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Abstract Earth system models (ESMs) provide high

resolution simulations of variables such as sea surface

temperature (SST) that are often used in off-line biological

impact models. Coral reef modellers have used such model

outputs extensively to project both regional and global

changes to coral growth and bleaching frequency. We

assess model skill at capturing sub-regional climatologies

and patterns of historical warming. This study uses an

established wavelet-based spatial comparison technique to

assess the skill of the coupled model intercomparison

project phase 5 models to capture spatial SST patterns in

coral regions. We show that models typically have medium

to high skill at capturing climatological spatial patterns of

SSTs within key coral regions, with model skill typically

improving at larger spatial scales (C4�). However models

have much lower skill at modelling historical warming

patters and are shown to often perform no better than

chance at regional scales (e.g. Southeast Asian) and worse

than chance at finer scales (\8�). Our findings suggest that

output from current generation ESMs is not yet suitable for

making sub-regional projections of change in coral

bleaching frequency and other marine processes linked to

SST warming.

Keywords CMIP5 � Coral bleaching � Ocean

resolution � Spatial scales � Haar wavelets � Regional

modelling

1 Introduction

Accurately simulating the coastal zones represents a sig-

nificant challenge for ESMs due to the complex local

physics, biogeochemical and biophysical interactions in

these regions, driven by strong bathymetric constraints on

circulation, and the impacts of terrestrial and sedimentary

geochemical fluxes (Holt et al. 2009; Allen et al. 2010).

Earth system models (ESMs) are global circulation

models (GCMs) coupled to submodels representing, for

example, the ocean and terrestrial carbon cycle, global

vegetation dynamics and atmospheric chemistry (e.g.

Collins et al. 2011). Over the past 10 years there has been

a proliferation of papers that have used GCM and more

recently ESM outputs to make historical and future pro-

jections of coral reefs (e.g. Donner et al. 2005; Frieler

et al. 2013; Kwiatkowski et al. 2013). Coral reefs have

become a focal point of climate science because experi-

mental and observational work has demonstrated high

sensitivity to anomalous SSTs (e.g. Hoegh-Guldberg

1999; Eakin et al. 2010) and future projections have

indicated that globally these ecosystems could be impac-

ted even under the most conservative climate scenarios

(Frieler et al. 2013).

Corals form an intimate association with dinoflagellate

algae called zooxanthellae that live and photosynthesize in

the coral’s tissue. When sunlight is high it overwhelms the
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capacity of the zooxanthellae to photosynthesize, causing

photoinhibition. A number of biological systems are

available to cope with the excess excitation of the photo-

system (Brown 1997). However, when sea temperatures

become exceptionally warm, often by only a matter of

0.5–1 �C (Edwards et al. 2001), less light is needed to over-

excite the photosystem (Enrı́quez et al. 2005) and it

becomes more likely that the over-excitation will

overwhelm the mitigative processes and result in the

release of dangerous oxygen free radicals which can

damage the symbiont complex and result in a loss of

zooxanthellae. The loss of zooxanthellae turns the coral

white (hence termed ‘‘coral bleaching’’), and can result in

mass coral mortality within a period of weeks and at

regional to global scales. The SSTs associated with the

1998 El Niño event caused massive coral mortality in the

Fig. 1 Binary difference map creation. At the top a HadISST and

b regridded HadGEM2-ES SSTs for July from the respective

1985–2000 climatologies. In the centre quartile range maps of the

same fields for c HadISST and d HadGEM2-ES. On the bottom

e binary difference map for the uppermost quartile range. Green areas

in the binary difference map represent areas of agreement between the

uppermost quartile range maps. Blue and red areas represent areas of

disagreement. Figure adapted from Saux-Picart et al. (2012)
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Indian Ocean (Edwards et al. 2001), Pacific Ocean

(Mumby et al. 2001) and tropical West Atlantic (Kramer

et al. 2003).

Most model studies have used SST simulations to pro-

ject coral bleaching in both individual coral regions like the

Indian Ocean (Sheppard 2003) and Hawaii (Hoeke et al.

2011), as well as at the global scale (e.g. Donner et al.

2005; Donner 2009; Frieler et al. 2013). These studies have

used global model outputs in shallow coastal areas (the

location of most coral regions) at, or close to, the model’s

maximum spatial resolution (typically one degree of lati-

tude by one degree of longitude). They have also con-

cluded that such outputs provide high resolution evidence

of coral vulnerability to bleaching within a region (e.g. Van

Hooidonk et al. 2013 conclude that central French Poly-

nesia will be less susceptible to coral bleaching than other

parts of the Polynesian region). There is, however, a

potential spatial mismatch between the small spatial scales

at which coral projections are made and the large spatial

scales at which GCM/ESM outputs are likely to be most

reliable. We explore the notion of believable scales

(Lander and Hoskins 1997) in order to determine the spa-

tial scales at which we have the greatest confidence in

using such climate models to make coral projections.

Projections of coral bleaching typically involve the

calculation of ‘‘degree heating months’’ (DHM). A DHM is

equal to 1 month of SST that is 1 �C greater than the

maximum monthly mean (MMM) SST taken from a his-

torical climatology for a given grid cell. The annual

accumulation of DHM for a given year is then calculated as

the maximum 4 consecutive month accumulation of DHM

in a given year (Frieler et al. 2013). Although there have

been attempts to quantify the skill of bleaching algorithms

(e.g. van Hooidonk and Huber 2009) the skill of model

SST outputs, in coral regions, at the resolution of the latest

CMIP models, has not been adequately assessed. One of

the advantages of assessing SSTs instead of directly

assessing bleaching projections is the availability of a far

greater observational resource against which models can be

tested. We use a local wavelet technique, developed by

Casati et al. (2004) for verifying spatial precipitation

forecasts, to assess the skill of CMIP5 models in capturing

the SST features critical to coral bleaching. The analysis is

based on multi-model means, which invariably perform

better than individual models (Palmer et al. 2005). The

analysis presented here informs the spatial-resolution at

which CMIP5 and earlier generation climate models should

be used to project coral futures, and indeed whether global

models are adequate tools to address the questions being

asked of coral scientists by policy makers.

2 Methods

2.1 Conceptual overview

Wavelet theory involves representing a signal, for example

a sound or an image, in terms of simpler fixed ‘‘building

blocks’’ at different scales and positions (Jawerth and

Sweldens 1994). These ‘‘building blocks’’ or wavelets can

Table 1 The CMIP5 models analysed, their institutions and their

original ocean resolution

Model

name

Model institution Ocean resolution

(latitude� 9 longitude�)

CCSM4 National Center for

Atmospheric

Research, USA

0.25–0.5 9 1.125

CNRM-CM5 Centre National de

Recherches

Météorologiques/

Centre Europeen de

Recherche et

Formation vancees en

Calcul Scientifique,

France

0.2–0.7 9 1

CSIRO-Mk3.6.0 Commonwealth

Scientific and

Industrial Research

Organization/

Queensland Climate

Change Centre of

Excellence, Australia

0.93–0.94 9 1.875

GFDL-ESM-2G Geophysical Fluid

Dynamics

Laboratory, USA

0.3–1 9 1

HadGEM2-ES Met Office Hadley

Centre, UK

0.3–1 9 1

INM-CM4 Institute for Numerical

Mathematics, Russia

0.3–0.5 9 0.6–1

IPSL-CM5A-LR Institut Pierre Simon

Laplace, France

0.2–1 9 1–2

IPSL-CM5A-LR Institut Pierre Simon

Laplace, France

0.2–1 9 1–2

MIROC5 Japan Agency for

Marine-Earth Science

and Technology,

Atmosphere and

Ocean Research

Institute, National

Institute for

Environmental

Studies, Japan

0.5–0.8 9 0.3–1.3

MPI-ESM-LR Max Planck Institute

for Meteorology,

Germany

0.2–1.4 9 0.2–0.6

MRI-CGCM3 Meteorological

Research Institute,

Japan

0.5 9 1

NorESM1-M Norwegian Climate

Centre, Norway

0.25–0.5 9 1.125
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then be analysed in isolation to better understand a process

and how it varies over different scales. Unlike other

methods such as Fourier decomposition, wavelets have the

advantage of being local in space and therefore provide a

simple approach for dealing with signals that are highly

non-smooth (Walker 1997). Throughout this study we use

Haar wavelets. Haar wavelets are the simplest possible

wavelets and are essentially a series of square shaped

functions.

To assess the believability of the climate model simu-

lations, we use the wavelet intensity-scale method intro-

duced by Casati et al. (2004) that has been successfully

used in various diverse applications (De Sales and Xue

2010, Shutler et al. 2011, Saux-Picart et al. 2012). The

method first involves making binary maps for the model

simulation and for the observations based on whether or

not the variable at each grid point exceeds a prescribed

intensity threshold. The binary error map is then decom-

posed into the sum of l different spatial scales by using

Haar wavelets. This decomposition allows us to write the

mean of the squares of the binary error field (a performance

score) as the sum of the mean squared errors on each of the

different spatial scales. These scores are then compared to

what one would expect for random unrelated fields (no

skill) thereby providing a way of assessing believability in

the model-simulated spatial scales for each intensity

threshold.

2.2 Wavelet decomposition method

The wavelet based spatial comparison technique initially

derived and developed by Casati et al. (2004, 2010) has

been previously used to assess the skill of GCM precipita-

tion outputs over South America (De Sales and Xue 2010)

as well as hydrodynamic ecosystem models on the North

West European shelf (Shutler et al. 2011). This wavelet-

based technique has recently been extended to allow its

generic application to a range of continuous and discon-

tinuous geophysical data fields (Saux-Picart et al. 2012).

The methodology is based on binary difference maps

(error). The initial conversion of 2D fields containing

continuous observed and modelled values to a binary map

(i.e. a map composed of 0 and 1 s) is a crucial step in the

method, defining the patterns in the datasets that are later

compared. As implemented by Saux-Picart et al. (2012) our

thresholds are determined based on the empirical quartiles

of the input fields. This study uses the three quartiles X0.25,

X0.5 and X0.75 to threshold the input fields but other per-

centiles could have been used. An example of the process

of creating a binary difference map is shown in Fig. 1 for

the Hadley Centre sea surface temperature observation-

based product (HadISST) (Rayner et al. 2003) and the

latest generation Hadley Centre ESM (HadGEM2-ES)

(Collins et al. 2011). In this example SST fields for July in

the respective 1985–2000 averaged climatologies are con-

verted into a binary difference map. Prior to the process,

the HadGEM2-ES fields are regridded onto the same

1� 9 1� spatial grid as HadISST using the CDO (Climate

Data Operators) bilinear interpolation programme and both

fields are given the same land mask (the combined land

masks of the original model and observation fields). Note

that the ocean resolution of HadGEM2-ES is one degree or

higher everywhere, so we interpolate to the lower-resolu-

tion grid. The SST fields are converted into maps of

quartile ranges, before the binary difference map is taken

for the uppermost quartile range (X [ X0.75) in this

example (Fig. 1). The subsequent decomposition of the

binary difference map and assessment of model skill

requires that both observation and model grids have the

same dimensions. That is, they are squares with dimensions

that are 2l 9 2l (Casati et al. 2004). Throughout our ana-

lysis we use regions that have dimensions 32� 9 32� cor-

responding to approximately 3,200 km 9 3,200 km near

the equator.

The methodology requires the initial model and obser-

vation maps to have an identical land mask. There are

small differences in the land masks of CMIP5 models and

HadISST due to varying resolutions prior to regridding and

Fig. 2 Map of the coral regions analysed in this study, the Western Indian Ocean (WI), Southeast Asia (SEA), the Great Barrier Reef (GBR) and

Polynesia, the Central Pacific (CP) and the Greater Caribbean Region (GCR)
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numerous small islands in coral regions such as Southeast

Asia. We account for this by combining the land mask of a

CMIP5 model with that of HadISST before assessing that

given model. The statistical process of evaluating model

skill from the wavelet decompositions of binary difference

maps is described in full in Saux-Picart et al. (2012).

2.3 Application to coral reefs

The projection of thermally induced coral bleaching can be

broken down into a number of discrete components. With

respect to GCMs/ESMs, two of the most important com-

ponents are: (1) producing an accurate climatology and (2)

capturing long-term trends in annual mean temperature

(van Hooidonk and Huber 2012). We assess the skill of the

CMIP5 models at capturing these features at varying spa-

tial scales using the wavelet based spatial comparison

technique discussed above.

The analysis presented here is based-on output from the

climate modelling groups associated with CMIP5—the

models prepared for the IPCC 5th Assessment Report

(AR5). We used 12 of the CMIP5 models (Table 1) with

model selection based on those with the highest ocean field

spatial resolution, permitting more levels of wavelet

decomposition. The wavelet technique is applied to each

individual CMIP5 model and quoted skill values for a

given month, quartile range and spatial scale are averages

of this CMIP5 multi-model ensemble. Skill was calculated

as the mean square error relative to the mean square error

of a random no skill projection. Model climatology skill

was assessed by applying the wavelet based spatial com-

parison technique to the monthly climatologies calculated

by averaging data across the years 1985–2000 for each

model, and the HadISST observational record. Within each

month of the climatology, skill was calculated for each

quartile range. The climatological period was chosen due

to its importance in calculating ‘‘Degree Heating Months’’

(DHM) bleaching thresholds. These are the monthly SST

thresholds above which accumulated temperature anoma-

lies typically result in coral bleaching. In studies that make

future projections of coral bleaching these thresholds have

been taken as the maximum monthly temperature of each

grid cell in the 1985–2000 model climatologies (Donner

2009).

The ability of the models to capture historical warming

was assessed by calculating warming anomalies. Anoma-

lies were calculated for each grid cell in each model by

subtracting the mean annual SST for 1960–1980 from the

mean annual SST for 1985–2005. Anomalies were then

compared to those of the HadISST observations using the

wavelet based comparison technique. Anomalies were

calculated for this period to overlap with the more recent

HadISST record in which there is far more confidence at

high spatial resolution. This is due to greater in situ

sampling of SSTs and the incorporation of satellite mea-

surements into the HadISST record in the early 1980s

(Rayner et al. 2003). The use of 20 years averaging

periods was chosen to minimise the influence of inter-

annual variability, which freely running models (i.e. those

starting from their internal equilibrium, rather than the

observed ocean/atmosphere state) cannot be expected to

reproduce in phase with that which is observed in reality,

whilst attempting to preserve the long-term trends in

warming anomalies. Model skill was assessed across five

coral regions: the Greater Caribbean Region, the Central

Pacific, the Great Barrier Reef and Polynesia, Southeast

Asia and the western Indian Ocean (Fig. 2). Post 1960,

in situ SST observational coverage in the regions of

interest is essentially complete at least at the 5� 9 5� scale

(Kennedy et al. 2011a, b), with the exception of the Great

Table 2 The X0.25, X0.5 and X075 quartiles of monthly HadISST climatologies (�K) for each coral region

Month Greater Caribbean Region

(X0.25, X0.5, X075)

Central Pacific

(X0.25, X0.5, X075)

Great Barrier Reef and

Polynesia (X0.25, X0.5, X075)

Southeast Asia

(X0.25, X0.5, X075)

Western Indian Ocean

(X0.25, X0.5, X075)

Jan 294.2, 297.9, 299.7 299.6, 300.6, 301.5 301.8, 302.2, 302.6 300.0, 301.3, 301.9 299.6, 301.0, 301.6

Feb 293.6, 297.5, 299.4 299.2, 300.5, 301.3 301.8, 302.2, 302.5 300.0, 301.4, 301.8 299.9, 301.3, 301.8

Mar 293.4, 297.4, 299.5 299.4, 300.7, 301.4 301.8, 302.2, 302.5 300.9, 301.8, 302.2 299.8, 301.6, 302.2

Apr 294.1, 298.0, 300.0 299.5, 300.9, 301.8 301.0, 302.1, 302.5 302.1, 302.4, 302.6 298.8, 301.2, 302.4

May 295.9, 299.2, 300.6 299.9, 301.3, 302.0 300.2, 302.2, 302.6 302.1, 302.7, 303.1 297.7, 300.2, 301.3

June 298.5, 300.5, 301.1 300.4, 301.4, 301.9 299.1, 301.8, 302.6 301.9, 302.5, 302.8 296.4, 299.0, 299.8

July 300.5, 301.1, 301.5 300.7, 301.4, 301.8 298.4, 301.4, 302.4 301.2, 302.2, 302.5 295.6, 297.9, 298.8

Aug 301.0, 301.5, 301.8 300.9, 301.4, 301.8 298.2, 301.2, 302.4 300.8, 302.0, 302.3 295.2, 297.4, 298.4

Sep 300.6, 301.7, 302.0 301.0, 301.6, 302.0 298.7, 301.4, 302.5 300.8, 302.0, 302.2 295.5, 297.7, 298.7

Oct 299.0, 301.2, 301.9 301.0, 301.6, 302.1 299.3, 301.9, 302.6 301.4, 301.9, 302.2 296.0, 298.3, 299.7

Nov 297.1, 300.0, 301.4 300.7, 301.4, 302.0 300.4, 302.3, 302.8 301.2, 301.8, 302.4 297.1, 299.5, 300.9

Dec 295.4, 298.8, 300.5 300.0, 300.9, 301.7 301.2, 302.3, 302.7 300.7, 301.5, 302.0 298.4, 300.7, 301.6
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Barrier Reef and Polynesia region. In the Great Barrier

Reef and Polynesia region, near complete in situ SST

observation coverage is not achieved in all months until

the late 1960s. Whilst our 20 years averaging period will

diminish the effect of the small number of unobserved

grid-cells on the 1960–1980 mean pattern, it is possible

that the move to complete coverage in the latter period

(1985–2005) will have introduced a minor spurious pat-

tern change in this region, and therefore we recommend

against strict interpretation of the results from the Great

Barrier Reef and Polynesia region.

3 Results

3.1 Coastal tropical climatologies

The approximate quartiles (X0.25, X0.5 and X0.75) for each

month of the climatologies in each coral region are given in

Table 2 with further details given in supplementary table S1.

These quartiles are based on HadISST and will differ

somewhat for each CMIP5 model. The CMIP5 models are

shown to have skill at capturing the uppermost quartile range

(X [ X0.75), that is the distribution of the warmest waters, of

Fig. 3 Spatial scale versus time for the 4th quartile range (X [ X0.75)

of each month. Multi-model skill shown for spatial scale against

month for the a Greater Caribbean Region, b Central Pacific, c Great

Barrier Reef and Polynesia, d Southeast Asia and e Western Indian

Ocean. Skill is for the 1985–2000 climatology. Skill is calculated as

the mean square error relative to the mean square error of a random

no skill projection, in which 1 equates to a perfect simulation, 0

represents model skill that is equal to chance and values below 0

correspond to skill that is worse than chance alone
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each month, of the 1985–2000 climatology, even at low

spatial scales (Fig. 3). At 1� spatial scales multi-model

ensemble mean skill is better than chance ([0.0) across all

coral regions and each month; although within each region

skill is shown to vary through the months of the climatology

(Fig. 3). With increasing spatial scale there is a general

improvement in skill across all regions, with the highest skill

observed at 8�–16� spatial scales. However, an exception to

this is seen in the GBR (Great Barrier Reef) and Polynesia

region where there is a consistent patch of low skill observed

at a spatial scale of 4� between May and November. This

pattern is not apparent in the other regions. Across regions,

multi-model ensemble mean skill for the third

(X0.50 \ X B X0.75) quartile range of each month is also

highest for spatial scales of 8�–16� and generally lower for

the Central Pacific and GBR and Polynesia than for other

regions (Fig. 4). This is also seen in the second quartile range

(X0.25 \ X B X0.50) (Fig. 5) and to a lesser extent for the

first quartile range (X B X0.25) where model skill is far

higher across all regions and all spatial scales (Fig. 6).

Fig. 4 Spatial scale versus time for the 3rd quartile range

(X0.50 \ X B X0.75) of each month. Multi-model skill shown for

spatial scale against month for the a Greater Caribbean Region,

b Central Pacific, c Great Barrier Reef and Polynesia, d Southeast

Asia and e Western Indian Ocean. Skill is for the 1985–2000

climatology. Skill is calculated as the mean square error relative to the

mean square error of a random no skill projection, in which 1 equates

to a perfect simulation, 0 represents model skill that is equal to chance

and values below 0 correspond to skill that is worse than chance alone

Climate model projections of sea surface temperature

123



When comparing the skill of the CMIP5 models across

other quartile ranges (Figs. 4, 5, 6), there are both consis-

tencies and some emergent patterns. The general

improvement in skill at larger spatial scales is evident for

all regions across all quartile ranges. In addition, within

certain regions, periods of the year with lower skill are

consistent across quartile ranges. In the Greater Caribbean

Region for example, skill is typically lower between June

and October, coinciding with the Hurricane season and the

time of the year that SSTs are highest—the period when

most bleaching occurs. A similar pattern is seen for the

Central Pacific region across quartile ranges. In the western

Indian Ocean and the GBR and Polynesia regions skill is

typically lower between January and March, also coincid-

ing with the period of highest annual SSTs. Across quartile

ranges the region with the consistently lowest relative skill

is the Central Pacific. Conversely the region with typically

the highest skill across quartile ranges is the Western

Fig. 5 Spatial scale versus time for the 2nd quartile range

(X0.25 \ X B X0.50) of each month. Multi-model skill shown for

spatial scale against month for the a Greater Caribbean Region,

b Central Pacific, c Great Barrier Reef and Polynesia, d Southeast

Asia and e Western Indian Ocean. Skill is for the 1985–2000

climatology. Skill is calculated as the mean square error relative to the

mean square error of a random no skill projection, in which 1 equates

to a perfect simulation, 0 represents model skill that is equal to chance

and values below 0 correspond to skill that is worse than chance alone

L. Kwiatkowski et al.
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Indian Ocean. Across all regions skill is typically lower for

the second (X0.25 \ X B X0.50) and third (X0.50 \
X B X0.75) quartile ranges than for the first (X B X0.25) and

fourth (X [ X0.75) quartile ranges (Figs. 3, 4, 5, 6).

3.2 Historical spatial SST warming patterns

In Fig. 7 the regional mean warming anomalies between

1960–1980 and 1985–2005 are compared against HadISST

for each of the CMIP5 models. The range of model values

encompasses HadISST results in all regions except the

Greater Caribbean Region (GCR). In the GCR models

overestimate the relatively low regional warming observed

most probably due to the influence of the Atlantic Multi-

decadal Oscillation.

Maps of the HadISST regional warming anomalies

observed between 1960–1980 and 1985–2005 are shown in

Fig. 8. The patterns of warming show some discernible

Fig. 6 Spatial scale versus time for the 1st quartile range (X B X0.25)

of each month. Multi-model skill shown for spatial scale against

month for the a Greater Caribbean Region, b Central Pacific, c Great

Barrier Reef and Polynesia, d Southeast Asia and e Western Indian

Ocean. Skill is for the 1985–2000 climatology. Skill is calculated as

the mean square error relative to the mean square error of a random

no skill projection, in which 1 equates to a perfect simulation, 0

represents model skill that is equal to chance and values below 0

correspond to skill that is worse than chance alone

Climate model projections of sea surface temperature

123



features. For example in the western Indian Ocean there

appears to be greater warming in the waters between the

continental land mass and Madagascar. A similar pattern is

apparent for Southeast Asia where the greatest warming is

observed between the continental land mass and Borneo.

Such features may be due to bathymetry, with the relatively

shallow ocean basins in these regions warming at a faster rate

than surrounding deeper waters because of less deep mixing.

Other features in these regional SST warming plots are far

harder to explain. It is apparent from our assessment of multi-

model skill (Fig. 9) that these spatial patterns of warming

anomalies are not consistently found in CMIP5 models.

Multi-model skill for the warming anomalies is shown

across quartile ranges in Fig. 9. At 1� spatial scales the

multi-model ensemble skill is typically no better than

chance and often considerably worse than chance, con-

trasting significantly with the skill observed for climatolo-

gies (e.g. Fig. 3). Moreover, even at larger spatial scales of

8�-16� skill is still not consistently better than chance

across all quartile ranges for all regions. Skill is, however,

generally better at larger spatial scales, and better for

Southeast Asia and the western Indian Ocean than for other

regions. Additionally we observe that the second and third

SST quartile ranges typically have lower skill than the other

quartile ranges at smaller spatial scales however show

higher relative skill than the other quartile ranges at larger

spatial scales. The standard error of all multi-model skill

score means is given in the supplementary material.

4 Discussion

Multi-model mean CMIP5 model skill is shown to vary

considerably with spatial scale in terms of capturing both

climatological periods and historical changes in mean

annual SSTs between 1960–1980 and 1985–2005. With

regard to climatologies, the finding of typically lower skill

for the second and third quartile ranges than for the outer

quartile ranges (Figs. 3, 4, 5, 6) is most likely due to these

outer quartiles covering a far larger range in absolute SSTs.

This is consistently shown across all regions and all months

of the year in supplementary table S1. The CMIP5 models

are therefore more likely to contain the physical processes

required to simulate the spatial distribution of these upper

and lower quartile ranges. When assessing spatial warming

patterns, the finding of higher skill at larger spatial scales

for Southeast Asia and the western Indian Ocean than for

the other regions was also interesting as these are the two

regions in which we suggest that bathymetry may have had

a greater role in determining warming anomalies (Fig. 8).

Skill values for climatologies are typically far higher

than those for historical changes in mean annual SSTs,

across all spatial scales. In many ways this might be

expected given that spatial patterns of climatologies are

dominated by meridional SST gradients that show low

inter-annual variability and are therefore relatively well

modelled by GCMs/ESMs, especially at spatial scales of

C4�. In contrast, patterns of historical warming in coastal

areas are influenced by a number of complex coastal pro-

cesses as well as strong inter-annual variability and at

present contain only a weak climate-change signal. A

consequence of this is typically very low model skill that is

often worse than chance (Fig. 9). Moreover model skill

only shows minimal improvements with increasing spatial

scale and not across all quartile ranges (Fig. 9). It should be

noted that as climate change progresses and anthro-

pogenically-induced warming increasingly dominates spa-

tial patterns of SST warming anomalies, we might expect

model validation to show skill at increasingly small spatial

scales. This is because the signal to noise ratio will increase

as the influence of the anthropogenic forcing (signal)

increases relative to the presumably relatively stable

influence of natural and stochastic variability (noise). Even

a perfect model would not consistently capture the natural

variability in the system without being initialised from

observations. However, the rotation of the Earth and the

heterogeneity of the planet’s surface alone mean that the

anthropogenically-forced component of the change will

result in a non-uniform pattern of warming, and it is this,

that the ESM experiments can capture. Given a stronger

anthropogenic forcing, we would therefore anticipate that

the ESM skill, as judged in this study, would improve. At

this stage however, it is not possible to robustly quantify

how much skill models might have.

In terms of modelling coral bleaching, the analysis

presented here has a number of important implications. The

maximum monthly mean (MMM) as used in the

Fig. 7 Comparison of the mean historical warming between

1960–1980 and 1985–2005 hindcast by each model averaged across

the Greater Caribbean Region (GCR), Central Pacific (CP), Great

Barrier Reef (GBR) and Polynesia (Poly), Southeast Asia (SEA) and

Western Indian Ocean (WI). HadISST observations are plotted as

closed squares, individual ESMs/GCMs as open circles
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calculation of ‘‘Degree Heating Months’’ (DHM) is typi-

cally going to be the SST of the hottest month in a his-

torical climatology, e.g. for a grid cell on the Great Barrier

Reef it may be the mean 1985–2000 February SST.

However, as our analysis shows, model skill is typically

lower in relation to the spatial patterns of climatological

SSTs during the warmest months of the year and lower at

finer spatial scales. For example, across quartile ranges in

the Caribbean, skill is shown to be less between June and

October. Consequently, models will potentially have low

skill at producing patterns of MMM values at small spatial

scales.

Furthermore, the CMIP5 models show poor skill in

relation to spatial patterns of historical warming (Fig. 9).

Fig. 8 HadISST mean warming anomalies (�K) for 1985–2005 relative to mean 1960–1980 SSTs for the a Greater Caribbean Region, b Central

Pacific, c Great Barrier Reef and Polynesia, d Southeast Asia and e Western Indian Ocean
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Although such values show slight improvements at larger

spatial scales they still remain close to 0 for certain quartile

ranges in certain regions across all scales investigated here.

The implications of this are that CMIP5 models typically

do not contain the necessary processes to consistently

model patterns of historical coastal SST warming at spatial

scales of B16�. They are therefore unlikely to skilfully

project patterns of future warming at small spatial scales.

We would anticipate skill over the 21st Century to improve

as anthropogenically-induced warming increasingly drives

patterns of SST warming anomalies and the relative

importance of natural variability diminishes. However,

global model skill is unlikely to be as high as it is for

climatological patterns and therefore one should avoid

interpreting SST outputs at \8�. As long as poor skill at

small spatial scales does not introduce any systemic bias,

the conclusions of global scale bleaching projection studies

(e.g. Frieler et al. 2013) should remain robust. However, if

future coral bleaching is projected at sub-regional spatial

resolution (i.e. \16�), then the resulting heterogeneity

within a region should be interpreted with caution, poten-

tially casting doubt on some of the projections of coral

refugia presented in van Hooidonk et al. (2013). It would

be more robust to use all grid cells within a coral region to

Fig. 9 Skill for the SST warming anomalies between 1960–1980 and

1985–2005 calculated as annual average values. Multi-model skill

shown for spatial scale against quartile range for the a Greater

Caribbean Region, b Central Pacific, c Great Barrier Reef and

Polynesia, d Southeast Asia and e Western Indian Ocean
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produce mean regional projections and avoid making pro-

jections at sub-regional scales (e.g. Kwiatkowski et al.

2013).

There is a desire to move towards providing long-term

regional high resolution bleaching projections. Such pro-

jections are potentially very valuable and could aid regio-

nal decision making on marine protected areas (MPAs),

fisheries policy and coastal development (Mumby et al.

2011). However, given that we show that bleaching pro-

jections based on current generation ESM SST outputs are

likely to have very poor skill at smaller spatial scales, an

alternative approach is required. Where observational

spatial warming patterns can be shown to be non-time

dependent, there may be scope to separate regional SST

warming projections into a fixed spatial pattern derived

from historical observations and a spatially averaged time

dependent function derived from models (Huntingford and

Cox 2000). Another potential solution requiring further

research is the use of carefully validated regional coastal-

shelf models to down-scale global model results.

5 Conclusions

In this paper the wavelet intensity-scale method was used

to assess the skill of CMIP5 models at capturing the spatial

patterns of SST features in five coral regions. The models

were assessed for their ability to capture the patterns of

monthly SSTs in a historical climatology and the patterns

of SST warming anomalies between 1960–1980 and

1985–2005. Our key findings are:

• The spatial patterns of monthly climatological SSTs are

generally well produced by the CMIP5 models in the

coral regions we analysed.

• Patterns of monthly climatological SSTs are best

produced by the CMIP5 models at spatial scales [4�.

• Across spatial scales the skill of CMIP5 models to

capture spatial patterns of monthly climatological SSTs

is generally lower during the warmest months of the

year in a given coral region.

• CMIP5 models have typically very poor skill and often

perform worse than chance at capturing spatial patterns

of SST warming anomalies between 1960–1980 and

1985–2005 in the coral regions we analysed.

• The skill of the CMIP5 models at capturing sub-regional

patterns of SST warming anomalies does not consis-

tently improve at larger spatial scales of up to 16�.

In future work, techniques that could potentially

increase the skill of CMIP5 models to project SSTs at small

spatial scales will be explored. Of particular interest is the

effectiveness of using pattern scaling techniques and

coastal-shelf models to down-scale global model outputs.
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