fitted the Bayesian model via MCMC sampling using R in conjunction with the WinBUGS
software [58] and the R2WinBUGS package [59] (see Supporting Material for the model code). We
generated two parallel MCMC chains, each of length 25 000 with a burn-in of 20 000 and thinning of
10 to obtain 1000 samples from the joint posterior distribution. We standardised the fixed explanatory
variables for precipitation, temperature, altitude, and population density to zero mean and unit variance,
which aids MCMC convergence. Inspection of MCMC samples from the ‘log-posterior’, that is, samples
from the logarithm of the joint posterior distribution of all model parameters, evaluated at each MCMC
iteration gives an indication of convergence because the joint posterior distribution is a global summary
of all model parameters. This confirmed satisfactory convergence of the overall model (Figure 3). To
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Figure 3. Trace plot of log-posterior distribution for 1000 samples from the model.

Table I. Posterior mean and convergence diagnostic OR for covariates and hyperparameters associated with
the spatial and seasonal random effects.

Mean 95% CI OR

Precipitation ˇ1 0.035 Œ0:246; 0:387� 1.029
Temperature ˇ2 0.503 Œ0:435; 0:580� 1.071
Oceanic Niño Index ˇ3 �0:412 Œ�0:456;�0:368� 1.000
Altitude �1 �0:964 Œ�1:119;�0:812� 1.023
Population density �2 0.055 Œ�0:041; 0:174� 1.056
Lagged dengue risk ı 0.004 Œ0:205; 0:222� 1.003
Spatial unstructured hyperparameter �2� 0.001 Œ0:000; 0:010� 1.091

Spatial structured hyperparameter �2� 1.968 Œ1:533; 2:562� 1.001
Seasonal structured hyperparameter �2! 0.365 Œ0:186; 1:085� 1.000
Overdispersion parameter ��1 2.127 Œ2:075; 2:183� 1.001

We obtain Credible Intervals (CI) from the 2.5% and 97.5% quantiles of the distribution.

check convergence of the individual parameter estimates, we calculated the potential scale reduction OR
(see [60] for details; results shown in Table I; note that values below 1.1 are considered to be acceptable
in most cases, [61]).

Table I summarises the posterior mean parameter estimates. Note first that the overdispersion param-
eter of the negative binomial (i.e. the reciprocal of the scale parameter, �) has a posterior mean value
of 2.127 with a 95% credible interval (CI) of Œ2:075; 2:183�. So clearly, the estimated overdispersion
parameter is very significantly different from 0 (which is the value corresponding to the Poisson special
case of the negative binomial). We are therefore confident that the negative binomial formulation is nec-
essary to account for extra-Poisson variation in this dataset over and above that can be accounted for by
the log-normal spatial and temporal random effects included in the linear predictor. When we turn to the
other parameters in Table I, in all cases (except for population density), the 95% CI does not contain 0.
This table also includes posterior means and 95% CIs for the hyperparameters, relating to the variances
for both spatially structured and unstructured random effects. In both cases, the CIs do not contain 0,

ω̂
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Figure 4. Posterior mean estimates (circle) and 95% CIs (bars) for autocorrelated monthly random effects O!t 0.t/.
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providing clear evidence that both of these types of spatial random effects are contributing significantly
to the model fit. The same is true for the ‘seasonal’ hyperparameter relating to the variance of the autocor-
related monthly random effects, again showing that these effects are important in the model even given
the presence of the other climate covariates in the model. So although we acknowledge that there will
inevitably be some confounding between the climate effects and the annual cycle effects, both are impor-
tant in the model and in predictions made from it. Figure 4 shows the posterior means and 95% CIs for
the autocorrelated monthly random effects !t 0.t/ in the model across the year. Note that we set calendar
month t 0.t/D 1 (August) as the reference level, that is, its effect is aliased in the model intercept ˛.

Figure 5a compares observed DIR and fitted posterior mean DIR for all 160 microregions for the
105-month period (April 2001–December 2009). Despite the large variability, the superimposed scat-
ter plot smoother indicates strong overall positive association between observed and model fit DIR.
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Figure 5. Observed and model fit dengue incidence rates (DIR) at the linear predictor level for all months (105)
and microregions (160). Dashed curve, local polynomial regression fit. (b) Total observed (black line) and model

fit (grey line) DIR from April 2001 to December 2009.

Figure 6. Multiplicative decomposition of the dengue relative risk map in Southeast Brazil into (a) the climate
component explained by precipitation, temperature, and ONI and (b) the dengue relative risk 3 months previ-
ous. (c) Model fit and (d) observed dengue incidence rates (DIR) in Southeast Brazil for February–April in 2005
(non-epidemic year, row 1) and 2008 (epidemic year, row 2). DIR category boundaries defined by 50, 100, 300,

and 500 cases per 100 000 inhabitants.
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Figure 5b shows the temporal evolution of the fitted posterior mean DIR compared with the observed
DIR for Southeast Brazil as a whole. The model is able to correctly detect the inter-annual variability
over the period. The model captures well the magnitude of the DIR in the peak season (February–
April, FMA) in 2001, 2006, 2007, and 2008. However, the model underestimated the DIR in 2002 and
overestimated it in 2004 and 2009, for example.

Figure 6 shows the decomposition of the dengue relative risk across the southeast region into the cli-
mate components (exp.ˇ1x1st C ˇ2x2st C ˇ3x3t /, Figure 6a) and the dengue risk 3 months previous
(exp.ı´st /, Figure 6b). This allows us to identify the relative contribution of the spatio-temporal covari-
ates in the model and their spatio-inter-annual variability for the peak dengue season FMA in 2005 (a
non-epidemic year, row 1) and 2008 (an epidemic year, row 2). Figure 6c,d shows the spatial distribution
of the model fit DIR (including all data, parameter estimates, and random effects) and the observed DIR,
respectively.

5. Predictions for dengue epidemics

To quantify the predictive benefit of the model and to ensure the efficacy of the modelling framework to
public health decision makers, it is important to assess how well the developed model can predict future
and also geographically specific dengue epidemics. For this purpose, we fitted the model to data from
April 2001 to December 2007 and then derived posterior predictive distributions [62] for dengue counts
for the out-of-sample data from January 2008 to December 2009.

The current monitoring system in Brazil relies on observing an increase in early cases around 3 months
prior to the onset of the peak dengue season. To test if the spatio-temporal model developed in the pre-
vious section performs better than current practice, we compare that model with a simple model that
essentially reflects current dengue surveillance in Brazil, that is,

yst � NegBin.�st ; �/

log�st D log est C ˛C ı´st ;

with the expected number of cases est as the model offset and the variable ´st D log .yst�3=est�3/
being the log of the ratio of observed to expected cases lagged by 3 months, as previously defined. We
will refer to this as the current surveillance model (CSM). Note that this is a sub-model of the GLMM
specified the previous section.

The out-of-sample posterior predictions for January 2008–December 2009 from the GLMM and
CSM were compared with observations for each of the 160 microregions in Southeast Brazil. Figure 7

Figure 7. (a) Observed dengue incidence rates (DIR), (b) predicted DIR using GLMM, and (c) predicted
DIR using current surveillance model for February–April season in 2008 (row 1) and 2009 (row 2). Category

boundaries defined by 50, 100, 300, and 500 cases per 100 000 inhabitants.
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shows the spatial distribution of observed and predicted DIR using both models for the FMA season
2008–2009. Although the GLMM has a tendency to overpredict DIR in certain areas, the model is better
able to capture instances of very high DIR across the southeast region. In general, the CSM predicts
low to medium DIR for most of the region even when high DIR is observed. Despite some false alarms
(i.e. high DIR predicted when low DIR observed), there are more instances where the GLMM success-
fully detected high DIR compared with the CSM (e.g. east coast 2008, Figure 7.1a–c). Overall, the CSM
fails to capture the observed DIR behaviour across the region.

In general, dengue warnings are most useful at the microregion level, to allow local governments to
make decisions on resource allocation. With this in mind, it is useful to select some key large microre-
gions in Southeast Brazil for further inspection. We chose Belo Horizonte (population of 4 932 777) and
Rio de Janeiro (population of 11 554 872) as they contain the capital cities of the states of Minas Gerais
and Rio de Janeiro, respectively. As São Paulo experienced comparatively low DIR during the out-of-
sample period, we selected another large microregion in that state: São Jose dos Campos (population
of 1 381 846). Figure 8 presents the observed DIR, the mean of the posterior predictive distribution, and
95% CIs, calculated using the 2:5% and 97:5% quantiles of the posterior predictive distribution, for these
three microregions: Belo Horizonte, Rio de Janeiro, and São Jose dos Campos. In general, the GLMM
better captured the temporal behaviour of DIR than the CSM. The GLMM was also able to predict that
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Figure 8. Time series of observed (solid line), posterior predictive mean (dashed line), and 95% CIs for posterior
predictive distribution of log(DIR) from January 2008 to December 2009 using generalised linear mixed model
(column 1) and current surveillance model (column 2) for selected microregions: (a) Belo Horizonte, (b) Rio de

Janeiro, and (c) São Jose dos Campos. DIR, dengue incidence rates.
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Figure 9. Posterior predictive distributions and probability of exceeding the pre-defined epidemic threshold of
300 cases per 100 000 inhabitants (shaded area) for the microregion Rio de Janeiro, February–April 2008 using
(a) generalised linear mixed model (p.DIR/ > 300 D 0:75) and (b) current surveillance model (p.DIR/ >

300D 0:37). Arrow indicates observed dengue incidence rates (DIR).

the dengue season for Belo Horizonte was equally high in 2009 as in 2008 (Figure 8.1a). For microre-
gions Rio de Janeiro and São Jose dos Campos, the GLMM overpredicted the 2009 season but again
better captured the temporal behaviour in dengue than the CSM (Figure 8.1b, 1c, 2b).

We can use the GLMM and the CSM to predict the probability of dengue exceeding a pre-defined
epidemic threshold in each microregion. As we can obtain the posterior predictive distribution for each
microregion (rather than a point estimate), we can calculate the probability of exceeding an epidemic
threshold. We can base the decision to trigger an alert on the probability of exceeding the threshold being
greater than a specified alert level (e.g. a probability of exceedance greater than 50%). As an example,
we consider the event of dengue incidence exceeding 300 cases per 100 000 inhabitants (DIR > 300;
high incidence threshold defined by the National Dengue Control Programme in Brazil). In March 2008,
a serious epidemic occurred across parts of Brazil, which originated in Rio de Janeiro. As a further
illustration of the weakness of the CSM as a prediction tool, it is interesting to note that the posterior
predictive probability of DIR > 300, obtained from the CSM, is less than 45% for all microregions
during the major epidemic in FMA 2008. On the other hand, the GLMM highlights 44 microregions as
having more than a 50% chance of DIR > 300 (note that 54 microregions experienced DIR > 300). For
example, in Rio de Janeiro, the CSM gave a probability of exceeding 300 cases per 100 000 inhabitants
of 0:37, whereas for the GLMM, the probability of exceedance was 0.75 (Figure 9).

Although the GLMM produces a considerable number of false alarms compared with the CSM, it is
capable of detecting elevated levels of DIR, which is important for an early warning system to help direct
the allocation of resources to cope with area-specific dengue epidemics. We conclude that the GLMM
is an improvement to current practice and that the inclusion of climate information and observed and
unobserved confounding factors improves the performance of the model. The remainder of the paper
focuses on the usefulness of the developed model to public health decision makers.

6. Probability decision thresholds

One way to evaluate probabilistic forecasts of any event is to consider the set of deterministic binary
forecasts obtained by choosing a range of probability decision thresholds [63]. We can assess the ability
of the GLMM to predict dengue epidemics across Southeast Brazil during the 2008 epidemic (FMA
season) by comparing observed DIR for the 3-month season FMA 2008 with model predictions with
varying probability decision thresholds. During this season, 54 of the 160 microregions in Southeast
Brazil experienced an ‘epidemic’ (DIR > 300). A 2 � 2 contingency table then provides information
on the overall predictive skill of the warning system given a specific threshold. For example, given a
probability decision threshold of 60%, the proportion correct (PC), defined as the proportion of the 160
microregions for which the prediction correctly anticipated the subsequent epidemic or non-epidemic,
.a C d/=.a C b C c C d/, was 76%. The hit rate (HR), the proportion of epidemics that was cor-
rectly predicted (a=.a C c/, also known as sensitivity), was 57%. Conversely, the false alarm rate
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Table II. Summary of contingency table results for observed dengue incidence exceeding epidemic threshold
of 300 cases per 100 000 inhabitants at varying probability decision thresholds (60%, 50%, and 40%) for the
160 microregions for FMA 2008 using GLMM.

Threshold (%) a b c d PC (%) HR (%) FAR (%)

60 31 13 23 93 76 57 12
50 44 27 10 79 77 81 25
40 49 36 5 70 74 91 34

a, the number of events correctly forecast to occur (hits); b, the number of events incorrectly forecast to occur (false
alarms); c, the number events incorrectly forecast not to occur (misses); d, the number of events correctly forecast not
to occur (correct rejections); PC, proportion correct, HR, hit rate; FAR, false alarm rate.

(FAR), the proportion of epidemics that were predicted but did not occur (b=.b C d/, also known
as 1-specificity), was 12% (Table II). When the probability decision threshold was lowered to 40%,
PC D 74%, HR D 91%, and FAR D 34%. When the probability decision threshold is lowered, the HR
for the region increases but so does the FAR.

Clearly, a single set of binary forecasts does not provide a satisfactory basis for assessment of the
quality of the forecasting system [64]. This is because it shows the performance of the system at only
a single probability decision threshold. A complete description of predictive skill requires verification
over the full range of possible thresholds. An analysis tool that accomplishes this is the ROC graph of the
HR against the FAR (or sensitivity against 1� specificity) for different decision thresholds. As the prob-
ability decision threshold varies from high to low (moving from left to right), HR and FAR vary together
to trace out the ROC curve. Perfect discrimination is represented by the point .0; 1/ where HRD 100%
and FAR D 0%. The diagonal HR D FAR represents zero skill, that is, the forecasting system performs
as well as random guessing. The area under the modelled ROC curve, abbreviated AUC [65], is a widely
used ROC-based measure of skill. AUC characterises the quality of a forecast system by describing the
system’s ability to anticipate correctly the occurrence or non-occurrence of pre-defined events [66]. The
possible range of AUC is Œ0; 1�. Zero skill is indicated by AUC D 0:5, that is, area under the diagonal
HRD FAR. For perfect skill, AUCD 1.

Figure 10a,b shows the ROC curve for dengue epidemics during the FMA season 2008 using the
GLMM (AUC D 0:86) for the 160 microregions in Southeast Brazil and also the ROC curve for
the CSM (AUC D 0:82), respectively. The comparison of the two ROC curves emphasises the point

Figure 10. ROC curve for binary event of observed dengue incidence rates exceeding the epidemic thresh-
old of 300 cases per 100 000 inhabitants for February–April 2008 using (a) generalised linear mixed model
(AUCD 0:86) and (b) current surveillance model (AUCD 0:82). Numbers indicate values of probability thresh-
olds along the curve, and circles indicate the position of an ‘optimal’ ROC cut-off, defined as the point on the

curve closest to the point of perfect discrimination .0; 1/.
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discussed in the previous section that the CSM is a lot more conservative than the GLMM. For exam-
ple, given a probability threshold greater than 45%, no epidemic warnings or false alarms would have
been issued for the FMA season 2008. With the CSM, to have any chance of predicting an epidemic
correctly, one must use unacceptably low probability decision thresholds of less than 25%. Optimal
probability decision thresholds are sometimes determined as the point where the ROC curve intersects
the negative 45ı line (where sensitivity D specificity or HR D 1 � FAR) or the point where the dis-
tance from the HR D FAR line is greatest [67]. For example, an optimal probability decision threshold
for the GLMM, defined as the point on the ROC curve closest to the point of perfect discrimination,
is between 40% and 50% (marked with a circle in Figure 10a). In practice, the choice of epidemic
threshold and probability decision thresholds should be decided on the basis of expert opinion and
available resources.

7. Presenting dengue forecasts to decision makers

If a ‘forecasting system’ is capable of producing probabilistic forecasts over a geographical area, we can
geographically display these forecasts in the form of a map. This may be useful for targeting resource
allocation to areas most at risk. To communicate information contained in a probabilistic forecast, we
adopt a new method for visualising ternary probabilistic forecasts, that is, forecasts that assign proba-
bilities to a set of three mutually exclusive and complete outcomes (e.g. low, medium, and high risk).
This method is described in more detail in [68]. The idea is to consider a ternary forecast as a point in
a triangle of barycentric coordinates. This allows a unique colour to be assigned to each forecast from
a continuum of colours defined on the triangle. Colour saturation increases with information gain rel-
ative to the reference forecast. This provides additional information to decision makers compared with
conventional methods used in seasonal climate forecasting, where one colour is used to represent one
forecast category on a forecast map (e.g. red = ‘dry’).

As we can derive posterior predictive distributions for DIR from the model for each microregion and
month, we can calculate the probability of dengue risk falling into pre-defined categories. The Brazilian
Ministry of Health is interested in areas where DIR 6 100, indicating low risk; 100 < DIR 6 300, indi-
cating medium risk; and DIR> 300, indicating high risk. Using this new method, we can produce maps
in which the forecast at each geographical location is expressed as a colour determined by a combination
of three probabilities.

Given the pre-defined categories boundaries, the model can produce probabilistic forecasts, p1
(probability of low-risk category), p2 (probability of medium-risk category), p3 (probability of high-
risk category), that DIR will be in each category at the forecast time. The probability forecast can be
regarded as pD .p1; p2; p3/ with the constraints p1Cp2Cp3 D 1 and 06 pi 6 1; 8i . The particular
forecast qD .q1; q2; q3/ corresponds to the case where the forecaster’s state of knowledge is ‘no better’
than the historical observed distribution. For example, if the forecaster had no knowledge other than the
observational record, he or she could issue the same forecast q each year. Here, q will be referred to as
the reference forecast, a benchmark distribution with which all other forecasts can be compared.

According to the observed distribution for the FMA season 2001–2007, 65% of the values fell below
DIR D 100, 12% fell between DIR D 100 and DIR D 300, and 23% fell above DIR D 300 (see density
plot in Figure 11). As the categories apply to a dengue rate (cases per 100 000 inhabitants), rather than
absolute counts, the category boundaries are the same for each spatial location. Therefore, the refer-
ence forecast q becomes qD .0:65; 0:12; 0:23/. When representing probabilistic forecasts using colour,
determined from a point in a triangle of barycentric coordinates [68], we can locate the reference fore-
cast (�) at a point that satisfies these three probabilities (triangle in Figure 11). Using these category
boundaries, we assign blue to the low-risk category, yellow to the medium-risk category, and red to the
high-risk category.

Figure 12a presents a probabilistic forecast map of DIR for FMA season 2008 using the GLMM.
Figure 12b shows the observed DIR category for each microregion for comparison. For the FMA season
2008, the GLMM would have correctly forecast high DIR for Rio de Janeiro and microregions along the
east coast and in the west of the region (darker shades of red) and would have correctly forecasted low
DIR in the south (darker shades of blue). The map also shows areas where the model was uncertain as to
which dengue category might be observed (pale shades). Communicating information contained within
a probabilistic forecast presents a challenge. It is hoped that this visualisation method may facilitate the
interpretation of the probabilistic forecasts of DIR from the model for public health decision makers.
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Figure 11. Kernel density of February–April dengue incidence rates (DIR) in Southeast Brazil 2001–2007 with
pre-defined category boundaries (dashed lines) of 100 and 300 cases per 100 000 inhabitants (note logarithmic
scale) and ternary phase diagram with corners representing ‘low’ p D .1; 0; 0/, ‘medium’ p D .0; 1; 0/, and

‘high’ pD .0; 0; 1/ dengue risk. � marks location of the reference forecast qD .0:65; 0:12; 0:23/.

Figure 12. (a) Probabilistic forecast using generalised linear mixed model and (b) corresponding observed cate-
gories for February–April 2008. Category boundaries defined as 100 and 300 cases per 100 000 inhabitants. DIR,

dengue incidence rates.

8. Discussion

This paper highlights the potential for incorporating climate information into a spatio-temporal dengue
epidemic early warning system for Southeast Brazil. The use of climate variables in conjunction with
other factors in a GLMM improves on current practice for dengue surveillance and control in Brazil. This
work builds on several previous climate and health studies by moving away from simple models at the
country level, involving only temporal variations in climate and disease, to a more sophisticated spatio-
temporal model providing probabilistic predictions that can aid decision making and target resource
allocation. This model allows for extra-Poisson variation via a negative binomial formulation, for the
annual cycle via temporally correlated month effects and for unobserved confounding factors and spatial
correlation through spatially unstructured and spatially structured random effects.

We fitted the GLMM using a Bayesian estimation framework, allowing posterior predictive distribu-
tions for disease risk to be derived at each spatial location for a given month or season. This allowed
probabilistic forecasts to be issued. We conducted an evaluation of the forecast skill of dengue epidemic
warnings using out-of-sample data and compared the model with a simple conceptual model of cur-
rent practice, on the basis of dengue cases 3 months previously. We found that the developed model
including climate, past dengue risk, and observed and unobserved confounding factors enhanced dengue
predictions compared with model based on past dengue risk alone.
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A major obstacle to developing a climate-driven dengue model is the lack of high-quality climate
and disease data over long periods. A further disadvantage is that the available dengue data are not
broken down by virus type. Serological information could be useful to indicate the periodicity of cir-
culating serotypes (DENV-1, DENV-2, DENV-3, DENV-4), which influences population immunity and
hence the occurrence of epidemics. Further, as temperature and precipitation influence the abundance
and the transmission potential of A. aegypti, it would be advantageous to include entomological data in
the analysis. However, this information was unobtainable.

Another potentially important component missing from the model is the seasonal movement of human
hosts around Brazil. The proximity matrix used to formulate the CAR prior for the spatially structured
random effects in the GLMM assumes a simple local structure where each microregion is dependent
only on its neighbours. However, certain areas may be more closely related, in terms of dengue trans-
mission, to remote areas connected by air or road transport links, rather than neighbouring microregions.
The IBGE have released a new study entitled ‘Areas of Influence of Cities’ based on research into the
Brazilian urban network. A hierarchy of urban centres is defined on the basis of the flow of good and ser-
vices, including air and road travel. A proximity matrix based on this hierarchical matrix might improve
the correlation structure within the model.

The spatio-temporal hierarchical model is intended to become part of a newly established climate
and health observatory in Brazil (http://www.inpe.br/noticias/arquivos/pdf/observatorium.pdf). How-
ever, before implementing such an operational system, we need to consider several technical issues.
In practice, observed climate could be replaced by climate forecasts, which might extend the lead time
beyond that offered by using lagged observations. By replacing observed with forecast climate variables
in the model, we could make a dengue prediction several months ahead of the dengue season of interest.
For example, to predict dengue incidence for March 2013, the model could be run in November 2012
using the observed ONI for August–October 2012 (6-month lag) and precipitation and temperature fore-
casts for December–February 2012–2013 issued in November 2012 (Figure 13). The dengue risk at the
time of forecast (e.g. November) could be used as a best guess for dengue risk 3 months previous to
the month of interest (e.g. March). This would provide a 4-month lead time, which could allow time
for the allocation of resources to interventions such as preparing healthcare services for increased num-
bers of dengue patients and educating populations to eliminate mosquito breeding sites. However, the
efficacy of a climate-based epidemic early warning system will depend on the skill of the climate fore-
casting system. One such system that is operational in Brazil and shows some skill in Southeast Brazil is
the EUROBRISA initiative [69], which is a multi-model combined and calibrated system that produces
1-month lead precipitation forecasts for the following 3-month season.

Probability alert thresholds should be carefully designed to minimise false alarms and false negatives
(i.e. failing to predict that an epidemic will occur) and should correspond with the epidemic response
capabilities of the region where the model might be implemented. An important issue is the considera-
tion of future interventions in the model framework. If the Brazilian health services respond to an early
warning of a dengue epidemic and take measures to reduce the impact, an apparent false alarm may in
fact be the result of a successful intervention.

Figure 13. Schematic to show time lags between the dengue month of interest (e.g. March), 3-month aver-
age precipitation and temperature lagged 2 months prior to dengue month (e.g. December–February), and
ONI lagged 6 months prior to dengue month (e.g. August to October, 4 months prior to average precipita-
tion and temperature). A 4-month lead time could be gained using a forecasting system such as EUROBRISA

(http://eurobrisa.cptec.inpe.br/).
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