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ABSTRACT: This article examines whether the temporal clustering of flood events can be explained in terms of climate
variability or time-varying land-surface state variables. The point process modelling framework for flood occurrence is
based on Cox processes, which can be represented as Poisson processes with randomly varying rate of occurrence. In the
special case that the rate of occurrence is deterministic, the Cox process simplifies to a Poisson process. Poisson processes
represent flood occurrences which are not clustered. The Cox regression model is used to examine the dependence of
the rate of occurrence on covariate processes. We focus on 41 stream gauge stations in Iowa, with discharge records
covering the period 1950–2009. The climate covariates used in this study are the North Atlantic Oscillation (NAO) and
the Pacific/North American Teleconnection (PNA). To examine the influence of land-surface forcing on flood occurrence,
the antecedent 30 d rainfall accumulation is considered. In 27 out of 41 stations, either PNA or NAO, or both are selected
as significant predictors, suggesting that flood occurrence in Iowa is influenced by large-scale climate indices. Antecedent
rainfall, used as a proxy for soil moisture, plays an important role in driving the occurrence of flooding in Iowa. These
results point to clustering as an important element of the flood occurrence process. Copyright  2012 Royal Meteorological
Society
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1. Introduction

The idea that rainfall cells cluster into mesoscale rain
areas can be dated back to the work of Le Cam (1961).
Because of the clustered nature of rainfall (Kavvas and
Delleur, 1975; Gupta and Waymire, 1979; Smith and
Karr, 1983), it is generally not appropriate to describe
the occurrence of storms as a Poisson process. The need
to reproduce the observed clustered behaviour of storm
occurrences has resulted in advances in stochastic mod-
elling of rainfall (Kavvas and Delleur, 1981; Waymire
and Gupta, 1981; Waymire et al., 1984; Ramirez and
Bras, 1985; Smith and Karr, 1985; Rodriguez-Iturbe
et al., 1987; Istok and Boersma, 1989; consult Onof et al.
(2000) for an overview). Models describing clustering of
flood occurrence have also been developed (Cervantes
et al., 1983; Smith and Karr, 1986; Kavvas, 1987; Futter
et al., 1991).

Recent studies have also examined clustering in the
occurrence of extratropical and tropical storms (Mailier
et al., 2006; Vitolo et al., 2009; Villarini et al., 2010).
These studies have pointed to clustering as a significant
feature of the storm occurrence process. More generally,
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the question of whether hydrometeorological events (e.g.
heavy rainfall, floods, winter storms, heat waves) cluster
is not only of high scientific interest but has also
large economic repercussions (Mailier et al., 2006; Vitolo
et al., 2009).

The point process modelling framework (Cox and
Isham, 1980; Karr, 1991) for flood occurrence is based
on Cox processes, which can be represented as Pois-
son processes with randomly varying rate of occur-
rence. In the special case that the rate of occurrence is
deterministic, the Cox process simplifies to a Poisson
process. Poisson processes represent flood occurrences
which are not clustered. Among the models proposed
and developed over the past 30 years, the Cox regres-
sion model provides a powerful statistical framework to
check whether the rate of occurrence of a counting pro-
cess depends on covariate processes. Smith and Karr
(1986) introduced the Cox regression model for flood
occurrences in which the rate of occurrence depends
on time-varying covariate processes. Despite its power
and utility, the Cox regression model has received little
attention by the hydrometeorological community (Smith
and Karr, 1983, 1986; Futter et al., 1991; Maia and
Meinke, 2010).

In this study, we examine the temporal clustering
of flood events in Iowa. We focus on Iowa because
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flood events are responsible for large economic dam-
age, as exemplified by the multi-billion dollar losses
resulting from the 1993 and 2008 floods (Kunkel et al.,
1994; Otto, 2009). Iowa also represents an interest-
ing study site, with almost half of the state draining
into the Missouri to the west, and to the Missis-
sippi to the east. We build on the work by Smith
and Karr (1986), by performing flood frequency anal-
ysis using the Cox regression model, and including
time-varying predictors related to climate variability
and/or time-varying land-surface state variables, like soil
moisture.

The main issues of this study focus on:

1. characterization of clustering of the flood occurrence
process;

2. examination of the time-varying climate and land-
surface state variables that could be useful in mod-
elling the rate of occurrence of flooding;

3. assessment of the utility of the Cox regression model
in flood frequency studies

This article is organized as follows. In the next
section, we present the Cox regression model, followed
by Section 3 in which we describe the flood peak data
and the predictors. Section 4 presents the results of our
analyses, while Section 5 summarizes the main points of
this study.

2. Cox regression model

A marked point process model for flood occurrence and
magnitude can be written as:

{Tij , Xij ; i = 1, . . . n; j = 1, . . . , Mi} (1)

where n is the number of years of record, Mi is the
number of flood peaks (see Section 3 for their definition)
during year i, Tij is the time of the j th flood during
year i and Xij is the magnitude of the j th flood during
year i.

We can describe the point process using a counting
process representation

Ni(t) =
Mi∑

j=1

1(Tij ≤ t) (2)

for t ∈ [0, T ], where 0 represents time 0 during the year
and T represents the ending time for the
year.

Thinning by event magnitude x, we can rewrite Equa-
tion 2 as (Figure 1):

Nx
i (t) =

Ni(t)∑
j=1

1(Xij > x) (3)
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Figure 1. Point process representation of peak discharge for the Turkey
River for the years 1993 and 2008.

{Nx
i (t), t ∈ [0, T ]} is a Poisson process provided that

counts in discrete intervals are independent and the
distribution of counts is Poisson, i.e.

Pr{Nx
i (t) = k} =

exp
{
−

∫ t

0
λ(u) du

} [∫ t

0
λ(u) du

]k

k!
(4)

where (λ(u), u ∈ [0, T ]) is a non-negative function rep-
resenting the time-varying rate of occurrence of the pro-
cess. If there is no seasonality in the occurrence process,
then (λ(u), u ∈ [0, T ]) simplifies to a constant λ and the
occurrence process is a homogeneous Poisson process.

We use the term clustered to mean that the occurrence
process is not Poisson. A Poisson process with seasonally
varying rate of occurrence may exhibit a concentration of
flood occurrences during a particular time of year, but this
does not represent clustering, in which the occurrence
of an event contains information about the subsequent
rate of occurrence of events. By applying an appropriate
transformation to the time axis, the rate of occurrence
of a non-homogeneous Poisson process reduces to a
constant and the time of arrival would be described
by an exponential distribution. Therefore, the occurrence
process for homogeneous and non-homogeneous Poisson
processes is still Poisson, and they represent special cases
of Cox processes.

Cox processes, also known as doubly stochastic Pois-
son processes, are an important family of ‘clustered’ point
processes, which can be viewed as Poisson processes
with a randomly varying rate of occurrence (Kingman,
1964; Cox, 1972; Grandell, 1976; Karr, 1991). Appli-
cations of Cox processes to modelling occurrence pro-
cesses for rainfall and floods include Smith and Karr
(1983, 1985, 1986) and Futter et al. (1991). Nx

i (t) is
a Cox process provided that there is a stochastic pro-
cess {λ(u); u ∈ [0, T ]}, such that, counts in discrete
intervals are conditionally independent given {λ(u); u ∈
[0, T ]} and the conditional distribution of counts, given
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{λ(u); u ∈ [0, T ]}, is Poisson with:

P {Nx
i (t) = k|λ(u), u ≤ t}

=
exp

{
−

∫ t

0
λ(u)du

} [∫ t

0
λ(u)du

]k

k!
(5)

In a Cox process, an event can be relatively more
likely (or less likely) to be followed by additional events
depending on the distributional properties of {λ(u); u ≥
0}. Although the conditional distribution of counts given
λ(u) is Poisson, the unconditional distribution is not
Poisson. Hence, in a realization of a Cox process the
counts will exhibit random bursts of activity or inactivity,
exceeding the variability of a Poisson process.

The Cox regression model was introduced by Cox
(1972) and represents Cox processes for which the rate of
occurrence process has a specific functional dependence
on covariate processes. Denote the j th covariate process
for the ith year as Zij (t), with i = 1, . . . , n and j =
1, . . . , m. For the ith year, the rate of occurrence process
(also known as the conditional intensity function or
hazard function) is given by:

λi(t) = λ0(t) exp


 m∑

j=1

βjZij (t)


 (6)

where λ0(t) is called the baseline hazard and is a non-
negative function of time, and βj is the coefficient for
the j th covariate. The baseline hazard is not paramet-
rically specified and the covariates are linearly related
to the hazard function, implying that the model falls in
the semiparametric family (Cox, 1972; Andersen et al.,
1992).

For 2 years i and i ′, we can write the hazard ratio as:

λi(t)

λi ′(t)
= λ0(t) exp[Zi(t)β]

λ0(t) exp[Zi ′(t)β]
= exp[Zi(t)β]

exp[Zi ′(t)β]
(7)

with the hazard ratio which is independent of time,
making the Cox model a proportional-hazards model.

Estimation of the β coefficients is performed using the
partial likelihood function for the case of no ties (among
others, see Cox 1975; Gill, 1984; Andersen and Gill,
1982; and Smith and Karr, 1986):

L(β) =
n∏

i=1

∏
t≥0




exp[Zi(ti)β]∑
j

exp[Zj(tj )β]




dNi(t)

(8)

where Ni(t) is the number of events for year i over the
time interval [0, t] and dNi(t) represents the increment
of Ni over a small time interval around t (Figure 1).
In a Cox regression model, the random bursts of activ-
ity/inactivity in the count process are explicitly driven
by the covariate processes Zij through Equation (6). In
our application, clustering of the counts is induced by

the external physical processes represented by the covari-
ates. In the case of ties (e.g. peaks occurring on the same
day but in different years) we use Efron’s approximation
because it is quite accurate and computationally effi-
cient (Therneau and Grambsch, 2000). For a more exten-
sive discussion on handling ties, the interested reader is
pointed to Section 3.3 of Therneau and Grambsch (2000).

The baseline hazard function is often viewed as a
nuisance parameter in applications. In our case, however,
its specification is important in order to completely
specify the time-varying rate of occurrence of floods
(Smith and Karr, 1986). The mean rate of occurrence is

m(t) = d

dt
E[Ni(t)] (9)

and we denote its estimator m̂(t). If βj = 0 for all j , then
m̂(t) is the estimator of the Poisson intensity function
λ0(t):

1

n

n∑
i=1

λi(t) = m̂(t) (10)

If βj �= 0, we can then estimate λ0(t) given βj and
Zij (t) from the moments estimator:

1

n

n∑
i=1

λi(t) = 1

n

n∑
i=1

λ̂0(t) exp


 m∑

j=1

Zij (t)βj


 = m̂(t)

(11)

We can obtain the estimate λ̂0(t) at time t so that the
equality in Equation (11) is verified (the only unknown
is λ̂0(t)). The approach we follow is to first smooth m̂(t)

(computed as in Equation (10)) using local polynomial
regression (loess function (Cleveland, 1979), with a span
of 0.5), and then solve Equation (11) for λ̂0(t).

In addition to the covariates Zj (j = 1, . . . , m), we
also include interaction terms between covariates. To
decide which predictors should be included in the final
model, we use a stepwise method, penalizing more com-
plex models with respect to the Akaike Information Cri-
terion (AIC; Akaike, 1974). To check whether the final
model describes the data adequately, we use two dif-
ferent diagnostics (Therneau and Grambsch, 2000), the
scaled Schoenfeld and Dfbeta residuals. The former are
used to assess violations of the assumption of propor-
tional hazards, and plotting these residuals against time
provides indication about the presence of linear trends
in the covariates. Different possible transformations are
available (e.g. based on the rank of the event times, on the
Kaplan–Meier estimate of the survival function). Dfbeta
residuals provide information about the changes in the
regression coefficients when one observation is removed,
and they are used to assess the presence of influential
observations.

All the calculations are performed in R (R Devel-
opment Core Team, 2008) using the freely available
survival package (Therneau and original R port by
Thomas Lumley, 2009).
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Figure 2. Map showing the location of the 41 stations included in this study (red circles; the number associated with each station represents the
corresponding USGS ID number). The white line represents the divide between the Missouri River (to the west) and the Mississippi River (to the
east). The green circles represent the location of the rain gauges. This figure is available in colour online at wileyonlinelibrary.com/journal/joc

3. Data

In this study, we consider 41 mostly non-nested (no
station is downstream of another) US Geological Survey
(USGS) stations over Iowa (Figure 2), with a drainage
area ranging from 254 to 6475 km2, with a median value
of 1733 km2. The period of record is 1950–2009. Out
of 41 stations, 1 has 38 years of data, 2 have 39 years, 1
has 45 years, 7 stations have between 54 and 59 years,
and 30 stations have 60 years of data. Flood events
are obtained by thresholding discharge observations.
Different approaches have been proposed for threshold
selection (Davison and Smith, 1990; Lang et al., 1999;
Coles, 2001). In this study, we select the threshold so
that there are, on average, two peaks per year. To avoid
having peaks exceeding the threshold coming from the
same rainfall event (this problem is more significant for
larger drainage areas), we consider a window of 15 d
(centred on the day of the peak) during which only one
peak over the selected threshold is allowed (see also Lang
et al. (1999) for a review). For every year, the peaks
are selected during the period March–October (see also
Smith and Karr, 1983), since this is the period of the
year with the highest frequency of flood peaks (consult
Villarini et al. (2011a, 2011b) for results concerning
seasonality of flood peaks and heavy rainfall over Iowa).

Villarini et al. (2011a) performed analyses on the
annual maximum flood peak distribution over the central
United States. Over Iowa, few stations exhibited a
statistically significant abrupt change in the mean and/or
variance of the flood peak distribution and in only
one station a statistically significant monotonic trend.
Moreover, recent analyses on heavy rainfall in the
upper Midwest United States do not point to significant

increasing or decreasing trends in annual maximum daily
rainfall (Villarini et al., 2011b). On the basis of these
recent results, we can conclude that stationarity is a
reasonable working assumption for this study. Therefore,
description of the rate of occurrence as a function of
covariates mostly indicates violation of the independence
assumption, pointing to clustering of flood events (Smith
and Karr, 1983; Karr, 1991).

Covariates used in this study are the North Atlantic
Oscillation (NAO; Barnston and Livezey, 1987; Hurrell,
1995; Hurrell and Van Loon, 1997; Ambaum et al., 2001)
and the Pacific/North American Teleconnection (PNA;
Wallace and Gutzler, 1981; Leathers et al., 1991). Time
series of these covariates are available at a daily time
step from the Climate Prediction Center (CPC) covering
the same period as the discharge data (1950–2009). Their
values are computed based on the methodology described
in Barnston and Livezey (1987). We focus on the values
of these climate indices averaged over the previous 14 d
(we refer to them as ‘NAO14’ and ‘PNA14’) and 28 d
(we refer to them as ‘NAO28’ and ‘PNA28’), to capture
longer time scales of influence of these indices.

We selected these climate indices not only because of
the availability of daily data covering a long time period
but also because of the link between PNA and NAO and
hydrometeorological variables over the Midwest United
States. Barnston and Livezey (1987) found NAO to be
a major mode of interannual variability for the Northern
Hemisphere for all seasons, while PNA is an important
mode mostly during early spring and fall-winter. These
two indices have been shown to describe temperature
and rainfall variability over the United States (Leathers
et al., 1991). Leathers et al. (1991) found PNA to be
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correlated with temperature during winter, spring, and
autumn, while the correlation with precipitation is weaker
than that found for temperature. Over the central United
States and during the June–August months, Barlow
et al. (2001) found a significant correlation between
streamflow and monthly rainfall and the North Pacific
sea surface temperatures (SSTs). Similarly, Ting and
Wang (1997) found a significant correlation between
summertime precipitation over the Great Plains and North
Pacific SST (see Ting and Wang, 1997 for a discussion
about the link between PNA and Pacific SST). Bates et al.
(2001) found a significant relation between eastern Pacific
SST and extreme springtime rainfall over the central
United States. Recently, Coleman and Budikova (2010)
highlighted the importance of PNA and NAO in the 1993
and 2008 Midwest floods.

In addition to examining whether PNA and/or NAO
are significant predictors, as additional covariate for
two stream gauge stations (Nodaway River and Turkey

River; see Figure 2 for their location) we include the
antecedent 30 d rainfall accumulation (normalized by
100 mm to have all the predictors on the same scale)
based on the daily time series from the two rain gauges
shown in Figure 2. This predictor provides information
about the antecedent soil moisture conditions, allowing
a comparison of the influence of atmospheric and land-
surface forcings on flood occurrence.

4. Results

4.1. PNA and NAO as covariates

We used the Cox regression model to examine the relation
between the occurrence of flood events in Iowa and
climate indices. We have summarized our results in
Figure 3 and the values of the coefficients in Table I.
Using a stepwise method for covariate selection and
AIC as penalty criterion, we found that for 27 out of

Figure 3. Map showing the stations for which NAO (top panel) and PNA (bottom panel) are retained as important covariates in the final models
(white circle: the climate index is not retained as an important predictor; blue circle: value of the climate index averaged over 14 d prior to a
given day; red circle: value of the climate index averaged over 28 d prior to a given day; the circles with the dot at the centre indicate that the

final model includes an interaction term). This figure is available in colour online at wileyonlinelibrary.com/journal/joc
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Table I. Summary statistics of the Cox regression model using climate indices as predictors. See Figure 2 for gauge location. In
columns 2–7, the first value is the point estimate, while the one in parenthesis is the standard error. Model selection is performed

using AIC as penalty criterion.

USGS ID NAO14 PNA14 NAO28 PNA28 NAO28:PNA14 NAO14:PNA28

05412500 – −0.21 (0.15) – – – –
05449500 – – – 0.32 (0.18) – –
05451700 – – −0.43 (0.19) – – –
05452000 −0.39 (0.15) – – 0.30 (0.17) – –
05453000 – – – 0.35 (0.18) – –
05454300 – – – 0.27 (0.18) – –
05455100 – – −0.54 (0.25) 0.42 (0.23) 0.72 (0.39) –
05458500 – −0.22 (0.15) – – – –
05459500 – – – 0.38 (0.18) – –
05470000 – – −0.30 (0.20) – – –
05476750 – 0.29 (0.16) – – – –
05479000 – – −0.36 (0.19) – – –
05484000 – – −0.38 (0.19) – – –
05486000 – – −0.50 (0.19) – – –
05486490 – – −0.34 (0.19) 0.46 (0.18) – –
05487470 – – −0.39 (0.19) 0.47 (0.18) – –
05489000 – – −0.37 (0.19) – – –
06600100 – – −0.35 (0.19) – – –
06600300 – – −0.43 (0.23) – – –
06600500 – – – 0.28 (0.18) – –
06606600 – – – 0.35 (0.18) – –
06607200 – – −0.43 (0.19) 0.37 (0.17) – 0.74 (0.28)
06608500 – – −0.51 (0.19) – – –
06609500 – – −0.34 (0.19) – – –
06808500 – – −0.48 (0.19) – – –
06809500 – – −0.63 (0.19) – – –
06817000 – – −0.35 (0.19) – – –

41 stations a model in which the rate of occurrence λ was
a linear function of NAO and/or PNA (via a logarithmic
link function) was preferred to a model with constant λ.
While the values of NAO and PNA averaged over a 14 d
period are important covariates in only one and three
cases respectively, NAO and PNA averaged over a 28 d
period are important predictors in 17 and 11 stations,
respectively. Finally, there are two stations for which
an interaction term is included in the final model (one
between PNA28 and NAO14, and one between PNA14
and NAO28). For 22 stream gauges, only one covariate
is included in the final model, while both PNA and NAO
are included in five cases. NAO28 exhibits the clearest
spatial structure, and it tends to be mostly significant in
western and central Iowa (Figure 3, top panel). PNA is
generally more widespread over the entire state. Of all
the predictors, those averaged over a 28 d period are the
ones that are the most frequently selected in this study.
These results suggest that the average state a month prior
to the occurrence of a flood event is more important that
the state of the atmosphere 14 d prior to the flood.

For all basins, we have examined the scaled Schoenfeld
and Dfbeta residuals (Figure 4). For each covariate and
the global model (if more than one covariate was included
in the final model), we tested the scaled Schoenfeld
residuals for the presence of linear trends (see Figure 4

(left panels) for two examples). In the vast majority of
the cases, the proportional-hazard assumption is valid
at the 5% significance level. Examination of the Dfbeta
residuals (see Figure 4 (right panels) for two examples)
does not suggest that any of the observations was
particularly influential. These results support the selection
of these models. The values of NAO14 and NAO28
(PNA14 and PNA28) are negative (positive), implying
that large (small) values of PNA and NAO would result
in a reduced (increased) rate of occurrence of flooding
over these catchments in Iowa. Therefore, in 27 out of
41 stations we are able to describe the rate of occurrence
λ as a function of NAO and/or PNA, suggesting that the
occurrence of flooding in Iowa is influenced by large-
scale climate indices.

We also fitted a stratified Cox model to examine which,
if any, of these covariates were important when we
pooled stream gauge stations together. This model is
an extension of the Cox model, in which the data are
divided into strata, and each stratum shares the same
coefficients of the covariates with other strata, but each
has an individual baseline hazard function. In this case,
each stratum is represented by a stream gauge station. We
examined two grouping schemes. In the first one, we have
pooled together all the 41 stations. In this case, NAO28
and PNA28 are important covariates according to AIC.

Copyright  2012 Royal Meteorological Society Int. J. Climatol. 33: 629–640 (2013)
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Figure 4. Schoenfeld (left panels) and Dfbeta (right panels) residuals for the Turkey River (upper panels) and the Nodaway River (bottom panels).

As a second scheme, we divided Iowa into four quadrant
(north and south of 42°N, and east and west of 93.5 °W),
with 8 stations in the southeast quadrant and 11 in each of
the other three. Even in these cases, we found that PNA28
and NAO28 were included in the final model for three
of the four quadrants, with the exception of the northeast
one, for which PNA14 and NAO28 were included. These
results provide supporting evidence of the importance of
NAO and PNA in describing the occurrence of flooding
over Iowa.

Another important outcome of these analyses concerns
the hypothesis of independence of flood events. For the
27 catchments for which NAO and/or PNA are significant
covariates, we found that the occurrence of flood events
is not independent, as generally assumed, but exhibits
temporal clustering.

4.2. PNA, NAO, and antecedent rainfall as covariates

Based on the results in Figure 3, PNA14 was retained
as a significant predictor for the Turkey River, while
NAO28 was included in the final model for the Nodaway
River. On the other hand, when we added antecedent
rainfall as a covariate, this additional predictor was
selected as important for both catchments. For the Turkey
River, the rate of occurrence is a function of PNA14
and antecedent rainfall, while for the Nodaway River
it depends only on antecedent rainfall. In both cases,

the coefficient of this additional predictor is positive,
confirming that larger values of antecedent rainfall result
in a larger rate of occurrence of flood events. This is
consistent with the physical processes at play, because
an increased antecedent rainfall would result in larger
soil moisture, decreasing the infiltration capability of the
soil, and resulting in an increased runoff.

After computing the baseline hazard function λ0(t)

for each station (Figure 5), we can compute the rate
of occurrence for any given year i (Figure 6). For
reference, we also include m̂(t), which represents the
behaviour of the corresponding inhomogeneous Poisson
process (Figure 6, top panels). For the Turkey River,
λi(t) oscillates around m̂(t), with overall increasing
rates in March–April and June–July. The Nodaway
River exhibits a more regular pattern, with overall larger
values of λi(t) in May and June. In both cases, the
larger values of the occurrence rate match well with the
measured frequency of POT events (Figure 6, bottom
panels). For the Turkey River, most of the events occur
in March–April, with a second period of enhanced
activity during June–July. For the Nodaway River most
of the flood events are concentrated in the May–June
period. Figure 6 illustrates that some years have a rate of
occurrence that is much larger than in other years.

Because of the large socioeconomic impact of the
1993 and 2008 flood events, we focus on the rate
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Figure 5. Baseline hazard function λ0(t) for the Turkey River and Nodaway River. This figure is available in colour online at
wileyonlinelibrary.com/journal/joc

Figure 6. Plot of the λi(t) for the Turkey River (left panels) and the Nodaway River (right panels). The solid black line in the top panels
represents m̂(t). In the bottom panels, the white circles indicate the occurrence of a POT event from the data. Missing years in the bottom-right

panel are represented by the grey band. This figure is available in colour online at wileyonlinelibrary.com/journal/joc
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Figure 7. Plot of the λi(t) for the Turkey River (top panel) and the Nodaway River (bottom panel) for the years 1993 and 2008. This figure is
available in colour online at wileyonlinelibrary.com/journal/joc

of occurrence for these 2 years (Figure 7). These plots
highlight similarities and differences between catchments
and years. In 2008, λ2008(t) for the Turkey River exhibits
two peaks, one in late April–early May and one in June,
corresponding to some of the largest monthly rainfall
values recorded at the corresponding rain gauges. The
behaviour for 1993 is different, with values that are larger
than average but not as large as 2008, resulting from
smaller monthly rainfall values. We can also highlight
seasonal differences between these 2 years. In 2008 a
series of flood peaks occurred during April, and then
another series of events in June, with smaller discharge
values from July to the end of the water year. In 1993,
while the absolute magnitude of the events was smaller,
the events were more spread over the season and they
also occurred later (July and August); a similar behaviour
is exhibited by the λ1993(t). For the Nodaway River, in
2008 the peak did not occur in the spring, rather the ratio

of occurrence to m̂(t) was much larger in June. This
is consistent with the discharge and rainfall time series,
which exhibited a single heightened discharge and rainfall
period in June. The results for 1993 are different, with
larger values of λ1993(t) spread over a larger time span
(from May to August), reflecting the more widespread
rainfall accumulations.

Once we estimated the model coefficients β and the
baseline hazard function (each station has its own model),
we were able to use the values of the covariates for a
certain day of year of interest to assess how much larger
than m̂(t) the rate of occurrence λi(t) was (Figure 8). For
the Turkey River, the rate of occurrence in April–May
and June was more than an order of magnitude larger than
m̂(t). For the Nodaway River, the rate of occurrence was
average or even below average, with the exception of
June and early July, during which the rate of occurrence
was much larger than m̂(t). It is worth mentioning
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Figure 8. Plot of the ratio of λ2008(t) and m̂(t) for the Turkey River and the Nodaway River. A ratio value of 1 (λ2008(t) equal to m̂(t)) is
indicated by the black horizontal line.

that this ratio is independent of the span selected for
the smoothing of the rate of occurrence m̂(t) and the
individual λi(t).

5. Discussion and conclusions

In this study, we used discharge observations from 41
USGS stream gauge stations over Iowa covering the
period 1950–2009 to develop point process data sets of
flood occurrence. We used the Cox regression model to
examine the influence of climate indices and soil moisture
on flood occurrence. The main findings of this study were
as follows:

1. Two climate indices (NAO and PNA) were used as
possible covariates to describe the rate of occurrence
of floods in Iowa. In 27 of 41 stations, NAO and/or

PNA were selected as significant predictors. For
NAO, the sign of the coefficient was always negative,
implying that larger (smaller) values would result in
smaller (larger) values of the rate of occurrence. On
the other hand, the sign of the PNA coefficient was
generally positive. These results suggest that flood
occurrence in Iowa is influenced by large-scale climate
indices. On the basis of the results of the at-site and
state-wide modelling, we suggest using a model in
which the rate of occurrence depends on monthly
averaged NAO and PNA, if a single set of predictors
was to be selected for Iowa.

2. We selected NAO and PNA to represent the influences
of both the Atlantic and Pacific Oceans on atmospheric
conditions in Iowa as their daily time series were
available from 1950. Iowa, and the Midwest United
States in general, is influenced by both the Atlantic
and Pacific Oceans, complicating the detection of
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significant climate signals. Future studies should
investigate the possibility of incorporating additional
climate indices.

3. We examined the impact of antecedent rainfall (as
a surrogate for soil moisture) on the occurrence of
floods for two catchments (Turkey River and Nodaway
River). In both cases, this additional predictor was
selected as highly significant and included in the final
model. The results for these basins point to the role of
the land-surface component in driving the occurrence
of flooding in Iowa. We did not model the rate of
occurrence as a function of antecedent rainfall for all
the catchments in the study area due to the sparse
coverage by rain gauges with a long record. Future
studies should extend this work to other catchments
with long rainfall time series and for other parts of
the country trying to assess whether the land-surface
or the atmospheric component is the main driver of
flood events. Moreover, because these climate indices
could be used to describe heavy rainfall over this
area, it would be important to examine the degree of
collinearity among these predictors and its impact of
the modelling results.

4. Dependence of the rate of occurrence process on
covariate processes points to clustering as an impor-
tant element of the flood occurrence process.

5. The Cox regression model can be used to assess
the time-varying rate of occurrence of floods. Having
the capability to forecast the predictors, this model
could be used to forecast whether a certain period
will be much more active than the norm, improving
the preparedness to flooding. This could provide
predictive skill out to several months in advance,
which could be useful for decision makers.

6. We have shown that Cox regression represents a very
powerful statistical model to describe the occurrence
of flood events. However, while its use is widespread
in biostatistics, its use by the hydrometeorological
community has been very limited (Smith and Karr,
1983, 1986; Futter et al., 1991; Maia and Meinke,
2010). The Cox regression approach is also applica-
ble to other extreme events (e.g. storms, heat waves)
as well as floods, and would provide valuable infor-
mation about the timing of extreme events and their
modulation by climate. Availability of appropriate sta-
tistical software (as the R routines used in this study)
should result in more widespread application of these
techniques.
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