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ABSTRACT

Synoptic observations are often treated as error-free representations of the true state of the real world. For

example, when observations are used to verify numerical weather prediction (NWP) forecasts, forecast–

observation differences (the total error) are often entirely attributed to forecast inaccuracy. Such simplifi-

cation is no longer justifiable for short-lead forecasts made with increasingly accurate higher-resolution

models. For example, at least 25% of t1 6 h individual Met Office site-specific (postprocessed) temperature

forecasts now typically have total errors of less than 0.2K, which are comparable to typical instrument

measurement errors of around 0.1 K. In addition to instrument errors, uncertainty is introduced by mea-

surements not being taken concurrently with the forecasts. For example, synoptic temperature observations in

the United Kingdom are typically taken 10min before the hour, whereas forecasts are generally extracted as

instantaneous values on the hour. This study develops a simple yet robust statistical modeling procedure for

assessing how serially correlated subhourly variations limit the forecast accuracy that can be achieved. The

methodology is demonstrated by application to synoptic temperature observations sampled every minute at

several locations around theUnitedKingdom.Results show that subhourly variations lead to sizeable forecast

errors of 0.16–0.44K for observations taken 10min before the forecast issue time. Themagnitude of this error

depends on spatial location and the annual cycle, with the greater errors occurring in the warmer seasons and

at inland sites. This important source of uncertainty consists of a bias due to the diurnal cycle, plus irreducible

uncertainty due to unpredictable subhourly variations that fundamentally limit forecast accuracy.

1. Introduction

Observations are used in several ways in numerical

weather prediction (NWP): for defining initial condi-

tions, verification, and postprocessing. For a long time

the importance of surface observations seemed to be

waning, mainly due to the sparseness of observing lo-

cations compared to the spatial coverage that radar or a

satellite can provide. Yet for verification and post-

processing of surface variables there is no substitute.

Quality control of surface observations is a hugely

important and time-consuming task, considering the ef-

forts that go into maintaining temperature records for

climate change purposes (Morice et al. 2012; Hansen

et al. 2010; Smith et al. 2008). For weather forecasting the

quality and accuracy of observations is also important.

With improving horizontal resolution of short-range

forecast models, often to convection-permitting kilome-

ter scale, the expectation is that forecast errors will con-

tinue to reduce and skill will increase. While instrument

errors for some atmospheric variables such as tempera-

ture are ;0.1K [(World Meteorological Organization)

WMO 2008] the impact of location and altitude of an

observing site compared to the model gridbox represen-

tation of the orography could be a large component of

any total error, which may well be larger than the in-

strument error. The effect of temporal sampling has

generally also not been considered.

Observations are most often treated as absolute truth

(i.e., they are considered to be representative of the true

state), so if the model does not match the observed

value, the forecast is assumed to be wrong. For example,
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Fig. 1 provides 2014 verification statistics for raw and

postprocessed temperature forecasts for Heathrow

(03772) at lead times between t 1 6 and t 1 33h. These

are verified against hourly synoptic observations. The

postprocessed forecasts are based on a lagging and

blending of the Kalman filtered (KF) raw 1.5-km Met

Office Unified Model (UM) site-specific output. The

annual mean absolute error (MAE) in Fig. 1a is between

0.6 and 0.8K for the postprocessed forecasts and be-

tween 0.8 and 1K for the raw forecasts. The distribution

of 3-hourly absolute errors for the postprocessed fore-

casts in Fig. 1b shows that there are some large values

though most are less than 1K. Considering the absolute

errors in Fig. 1b as a cumulative distribution function,

Fig. 1c shows that at t 1 6 h around 40% of absolute

errors are less than 0.5K with ;5% of forecasts con-

sidered ‘‘perfect,’’ and;15% of forecasts with absolute

errors less than or equal to 0.1K, the instrument mea-

surement error. So even now the interpretation of

‘‘forecast error’’ is compromised 20% of the time, by

equaling (or ignoring) instrument measurement limits.

Only a few published studies have investigated the

impact of observation error, as commented on by Jolliffe

and Stephenson (2011) in the concluding chapter, and

none have explicitly considered uncertainties introduced

as a result of temporal sampling. Saetra et al. (2004) ex-

plored the impact of observation error through the addi-

tion of normally distributed noise to the true state. Bowler

(2006) proposed a method for contingency table–based

metrics. The method assumes that observations are not

correlated in space or time. Bowler (2006) argues that a

verificationmetric should not be affected by the quality of

the observations network (i.e., given a perfect forecast, the

use of an erroneous observation should still yield a perfect

forecast). He argues that an approach such as that pro-

posed by Candille and Talagrand (2005) describing the

observation error as a probability density function will

penalize a perfect forecast. Bowler (2008) subsequently

used data assimilation–derived covariance estimates of

the observations error to randomly perturb individual

ensemble members. Santos and Ghelli (2012) extended

the approach by Candille and Talagrand (2008) who

FIG. 1. (a) AnnualMAEof raw and postprocessed (p-p) temperature forecasts for LondonHeathrow (03772) for 2014 at a range of lead

times (in h). (b)Distribution of postprocessed absolute errors (AE) as a function of lead time showing outliers. (c) Cumulative distribution

function of postprocessed AE for t1 6 h. The horizontal lines in (a) and vertical lines in (c) indicate the MAE when hourly observations

expected for a perfect forecasting system (see section 4).
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considered empirical distributions to provide ameasure of

the spatial ‘‘representativeness’’ error. Koh et al. (2012)

also considered the temporal scaling at a point through the

use of spectral analysis. Röpnack et al. (2013) proposed a

probabilistic approach based on Bayes’s theorem.

This study investigates the potential contribution that

temporal sampling uncertainty (through mismatches

and subhourly variability) can make to forecast errors.

We address the following questions:

(i) How can we best characterize the subhourly obser-

vational variability as a function of time of year and

location?

(ii) What is the impact of this subhourly observational

variability on verification statistics?

Section 2 provides an overview of the observations

used for this study. Section 3 describes the approach

taken in deriving subhourly variability. The impact of

this subhourly variability on verification metrics is dis-

cussed in section 4. Conclusions follow in section 5.

2. Data

Real-time hourly synoptic observations are exchanged

via the WMO’s Global Telecommunication System

(GTS). The WMO guide on observations (WMO 2008)

defines ‘‘the representativeness of an observation is the

degree to which it accurately describes the value of the

variable needed for a specific purpose.’’ It goes on to say

‘‘synoptic observations should typically be representa-

tive of an area up to 100 km around the station, but for

small-scale or local applications the considered area may

have dimensions of 10km or less.’’ The concept of rep-

resentativeness described here is hard to reconcile with

kilometer-scale NWP modeling, which can show consid-

erable detail and variability at spatial scales less than

10km, at least in part through the use of more detailed

orography, which has clear impacts on temperature, fog,

low cloud, andwinds, to name but a few. Furthermore, for

verification it is also generally assumed that the obser-

vation is temporally representative of the hour that it was

reported.

a. When are synoptic observations taken?

Table 1 provides a summary of when hourly synoptic

observations are taken and the typical model equivalent,

based on UM output protocol. The WMO recommen-

dation is that synoptic observations not be taken more

than 10min before the hour (WMO 2014). In the United

Kingdom,most observations are taken 10min before the

hour, though observing practices may differ in other

countries. Temperature is truncated and reported to one

decimal place. Note that for theUM the output is always

the nearest model time step to the hour, except for

precipitation. Time steps are different for each model

configuration; for example, the current time step for the

1.5-km deterministic model (UKV) is 50 s, while the

2.2-km Met Office Global and Regional Ensemble

Prediction System (MOGREPS-U.K.) uses a 75-s time

step. The global model (GM) currently runs with a 10-min

time step. Clearly there is at least one time step mismatch

between when the model produces hourly output, and

when the observation is taken. In some instances (e.g.,

wind and automated cloud parameters) aggregates are

compared to instantaneous model output.

b. What do subhourly observations look like?

The Met Office has access to 1-min observations from

the national observing network. From these the hourly

synoptic observations are reported in the surface synoptic

observations (SYNOP) message that is transmitted

worldwide via the GTS. Figure 2a shows the 1-min tem-

perature time series for June 2013 at Heathrow (03772).

The hourly SYNOP observations are superimposed. Al-

though it is often assumed that temperature is a smoothly

varying time series process, closer inspection of a smaller

section of the time series in Fig. 2b shows that there are

also fast irregular fluctuations. These rapid fluctuations

may be due to the passage of fronts, changes in cloudi-

ness, or turbulent mixing.

For this study a small sample of U.K. synoptic stations

was selected to reflect a number of different geographical

locations: upland, inland, and coastal (see Fig. 5 for a

map). Eskdalemuir (03162) represents an upland site.

TABLE 1. Summary of synoptic observing times for a range of different atmospheric variables, with theUMequivalent, whereHH stands for the

hour and the value following it refers to the minutes before the hour HH. Note that the observing practice may differ in other countries.

Variable SYNOP UM

Temperature Instantaneous at HH-10 Instantaneous time step nearest the hour

Wind (speed and direction) 10-min average between HH-20 and HH-10 Instantaneous time step nearest the hour

Cloud-base height and total

cloud amount

Manual: instantaneous at HH-10 Instantaneous time step nearest the hour

Automated: exponential aggregate over 40min between

HH-50 and HH-10

Visibility 1-min sample at HH-10 Instantaneous time step nearest the hour

Precipitation Accumulation (for hourly between HH-70 to HH-10) Accumulation between time steps nearest

HH and HH-60
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Benson (03658) and Heathrow (03772) represent typical

inland ‘‘rural’’ and ‘‘urban’’ sites, respectively. SouthUist

(03023) in northwest Scotland, St. Athan (03716) on the

south coast ofWales, St.Mary’s (03803) on the Scilly Isles

off southwest England, and Weybourne (03488) on the

North Sea coast, represent a range of maritime exposures.

3. Modeling approach

Our focus is on observation uncertainty caused by

forecasts being extracted m. 0 minutes later than mea-

surements that are taken every hour. Meteorological

variables such as temperature in particular can exhibit

strong diurnal trends and be serially autocorrelated.

Any proposed method must account for such behavior,

and be applicable to a range of different variables,

geographical locations, and seasons. It is therefore of

interest to develop a model for the observation in-

crement Yd,h,m 5Xd,h,m 2Xd,h,0, where Xd,h,m is a ran-

dom variable representing a measurable observable

taken on day d5 1, 2, . . . , D, hour h5 0, 1, . . . , 23, and

minute m5 0, 1, . . . , 59.

The increment can be interpreted as the optimal forecast

error that could be obtained if one were able to issue

perfect forecasts of observations Xd,h,m that are then veri-

fied against observations Xd,h,0 measured m minutes

earlier.1 Therefore, the samplemean of jYd,h,mj provides an

FIG. 2. Monthly time series of temperature fromHeathrow (03488) for June 2013. (a) The 1-min series; (b) zoomed

time series showing 2200 UTC 14 Jun–0600 UTC 16 Jun. Gray circles show the hourly synoptic observations,

highlighting large subhourly variations.

1 Note that this hypothetical best-case scenario would re-

quire perfect weather forecasts and no unpredictable

measurement errors.
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estimate of the smallest MAE that could ever be achieved

(i.e., by issuing perfect forecasts of the observations).

The increment may be considered to be the sum of a

diurnally varying trend component and a random noise

component:

Y
d,h,m

5m
h,m

1 «
d,h,m

. (1)

For simplicity, we shall assume that the trend is linear

throughout each hourmh,m 5ahmwith slope parameters

(a0, . . . , a23) that depend on the hour in the day. The

noise «d,h,m is assumed to be a random variable having an

expectation of zero and a variance that depends only on

the minute within the hour [i.e., E(«d,h,m)5 0 and

Var(«d,h,m)5s2
m]. Note that no other assumptions are

made about either the distribution of the «d,h,m or their

serial dependence.2 The ah parameters can be estimated

easily using ordinary least squares to fit this zero-

intercept multiple linear regression model to in-

crement data. The variance parameters s2
m can then

each be estimated by the sample variances of the «̂d,h,m
residuals from themodel of best fit. By fitting this model,

it is then possible to determine howmuch of theMAEof

FIG. 3. Residual diagnostics for the model fit to June 2013 at Heathrow. (a) Checking whether the residuals «d,h,m
depend on day d and (b) checking whether the residuals depend on hour h of the day. (c) Standard deviation of «d,h,m
as a function of minute m from the hour with 6 3 standard deviations and (d) «d,h,m for m 5 30-min offset.

2 For «d,h,m that are well represented by an autoregressive

1 (AR1) process, it can be shown that s2
m 5s2(12 r2m)/(12 r2) for

m. 0, where r is the lag 1-min autocorrelation and s2 is the vari-

ance of the AR(1) residuals. This was found to agree well with the

sample estimates shown in the following section for the tempera-

ture data—the decorrelation times—(log r)21 were found to be

around 20–25min.
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perfect forecasts is due to trend caused by the diurnal cycle

[i.e., the sample mean of jm̂d,h,mj (a diurnally varying bias

that in principle can be removed by postprocessing)], and

how much is due to irreducible noisy variations within an

hour (i.e., the sample mean of jYd,h,mj2 jm̂d,h,mj). The
following section will test the validity of this modeling

approach and will then use it to diagnose the impact of

subhourly variations on forecast accuracy.

4. Results: U.K. temperature example

For this study the temperatures are dithered with a

small amount (6 0.05) of uniformly distributed noise to

mitigate for the observations being recorded only to the

nearest 0.1K. Throughout most of this section the focus

is on the 1-min temperature values for Heathrow during

June 2013. Figure 3 contains a range of diagnostics to

illustrate the goodness of fit of the multiple linear re-

gression model outlined in the previous section.

Figure 3a demonstrates that the residual increments

Yd,h,m are independent of the day of the month, while

Fig. 3b illustrates the behavior as a function of time of

day. The variance s2
m as a function of minutes from the

hour is shown in Fig. 3c. The line indicates6 3 standard

deviations, which for a normal distribution should

overlap 99.7% of the values. The near-normal behavior

of residuals is evident from Fig. 3d, which shows the

density function for a 30-min offset.

The total temporal uncertainty jYd,h,mj as a function of

minutes from the top of the hour is shown in Fig. 4. The

linear trend jm̂d,h,mj is a substantial component. As stated

earlier, this part is in principle reducible, using appro-

priate postprocessing methods such as the KF method.

However, a mean irreducible part of 0.13K remains.

Even perfect forecasts are exposed to the full impact of

jYd,h,mj, in this case 0.22 and 0.44K for a 10- and 30-min

offset, respectively.

The model described in section 3 was fitted to minute-

resolution time series at the seven selected sites for each

month between August 2012 and June 2013. Figure 5

shows that them5 30 standard deviationss� depends on

location and time of year. Southwest-facing coastal lo-

cations such as St. Mary’s and St. Athan show little an-

nual variation, while other locations exhibit a distinct

annual cycle with the largest values in the warmer sea-

sons, and a minimum in January.

FIG. 4. Increase in the total temporal uncertainty as a function of minutes from the hour, and

the contribution of the trend jm̂d,h,mj and the irreducible part jYd,h,mj2 jm̂d,h,mj for Heathrow,

June 2013. In this case jYd,h,mj2 jm̂d,h,mj 5 0.13K.
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5. Conclusions

A flexible yet robust method for quantifying the ob-

servation uncertainty associated with temporal sampling

is demonstrated by applying it to 1-min temperature time

series (with the understanding that currently a maximum

temporal offset of 10min exists between synoptic obser-

vations and model output). The results show there is an

irreducible uncertainty component that is at least of the

same order of magnitude as the instrument measurement

error for surface temperature, imposing a nonzero lower

bound on the achievable level of temperature forecast

accuracy. Compared to Bowler (2006) the method shows

that using the hourly observation as a ‘‘perfect’’ forecast,

an MAE of zero is possible only if there is no temporal

mismatch between the observation and the forecast.

Further work will focus on other variables and the

impact of probabilistic scores. It may also be worth in-

vestigating how this uncertainty also affects data as-

similation and initialization; for example, would it be

better if the observations were assimilated at the exact

time they were taken? Finally, this source of uncertainty

depends on the serial dependency in the weather vari-

ables and so is likely to change under different climatic

conditions (e.g., more persistent temperatures during

prolonged droughts).
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