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Dengue outlook for the World Cup in Brazil: an early 
warning model framework driven by real-time seasonal 
climate forecasts
Rachel Lowe, Christovam Barcellos, Caio A S Coelho, Trevor C Bailey, Giovanini Evelim Coelho, Richard Graham, Tim Jupp, Walter Massa Ramalho, 
Marilia Sá Carvalho, David B Stephenson, Xavier Rodó

Summary
Background  With more than a million spectators expected to travel among 12 diff erent cities in Brazil during the 
football World Cup, June 12–July 13, 2014, the risk of the mosquito-transmitted disease dengue fever is a concern. We 
addressed the potential for a dengue epidemic during the tournament, using a probabilistic forecast of dengue risk 
for the 553 microregions of Brazil, with risk level warnings for the 12 cities where matches will be played.

Methods We obtained real-time seasonal climate forecasts from several international sources (European Centre for 
Medium-Range Weather Forecasts [ECMWF], Met Offi  ce, Meteo-France and Centro de Previsão de Tempo e Estudos 
Climáticos [CPTEC]) and the observed dengue epidemiological situation in Brazil at the forecast issue date as provided 
by the Ministry of Health. Using this information we devised a spatiotemporal hierarchical Bayesian modelling 
framework that enabled dengue warnings to be made 3 months ahead. By assessing the past performance of the 
forecasting system using observed dengue incidence rates for June, 2000–2013, we identifi ed optimum trigger alert 
thresholds for scenarios of medium-risk and high-risk of dengue.

Findings Our forecasts for June, 2014, showed that dengue risk was likely to be low in the host cities Brasília, Cuiabá, 
Curitiba, Porto Alegre, and São Paulo. The risk was medium in Rio de Janeiro, Belo Horizonte, Salvador, and Manaus. 
High-risk alerts were triggered for the northeastern cities of Recife (phigh=19%), Fortaleza (phigh=46%), and Natal 
(phigh=48%). For these high-risk areas, particularly Natal, the forecasting system did well for previous years (in 
June, 2000–13).

Interpretation This timely dengue early warning permits the Ministry of Health and local authorities to implement 
appropriate, city-specifi c mitigation and control actions ahead of the World Cup. 

Funding European Commission’s Seventh Framework Research Programme projects DENFREE, EUPORIAS, and  
SPECS; Conselho Nacional de Desenvolvimento Científi co e Tecnológico and Fundação de Amparo à Pesquisa do Estado 
do Rio de Janeiro.

Introduction
Dengue is an emerging vector-borne disease. Half of the 
world’s population live in dengue endemic regions, 
particularly in southeast Asia, the Pacifi c region, and the 
Americas.1 About 80% of people infected with dengue 
virus are asymptomatic. Approximately 5% of people 
diagnosed with dengue have more severe illness and 1% 
have severe life-threatening infections.2 Its recent 
expansion has been attributed to a combination of 
urbanisation, poor living conditions, international global 
travel and trade, changes in mosquito distribution and 
abundance, climate variability, and climate change.3,4 
Epidemic dengue transmission has a seasonal pattern, 
because of the infl uence of temperature and rainfall on 
mosquito abundance and capacity,5 with increased 
incidence at the end of the summer, in the rainy season, 
and in warm periods.6

The interaction between climate and dengue 
transmission dynamics can vary between diff erent 
ecological zones.7 Local living conditions, such as 
demographic density, population mobility, mosquito 

infestation, and sanitation are important collective risk 
factors.8 Poor sanitation conditions such as inadequate 
refuse collection services and water supply encourage 
mosquito breeding sites. Climatic factors interact with 
local conditions, aff ecting mosquito infestation, human 
susceptibility, and the contact rate between both 
populations.8

Transmission of all four dengue virus serotypes 
occurs via a mosquito–human cycle.9 After an 
incubation period of 7–14 days, vectors (Aedes aegypti 
deemed the main vector) become infectious and can 
transmit the virus by biting human hosts. The human 
incubation period is typically 4–7 days. For transmission 
to mosquitoes, they must feed on an infected person 
during the 5 days when large amounts of virus are in 
the blood. Overall, 3 weeks are required for the virus to 
pass between two human hosts. Epidemics depend on 
large numbers of mosquitoes, a susceptible human 
population, and high rate of contact between 
mosquitoes and humans. The vector lifecycle and 
vectorial capacity is related to temperature,9,10 whereas 
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the reproduction rate can depend, for example, on 
rainfall to fi ll discarded containers outdoors to create 
mosquito breeding sites. Human transmission is 
enhanced by dense urban populations and controlled 
by human serotype-specifi c herd immunity.

This century, Brazil has reported more cases of 
dengue fever than anywhere else in the world,11 with 
more than 7 million up to 2013. Many cities have climate 
conditions conducive to the proliferation and vectorial 
capacity of A aegypti. Brazil will soon host the 2014  
Fédération Internationale de Football Association 
(FIFA) World Cup, an international men’s football 
tournament. More than a million spectators are expected 
to travel between 12 diff erent cities during June and July 
(the southern-hemisphere winter period).12

A news article by Simon Hay,13 with estimates based 
solely on averages of past dengue cases, stimulated a 
debate about the risk of dengue fever in Brazil during 
the World Cup. The possibility of a large dengue fever 
outbreak during the World Cup, capable of infecting 
visitors and spreading dengue back to their home 
destinations depends on the combination of many 
factors, such as mosquito density and the population 
susceptibility in the host country.14

Several preventive measures are routine in cities 
hosting the World Cup, both for endemic and epidemic 
situations: entomological surveillance and vector 
control measures, notifi cation of suspect cases with 
laboratory confi rmation, and clinical care protocols.15 
Usually, epidemic detection is based on identifi cation of 
the circulating dengue virus serotypes and the number 
of notifi ed suspected cases. In response to an increase 
in the number of cases, especially severe clinical 
presentations, media campaigns are launched and 
health services prepare to increase access and adequate 
treatment.16 However, by this time, it is usually too late 
to decrease the infection rate. No alarm trigger exists for 
the third element of the transmission chain, the 
mosquito. All large cities are infested with aedes and 
methods to detect increases in mosquito populations 
are not well established. Further, under favourable 
conditions for feeding and reproduction, the increase of 
the aedes population might be exponential.17 Both 
mosquito density and susceptible populations vary 
substantially between the host cities located in 
ecologically diverse zones.

Complex transmission dynamics, interplay of 
environmental and social factors, and the interaction of 
diff erent dengue serotypes make the construction and 
use of predictive models a challenge, involving diff erent 
temporal and spatial scales. Despite these challenges, 
dengue modelling provides an important basis for early 
warning systems for improved control. Due to time lags 
implicated in the climate dengue transmission system, 
which are typically reported to be 1–3 months,6,10 
observed climate variables can provide crucial predictive 
lead capacity for forecasting dengue epidemics. This 

lead time can be extended by using climate forecasts. To 
date, the incorporation of real-time climate forecasts 
into public health decision systems has been rare.

We address the potential for a dengue epidemic 
during the tournament, by providing probabilistic 
forecasts of dengue risk for the 553 microregions of 
Brazil with risk-level warnings issued for the 12 cities 
where the matches will be played. The dengue early 
warning system, formulated using a Bayesian 
spatiotemporal model framework,18,19 is driven by real-
time seasonal climate forecasts20 and the epidemiological 
situation in Brazil at the forecast issue date. Seasonal 
climate forecasts have been reported to have the most 
skill (a statistical assessment of the quality of forecasts 
when compared with observations) in tropical regions 
of Brazil, with moderate skill in extratropical regions.20

Methods
Data  
We obtained dengue data from the Notifi able Diseases 
Information System (SINAN), organised by the Brazilian 
Ministry of Health and available via the Health 
Information Department (DATASUS). We included in 
the analysis confi rmed cases of dengue fever, including 
mild infections, dengue haemorrhagic fever, and shock 
syndrome, from 2000 to 2013, and we summarised them 
by month and microregion. A microregion typically 
consists of one large city and several smaller 
municipalities. The mean microregion area is 
14 200 km², ranging from 17 000 km² to 332 000 km². 
Cases are routinely confi rmed by clinical and epi-
demiological evidence. The quality of the dengue dataset 
depends on the technical and operational system of 
epidemiological surveillance in every geographic area to 
detect, report, investigate, and do specifi c laboratory 
tests to confi rm the diagnosis of dengue cases. These 
activities are done by health surveillance services at the 
municipal level, under supervision of a national 
coordinating service. Under-reporting might result from 
non-declared or self-diagnosed cases or be attributed to 
diffi  culties in the identifi cation of the clinical forms, 
mainly for the mild and moderate manifestations of 
infections. Over estimation occurs during some 
epidemics because of public and health-service 
awareness. As such, the dataset will contain errors for 
the exact magnitude and timing of epidemics. These 
factors underestimate incidence during the inter-
epidemic periods and overestimate incidence during 
epidemic periods. However, since the goal of this study 
was to detect outbreaks, by predicting the probability of 
exceeding epidemic dengue thresholds (rather than 
deterministic incidence rates) the eff ect of misreporting 
on model results was minimised.

The Ministry of Health made case data available for 
February, 2014, to make the dengue forecast for June, 
2014. We derived social and environmental variables, such 
as demographic density, urban population, and biome 
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categories, from the 2000 and 2010 demographic census, 
which was available from the Brazilian Climate and 
Health Observatory. We estimated population values by 
the exponential interpolation of census data.

We extracted monthly precipitation and temperature 
anomalies from 1981 to 2013 (spatial resolution of 
2·5° × 2·5° latitude–longitude grids, where a grid square 
over Brazil has an approximate area of 75 625 km², 
1°≈110 km), from the Global Precipitation Climatology 
Project (GPCP) version 2.2 Combined Precipitation Data 
Set21 and Climate Prediction Center (CPC) Global 
Historical Climatology Network (GHCN)/ Climate 
Anomaly Monitoring System (CAMS) Monthly Global 
Surface Air Temperature Data Set.22 We produced the 
temperature forecast using an empirical model 
previously described.20 This empirical model uses 
previous January Pacifi c and Atlantic sea surface 
temperatures as predictor variables for March, April, and 
May temperatures over Brazil. The precipitation forecast 
for March, April, and May, issued in February, is from 
the EUROBRISA integrated system.20 Briefl y, the 
precipitation forecasts are generated using a combination 
of three dynamical (climate model based) prediction 
systems and one statistical or empirical system. The 
dynamical systems used are those of European Centre 
for Medium-Range Weather Forecasts (ECMWF; 
System 4), the Met Offi  ce (Global Seasonal Prediction 
System, version 5 [GloSea 5]), and Meteo-France 
(System 4). The individual precipitation forecasts are 
combined and calibrated using a Bayesian approach, 
known as forecast assimilation,23 to produce the 
EUROBRISA integrated forecast used here in this study.

We collated the multisourced spatiotemporal datasets 
and we reconciled gridded climate data and microregion 
level data (ie, dengue, demographic, and cartographic 
data) by assigning a grid point to each microregion on 

the basis of the shortest Euclidean distance between the 
microregion centroid and neighbouring grid points.

Dengue model formulation and forecasts  
We formulated a spatiotemporal hierarchical Bayesian 
model18,19 to model monthly dengue cases, from 2000 to 
2013, for 553 Brazilian microregions. Explanatory 
variables included population density, altitude, 
precipitation, and temperature (averaged over the 
preceding 3 months) and dengue relative risk lagged by 
4 months. We included this relative risk in the model 
framework as the log ratio of observed-to-expected 
dengue cases (dengue relative risk) 4 months ahead for 
every microregion. We chose this lag as a compromise 
between the longest lag plausible to provide predictive 

Figure 1: Dengue forecast drivers
(A) Precipitation (mm per day) and (B) temperature (°C) anomaly (departure from the long-term average) forecasts March–May, 2014, produced in February, 2014 by the Center for Weather 
Forecasting and Climate Research (CPTEC). (C) Observed dengue relative risk (observed-to-expected cases), February, 2014, collated in March, 2014, by the Brazilian Ministry of Health.

Figure 2: Dengue forecast lead-time schematic
Schematic to show lead-time gained from using the combined and calibrated multimodel 3 month average (March, 
April, May) precipitation forecasts from the EUROBRISA integrated system and temperature forecasts produced 
with the empirical model described in (Coelho et al20), produced in mid-February by the Center for Weather 
Forecasting and Climate Research (CPTEC) and the latest dengue cases from the Ministry of Health, Brazil (February 
estimate collated during March). The probabilistic dengue forecast, driven by climate forecasts and current dengue 
risk, could be issued by the climate and health observatory by mid-March. This provides a forecast lead-time of 
3 months.
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skill and the shortest lag possible to allow enough time to 
provide an early warning. We accounted for seasonality, 
unknown confounding factors, and dependency 
structures via autocorrelated annual cycles, for diff erent 
Brazilian ecological zones and area-specifi c random 
eff ects (appendix).

To produce the forecast for June, 2014, the model was 
driven with real-time seasonal precipitation and 
temperature forecasts (March–May, 2014), produced in 
February, 2014, and the observed epidemiological 
situation for February, 2014, collated in March, 2014 
(fi gures 1 and 2). Posterior predictive distributions24 were 
simulated for every microregion to determine the 
probability of dengue incidence rates exceeding 
predefi ned risk thresholds.

To present the forecast to decision makers, we 
calculated the probability of dengue incidence falling 
into predefi ned categories. The Brazilian Ministry of 
Health is interested in areas in which dengue incidence 
in any given month is lower than 100 cases 
per 100 000 inhabitants (low risk), between 100 and 
300 cases per 100 000 inhabitants (medium risk), and 

higher than 300 cases per 100 000 inhabitants (high risk). 
We used a novel visualisation technique25 to produce a 
map in which the forecast at every microregion is 
expressed as a colour determined by a combination of 
three probabilities (ie, probability of low, medium, and 
high risk; appendix).

Model assessment  
To assess complex Bayesian models, posterior predictive 
distributions can be compared with observed data.24 We 
obtained the posterior predictive distribution of the 
response variable (dengue cases) by simulating new 
pseudo-observations, using samples from the posterior 
distribution of the variables in the model, in cross-
validation mode (appendix). In other words, we refi tted 
the model 14 times, leaving out 1 year at a time, to 
produce out-of-sample posterior predictive distributions 
(retrospective dengue forecasts), driven by corresponding 
past seasonal climate forecasts (March–May) and dengue 
relative risk (February) for the years 2000–13. We then 
compared predictions with observed data for June, 
2000–13. We calculated the rank probability skill score 
(RPSS),26 which expresses forecast skill relative to the 
skill of a benchmark forecast for each microregion (ie, a 
forecast indicating 68% probability of low risk, 16% 
probability of medium risk, and 16% probability of high 
risk, based on the observed distribution of dengue 
incidence in Brazil, in June, 2000–13). The RPSS takes 
the value 1 for a perfect forecast and 0 if the forecast is no 
better than the benchmark reference (appendix).

Warning Probability Skill score 
(RPSS)

plow pmedium phigh

Belo Horizonte Medium 65% 24% 11% 0·14

Brasília Low 73% 20% 7% 0·14

Cuiabá Low 71% 22% 7% 0·01

Curitiba Low 100% 0 0 1

Fortaleza High 34% 20% 46% 0·5

Manaus Medium 63% 25% 12% 0·15

Natal High 32% 20% 48% 0·67

Porto Alegre Low 100% 0 0 1

Recife High 57% 24% 19% 0·23

Salvador Medium 56% 27% 17% 0·14

São Paulo Low 99% 1% 0 0·99

Rio de Janeiro Medium 62% 25% 13% 0·21

RPPS=ranked probability skill score. Dengue risk warnings for June, 2014, for the 
microregions in which the World Cup stadiums are located. Low risk was defi ned as 
fewer than 100 cases per 100 000 inhabitants, medium risk as between 100 and 
300 cases per 100 000 inhabitants, and high risk as greater than 300 cases per 
100 000 inhabitants. If the probability of low risk is less than 68%, a medium risk 
warning is issued. If the probability of high risk is concurrently greater than 18%, the 
warning is upgraded to high risk. The skill score (RPSS) indicates the past performance 
forecasting system, with RPSS=1 showing a perfect forecasting system.

Table: Dengue risk warnings for June, 2014 for stadium locations, 
by microregion

Figure 3: Probabilistic dengue forecast for Brazil, June, 2014
Dengue forecast for June, 2014. The continuous colour palette (ternary phase diagram) conveys the probabilities 
assigned to low-risk, medium-risk, and high-risk dengue categories. Category boundaries defi ned as 100 cases 
per 100 000 inhabitants and 300 cases per 100 000 inhabitants. The greater the colour saturation, the more 
certain is the forecast of a particular outcome. Strong red shows a high probability of high dengue risk. Strong 
blue indicates a high probability of low dengue risk. Colours close to white indicate a forecast similar to the 
benchmark (long-term average distribution of dengue incidence in Brazil, June, 2000–13: plow=68%, pmedium=16%, 
phigh=16%), marked by a cross.
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Triggering risk alerts  
To determine optimum decision trigger thresholds for 
medium and high risk alerts, we calculated relative (or 
receiver) operating characteristic (ROC) curves for the 
binary events of exceeding epidemic thresholds of 
100 and 300 cases per 100 000 inhabitants. The ROC is a 
graph of hit rate (proportion of epidemics correctly 
predicted, or sensitivity) against false alarm rate 
(proportion of epidemics predicted but did not occur, or 
1–specifi city) for varying decision trigger thresholds.26 We 
calculated the curves using the cross-validated past 
predictions compared with observed outcomes. We 
defi ned medium-risk (σ) and high-risk (ρ) trigger 
thresholds as the point on the curve closest to the point 
of perfect discrimination (0,1). We then assigned warning 
levels to the microregions in which the World Cup 
stadiums are located. If the probability of low risk falls 
below (1–σ), where σ is the optimum medium risk alert 
trigger threshold, a medium alert is issued. If the 
probability of high risk concurrently exceeds ρ, the 
optimum high trigger alert threshold, the alert is 
upgraded to high risk.

Role of the funding source  
The funders of the study had no role in study design, 
data collection, data analysis, data interpretation, or 
writing of the report. The corresponding author had full 
access to all the data in the study and had fi nal 
responsibility for the decision to submit for publication.

Results  
For the ternary probabilistic dengue forecasts for June, 
2014, we defi ned risk category boundaries as 100 cases 
per 100 000 inhabitants and 300 cases per 
100 000 inhabitants, the standard adopted by the 
Brazilian Ministry of Health (fi gure 3; appendix). In 
south Brazil and parts of the Amazon rainforest, the 
probability of low risk of dengue was strong, including 
the World Cup stadium cities of Porto Alegre, Curitiba, 
and São Paulo. Forecast probabilities also substantially 
favour low risk in Cuiabá and Brasília, located in the 
central region, although medium risk in June, 2014, 
was possible. We noted pockets of high risk in 
northeastern Brazil, with dengue incidence more likely 
to be high in the cities of Fortaleza and Natal. 
Meanwhile, the cities of Rio de Janeiro, Belo Horizonte, 
Salvador, and Manaus were forecast to have medium 
dengue risk levels (table).

We assessed the past performance skill of the 
forecasting system (fi gure 4) by calculating the RPSS 
for each microregion (appendix). Values greater than 
zero indicate the model provides more information 
beyond using the benchmark (long-term average 
distribution of dengue incidence, June, 2000–13). The 
closer the skill score to one, the more likely the model 
will correctly predict risk categories. Negative values 
indicate that the model performs worse than the 

Figure 4: Past performance of forecasting system, June, 2000–13
The rank probability skill score (RPSS) for every microregion based on out-of sample retrospective dengue 
forecasts June, 2000–13. The RPSS takes the value one for a perfect forecast and zero for the benchmark (reference) 
forecast. The darker the shade of green, the more skill provided by the forecasting system. Negative values (white) 
show areas where the model did worse than using the benchmark.
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Figure 5: ROC curves to defi ne trigger thresholds
ROC=receiver operating characteristic. AUC=area under the curve. ROC curve for binary event of dengue incidence rates 
exceeding (A) medium risk threshold of 100 cases and (B) high risk threshold of 300 cases per 100 000 inhabitants. 
Numbers indicate values of probability thresholds along the curve, and circles indicate the position of an optimum ROC 
cutoff  (trigger threshold), defi ned as the point on the curve closest to the point of perfect discrimination (0, 1). The 
optimum probability trigger threshold for 100 cases is σ=0·32 (ie, if the probability of low risk is less than 0·68 [1–σ], 
medium risk warning issued). The optimum trigger threshold for 300 cases is ρ=0·18 (ie, if, simultaneously, the 
probability of high risk category is greater than 0·18, warning upgraded to high risk). As an indicator of the quality of the 
forecasting system, we calculated the AUC as 0·86 (p<0·0001) for (A) and 0·84 (p<0·0001) for (B). This fi nding 
indicates that the forecasting system performs signifi cantly better than randomly guessing (appendix).
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benchmark. The RPSS was positive for all cities where 
the stadiums are located, indicating some degree of 
benefi t over the benchmark. The level of skill varied 
widely. Skill was high in cities in the northeast, where 
the forecast indicated high risk of dengue. Skill was 
also high in the south region and parts of the Amazon, 
since the model recognised these areas as typically void 
of dengue or as sparsely populated. For cities in the 
interior, skill seemed relatively low. As an indication of 
the trust a decision maker can place in the forecast for 
specifi c microregions, the table lists the skill score 
(RPSS).

We then looked at the binary classifi cation of a disease 
exceeding medium and high-risk thresholds (fi gure 5). 
We calculated the optimum decision trigger threshold. 
The optimum probability trigger threshold for medium 
risk was σ=32%. As such, if the probability of low risk 
falls under 68% (ie, 100–σ) a medium risk warning 
should be issued. The optimum trigger threshold for 
high risk was σ=18%. Therefore, if, concurrently, the 
probability of high risk exceeds 18%, the warning 
should be upgraded to high risk.

Using these criteria, we identifi ed dengue risk 
warnings for every World Cup host city (table). For June, 
2014, dengue risk was forecast to be low for the 
micoregions Brasília, Cuiabá, Curitiba, Porto Alegre, 
and São Paulo. A medium risk level was assigned to Rio 
de Janeiro, Belo Horizonte, Salvador, and Manaus. 
High-risk alerts were triggered for the northeastern 
cities of Recife, Fortaleza, and Natal, with a probability 
of exceeding the high-risk epidemic threshold of 19% 
for Recife, 46% for Fortaleza, and 48% for Natal. For 
these high-risk areas, particularly Natal, followed by 
Fortaleza, the forecasting system did well for previous 
years (2000–13).

Discussion
Dengue outbreaks during the World Cup are unlikely in 
cities in south and central Brazil (Brasília, Cuiabá, 
Curitiba, Porto Alegre, and São Paulo). A medium-risk 
level is assigned to Rio de Janeiro, Belo Horizonte, 
Salvador, and Manaus, and the probability of high risk is 
greatest for the northeastern cities of Natal and Fortaleza, 
followed by Recife. This forecast suggests that eff orts to 
reduce dengue incidence and severity should be 
concentrated in these cities.

The impact of mass global travel on infectious  diseases 
transmission has been widely discussed.27 However, 
when the disease is vector-borne, the scenario is not yet 
well understood. Imposing travel restrictions to aff ected 
countries, or creating unnecessary alarm would exclude 
many parts of the world from hosting international 
events, such as the World Cup or the Olympics. An 
approach based on syndromic surveillance and early 
reporting28 is limited for dengue fever, since the 
transmission is not person-to-person. Therefore, control 
strategies should be implemented before the arrival of 

the visitors to Brazil, because of the potentially explosive 
nature of dengue epidemics. Further, assessments of 
dengue risk based on expert opinion13 are of little use to 
public health services, compared with objective 
quantitative risk predictions based on robust, validated 
methods.

The susceptibility of spectators attending the 2014 
World Cup in Brazil will vary depending on the country 
of origin, the sociodemographic profi le of the source 
population to which the individual belongs, and the 
duration of visits to each city.

Visitors are not expected to stay in the same city for 
much longer than 2–3 weeks. Therefore, an epidemic 
must already be in progress in the population of the host 
country to allow enough time for large numbers of virus 
carrying mosquitoes to bite susceptible visitors. The use 
of a 3 month period for prediction is one of the main 
advantages of this model, because it will allow suffi  cient 
time to initiate massive control of the aedes population, 
to protect the population of the host country, visitors, 
and subsequently the visitor population in the country of 
origin. We do not make any predictions for individual 
cases, nor do we assess or indicate individual protective 
behaviour, which is especially complex because of the 
diurnal habits of aedes. The main contribution of this 
article is to focus the control of mosquito populations in 
the cities with an increased probability of exceeding 
epidemic dengue risk levels.

During the austral summer 2013–14, the number of 
dengue cases decreased across Brazil by about 80%, 
compared with the previous year. This decrease was 
mainly due to two factors: the occurrence of an atypical 
summer, with exceptionally hot and dry conditions in 
the south and southeast, and the occurrence of a large 
dengue epidemic in 2013. The atypical summer resulted 
in a decrease in mosquito infestation in most cities, and 
the epidemic in a depletion of the susceptible 
population. The accumulation of the susceptible 
population is a necessary condition to trigger an 
epidemic.29 These factors align with the very low risk of 
dengue outbreaks in Porto Alegre, Curitiba, and 
São Paulo during the forthcoming World Cup. The 
Amazon experienced more rainfall than usual during 
summer, providing suitable conditions for dengue 
transmission. This heavy rainfall, along with the 
forecast of positive precipitation anomalies in March, 
April, and May, increases the probability of dengue risk 
in June exceeding medium levels in, for example, 
Manaus. The probability of dengue outbreaks is greatest 
for Natal and Fortaleza, followed by Recife, which aligns 
with the forecast of positive precipitation anomalies for 
the northeastern region of Brazil. This region also 
showed good skill in predicting past dengue risk.

Austral autumn (March, April, and May) is the main 
precipitation season for the northeastern region of 
Brazil. This precipitation is infl uenced by the southward 
movement of the intertropical convergence zone 
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(ITCZ).30,31 When the ITCZ migrates to the south, this 
region experiences intense precipitation events. When 
this movement does not occur, severe drought conditions 
are noted. The migration of the ITCZ over northeastern 
Brazil is connected to sea surface temperature conditions 
both in the tropical Pacifi c and Atlantic oceans.32 
Generally, precipitation increases in the northeastern 
region of Brazil are associated with colder than normal 
conditions in the tropical Pacifi c (eg, La Niña events), 
colder than normal sea surface temperature conditions 
in the tropical north Atlantic,33 and warmer than normal 
sea surface temperature conditions in the tropical south 
Atlantic.34 The reverse is noted during El Niño events. 
The dynamic models used to produce the EUROBRISA 
forecasts are generally able to reproduce such 
precipitation patterns.20

This early warning system is based on a spatiotemporal 
Bayesian hierarchical model framework driven by 
climate and non-climate information. Inclusion of 
random eff ects accounts for unobserved confounding 
factors (eg, presence of mosquito predators or complex 
serotype interactions) and spatial and temporal 
dependency structures within diff erent ecological 
zones. Probabilistic forecasts allow prediction 
uncertainty to be quantifi ed and translated into 
geographically specifi c dengue early warnings. The 
analysis benefi ted from a novel procedure for visualising 
ternary probability forecasts that uses colour saturation 
to diff erentiate between diff erent levels of forecast 
certainty, rather than a single shade to represent a range 
of forecast outcomes.25

We did a thorough assessment of the past performance 
of the dengue early warning system by verifying 
probabilistic predictions against out-of-sample data. 
Providing an honest assessment of the forecasting 
system is a vital component in the communication of 
forecast uncertainty to decision makers. The limitations 
of the forecasting system must be taken into account 
when allocating scarce resources.

Despite limitations, the ability to provide early 
warnings of dengue epidemics at the microregion level, 
3 months in advance, is valuable for public health 
decision making and intervention. Based on early 
warnings, control strategies could move from dealing 
with clinically severe dengue and death prevention to 
intensively combating mosquito populations, particularly 
in those cities with a greater chance of high dengue risk 
(Natal, Fortaleza, and Recife). This is not feasible on a 
day-to-day basis, but reasonable under an epidemic alert. 
Year-round larval control can be counterproductive, 
exacerbating epidemics in later years because of evolution 
of insecticide resistance and loss of herd immunity.35 
This dengue early warning system, driven by seasonal 
climate information could greatly aid the management of 
scarce resources throughout the year.

As well as informing local authorities as to the potential 
dengue risk during the event, these early warnings provide 

football fans with more information than currently 
available via press reports regarding the potential dengue 
risk situation in Brazil during the World Cup. The 
successful implementation of seasonal climate forecasts 
in disease early warning systems depends on close 
collaboration between public health specialists, climate 
scientists, and mathematical modellers. To our knowledge, 
this is the fi rst example of a climate service for public 
health, ahead of a major global event (panel).
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