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Time series modeling of paleoclimate data
James E. H. Davidsona*, David B. Stephensona and Alemtsehai A. Turasieb

This paper applies time series modeling methods to paleoclimate series for temperature, ice volume, and atmospheric
concentrations of CO2 and CH4. These series, inferred from Antarctic ice and ocean cores, are well known to move together
in the transitions between glacial and interglacial periods, but the dynamic relationship between the series is open to
question. A further unresolved issue is the role of Milankovitch theory, in which the glacial/interglacial cycles are correlated
with orbital variations. We perform tests for Granger causality in the context of a vector autoregression model. Previous
work with climate series has assumed nonstationarity and adopted a cointegration approach, but in a range of tests, we
find no evidence of integrated behavior. We use conventional autoregressive methodology while allowing for conditional
heteroscedasticity in the residuals, associated with the transitional periods. Copyright © 2015 John Wiley & Sons, Ltd
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1. INTRODUCTION
Data gathered from cores drilled in the Antarctic ice cap have played a prominent role in the debate on the causes of climate change. Time
series collected by the European Project for Ice Coring in Antarctica (EPICA) (Jouzel et al., 2007, Lüthi et al., 2008) now extend back
800,000 years (800 kyr) BP. Measurements include the concentrations of carbon dioxide and methane in air trapped in bubbles in the ice, and
the amount of deuterium in the ice as a proxy for ocean temperature. A series relating to the same paleological period but collected from a
different source is the oxygen isotope concentration record from ocean cores (Imbrie, 1984; Bassinot et al. 1994, inter alia), which provides
a proxy for global ice volume and therefore an independent record of climatic change over the late Pleistocene epoch.

Theoretical work on the interpretation of these observed variations focuses on the affect of the Milankovitch orbital cycles on the intensity
of solar radiation reaching the Earth in different periods (Paillard, 2001). Three sources of variation identified are the eccentricity of the
Earth’s orbit, the obliquity or tilt of the Earth’s axis of rotation with respect to the orbital plane, and the precession, or orientation, of the
rotational axis. These orbital cycles provide a basis for explaining the glacial cycles, yet there are unresolved puzzles with this hypothesis.
The eccentricity and precession cycles have varied substantially in magnitude, reaching a minimum at around 400 kyr BP when the Earth’s
orbit was nearly circular, but also a time when the glacial cycle was as pronounced as at any period in the record.

The aim of the present paper is to use time series techniques to model the relationships between these series. A leading ambition is to
test the timing of glacial changes in a way that may throw light, in particular, on the interactions of CO2 and CH4 concentrations and the
variations in temperature and glaciations. It has been observed (Caillon et al., 2003) that at least in one specific episode (termination III), the
changes in the temperature record appear to lead those in CO2 concentration by an order of 800˙200 years. Fischer et al. (1999) estimated
that increases in CO2 lagged temperatures in the Vostok record by 600˙400 years at the start of the last three terminations. Mudelsee (2001)
undertakes a parabolic regression analysis to determine phase relations in the Vostok data and finds a lag of 1300 years of CO2 behind the
temperature proxy.

Our object is to test causal relations between these series. Causation of a time-series variable Y by another variable X was defined by
Granger (1969) as the phenomenon that the information contained in X can be used to improve forecasts of future values of Y. Two-way
Granger causation could imply that X and Y are both driven by some possibly unobserved third factor. One-way Granger causation, on the
other hand, where the property does not obtain when the roles of the variables are interchanged, is evidence in favor of (although strictly does
not imply) a direct causal mechanism. A recent study by Kaufmann and Juselius (2013) reports a cointegration modeling exercise involving
10 series, including the four that we study, for the period from 391 kyr BP. MacMillan and Wohar (2013) report regressions for temperature
and CO2, covering the full 800 kyr period with conclusions comparable with our own. However, a formal statistical test of Granger causality
applied to the whole span of available data in a four-equation system has not previously been attempted. In common with MacMillan and
Wohar (2013), we assume stationary series (an approach carefully justified in Section 3), and our approach involves constructing a full-rank
dynamic model within which the restrictions of interest can be defined and tested.
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The paper is organized as follows. Section 2 describes the data set. Section 3 reports a range of tests to establish the stationarity character-
istics of the series. Section 4 then develops the vector-autoregressive modeling framework, Section 5 reports and discusses the results, and
Section 6 contains concluding remarks. Some technical details are given in two appendices. Additional details of the estimation procedure
and results are not reported here for reasons of space but are available in an online Supporting Information file.

2. THE DATA SET
The series for temperature and gaseous concentrations are taken from the website of the US National Oceanic and Atmospheric Adminis-
tration National Climatic Data Center.† The raw data on temperature take the form of 5800 core samples, for each of which are reported the
depth of the sample, the imputed date, the deuterium content of the ice, and the imputed temperature. The temperature proxy is obtained from
the assumption that water vapor from evaporation contains less deuterium (the heavier isotope of hydrogen) than the ocean, and this effect
is more pronounced in colder climatic periods (Jouzel et al., 2003). The samples are dated by methods such as counting the seasonal snow-
fall variations, as well as correlation with other dated series (Parrenin et al., 2007). While the mean interval between observations is only
138 years, the older observations are considerably sparser than the recent ones. We should emphasize that equating these measurements with
“global” mean temperature, while tempting, is necessarily speculative. Most ice core scientists argue that the deuterium record tells us only
about local condensation temperatures at the site during the time when snow is accumulating (personal communication, Louise Sim, British
Antarctic Survey).

The CO2 and CH4 measurements number 1096 and 2104, respectively, covering the same 800,000-year period. While the mean interval
between CO2 measurements is 729 years, over 40 of the intervals exceed 2000 years. The ice coverage proxy series measures the ratio of
ı18to ı16 oxygen isotopes obtained from the shells of planktonic foraminifera in a variety of deep sea cores, assembled by Lisiecki and
Raymo (2005).‡ These data are a series of 699 observations covering the period back to 798 kyr BP, reported for 1 kyr intervals except for
some of the earliest periods, for which the intervals are 2 kyr. Unlike the EPICA Antarctic temperature record, these measurements are not
expressed in units directly related to temperature or ice coverage, but the changes in this series correlate closely with (inverse) temperature
and might be treated as an alternative measure of climatic conditions.

A standard requirement for time series modeling is a set of observations regularly spaced in time. A feasible approach in this case, also
adopted by Kaufmann and Juselius (2013), is to impute values to a suitable set of equally spaced dates by linear interpolation. The natural
interval to match the available EPICA observations is 1 kyr, resulting in 798 imputed data points. The ice volume series has also been
interpolated, but this effects only a few of the early observations at 2 kyr intervals.

A feature of the data series so constructed is a quite pronounced asymmetry, with extreme variations more evident in the interglacial
than in the glacial periods. Such data features are not appropriate to a linear Gaussian modeling framework, which assumes symmetric
shocks. Nonlinear modeling is implemented most simply by forming monotonic transformations of the data, and the transformations applied
are listed in Table 1 where in each case, X denotes the original measurement. Gas concentrations are conventionally reported in parts per
million, but parts per 104 is a choice of unit that gives all the series comparable orders of magnitude. For comparison, the increase in CO2
concentration over the period 1970–2010 is about 0.6 parts per 104. The units of the ice proxy have no natural interpretation, but their sample
range is approximately two units, for comparison with the sample range of temperatures of 14 °C.

The object of the logarithmic transformations is twofold, to avoid dependence of the model parameterization on units of measurement, and
to render the data distributions roughly symmetric and to achieve best agreement between the observations and our linear parametric model.§

We emphasize that the model does not attempt to embody the functional form of relations derived from atmospheric physics, which would
scarcely be feasible in the present framework, although it is a convenient fact that power law relations are linearized exactly in logarithms.
The transformed series on which we conduct all subsequent analyses are shown in Figure 1.¶ Note that time advances from left to right in
our plots and hence the dates, expressed in kyr BP, run in decreasing order.

3. STATIONARITY OF THE TIME SERIES
In time series analysis, inference techniques depend critically on whether the series are judged to be stationary or to feature stochastic trends.
In linear modeling, unit autoregressive roots are the usual representation of nonstationary behavior, while stationarity implies mean reversion
and, hence, autoregressive roots in the stable region. While relations between stationary variables are measured by correlations, relations
in nonstationary data imply common stochastic trends in the series, following from the existence of fewer unit roots than variables. This
modeling approach is known as cointegration. Recent econometric work on climatological series from the more recent past has tended to
assume nonstationarity, for example, Kaufmann and Juselius (2013), Kaufmann and Stern (2002), Kaufmann et al. (2006, 2010), Gay-Garcia
et al. (2009), and Mills (2010).

However, there is little visual evidence of unit root behavior in the data in Figure 1. Notwithstanding the pronounced alternation of glacial
and interglacial episodes, the series are confined within fairly well-defined limits and appear mean reverting. A range of tests for integration
order have been performed and are reported in Appendix A. The so-called “I(1)” null hypothesis, of a unit root, is decisively rejected by all
the tests. The “I(0)” null hypothesis, that of stationarity and weak dependence, is in general not rejected. Our findings confirm the results
reported by MacMillan and Wohar (2013) in respect of the temperature and CO2 series.

†http://www.ncdc.noaa.gov/paleo/pubs/ipcc2007/fig63.html
‡http://www.lorraine-lisiecki.com/stack.html
§The latter effect is illustrated in Figure S2 of the online Supporting Information.
¶The original measurements are shown in Figure S1 of the online Supporting Information.
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Table 1. Data transformations

Temperature: log.X C 16/
CO2 W log.X=100/
CH4 W log.X=100/
Ice: � log.8 �X/

Figure 1. The data set, after transformation

These findings are at first sight difficult to square with the cointegration modeling approach of the previously cited studies. However, the
puzzle is resolved by considering the differing time-spans of data analyzed by different authors. This is illustrated rather clearly by Figure 2,
which shows the Phillips–Perron statistic, which tests the null hypothesis of a unit root, computed for a range of spans starting with the
most recent 50 observations and rolling backwards to include the full sample. What appears as a nonstationary process when only a portion
of a single glacial cycle is observed is revealed as stationary as the sample is extended. MacMillan and Wohar (2013) also emphasize this
important point, by contrasting with a very much shorter 160-year record, from 1850.

There remains the problem of reconciling stationarity with pronounced cyclical behavior. Because the series appear to move within fixed
upper and lower bounds, “I(1)” (a simple unit root) appears an improper null hypothesis. However, such bounds do not rule out the possibility
of stochastic trending behavior within their confines. A bounded random walk model with just these features has been studied by Cavaliere
(2005) and Granger (2010). Cavaliere (2005) considers the case

Xt D � C Yt

Yt D Yt�1 C "t C �t
� �t

where "t is a weakly dependent process and �
t

and �t are non-negative “regulator processes” such that b � � 6 Yt 6 b � � and hence Xt
is confined within the interval Œb; b�. If the bounds b and b are known, it is possible to consider a test in which the bounded random walk
forms the null hypothesis. Cavaliere and Xu (2014) derive a test based on the distribution of the augmented Dickey–Fuller (ADF) statistic
under the assumption of a bounded random walk. The problem is to choose values for b and b. The tighter these are chosen, the further the
null distribution is shifted to the left and the smaller the critical values, and it therefore makes sense to choose the extreme case, setting the
bounds to the recorded maxima and minima of the series. A rejection in this case cannot be contradicted by different choices. Critical values
for the ADF statistic are calculated using a Monte Carlo procedure calibrated by the maximum, minimum, and initial observations, so that
a different tabulation is required for each series. The calculations are explained in more detail in Section 2 of the Supporting Information.
Table 2 shows these critical values, and also the ADF statistics from Table A.1 of Appendix A, for comparison. The bounded unit-root null
hypothesis is rejected in each case at the 1% level, in favor of the stationary alternative.

Another view of the evidence is provided by Table 3, which shows the results of Johansen (1991) tests for reduced rank in the context of
a vector autoregression (VAR), with lag order 6 selected by the Akaike criterion. These null hypotheses all entail the assumption that the
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Figure 2. Phillips–Perron statistics for theN most recent observations, for 506N 6 798

Table 2. Unit root tests subject to barriers

Augmented Dickey–Fuller statistic 5% critical value 1% critical value

Temperature: �4:73 �3:97 �4:58

CO2 W �4:23 �3:61 �4:31

CH4 W �6:08 �4:230 �4:731

Ice: �5:81 �5:345 �5:775

Table 3. Johansen tests for cointegrating rank, six lags

Maximum eigenvalue test Trace test

Rank Statistic p-value Statistic p-value

0 75:44 < 0:01 187:6 < 0:01

1 55:08 < 0:01 112:9 < 0:01

2 36:79 < 0:01 57:10 < 0:01

3 20:31 < 0:01 20:31 < 0:01

series are I(1)** and the rejections at the 1% significance level further reinforce the conclusion of stationarity. Kaufmann and Juselius (2013)
report a similar finding of a full rank system, although in their case of dimension 10.

**In terms of the representation in Section 4, “full rank” here means that the matrix E in Equation (3) has full rank. Reduced rank of this matrix implies that the model
features unit roots and generates nonstationary series.
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Table 4. Semiparametric estimates of the long-memory parameter

Od (Local Whittle) Od (GPH) Bias test

Bandwidth ŒT 0:5� ŒT 0:6� ŒT 0:7� ŒT 0:5� ŒT 0:6� ŒT 0:7� Statistic p-value

Temp. 0.271 0.741 0.949 0.0213 0.475 0.639 3.26 0.001
CO2 0.586 0.762 0.913 0.447 0:629 0.800 4.13 0
CH4 0.184 0.525 0.750 0.036 0:272 0.582 2.02 0.021
Ice 0.260 0.748 1.18 0.059 0.446 0:787 1.96 0.025

Figure 3. Orbital variables

If the I(1) and I(0) hypotheses were both to be rejected, which is one way to interpret the mixed results in the tests of Appendix A, the
data might possibly be characterized as fractionally integrated, or I(d ) for 0 < d < 1. An I(d ) process exhibits long-range dependence with
nonsummable autocovariance sequence, d being the parameter measuring the rate of divergence of the spectral density at the origin. Under
this hypothesis, d may be estimated by a semiparametric method such as the Geweke and Porter-Hudak (1983) log-periodogram regression
(GPH), or “local Whittle” maximum likelihood (Kunsch, 1987, Robinson, 1995). Estimates by these methods, with alternative bandwidths,
are shown in Table 4. A bandwidth ofO.T 1=2/ was proposed by Geweke and Porter-Hudak, whereas broader bandwidth choices are optimal
on an mean squared error criterion (Hurvich et al., 1998). The bias test (Davidson and Sibbertsen, 2009) is asymptotically normal under the
null hypothesis of a pure fractionally integrated process.

What is notable in the present case is how sensitive these estimates are to both estimator and bandwidth choice. Because bias due to the
omission of short-run dynamics is known to exist and is very sensitive to bandwidth choice, it seems certain that these estimates are, in vary-
ing degrees, biased upwards. These are predictable results if the autocovariance functions are summable but not absolutely summable, and
Figures S4, S5 and S6 of the Supporting Information are of interest in this connection. Stationary fractional processes have a characteristi-
cally self-similar appearance that these series lack. Moreover, a linear representation of long-range dependence, as represented by either a
fractional integral or fractional Gaussian noise representation, implies that the autocorrelations must decline monotonically beyond a certain
point and so cannot provide an adequate description of these data series.

4. VECTOR AUTOREGRESSIVE ANALYSIS
Global stationarity, specifically ruling out unit roots, does not rule out systematic changes in central tendency because of periodic effects.
Economic series of monthly or quarterly observations commonly show a seasonal pattern, whereas here, we hypothesize cyclical shifts
because of Milankovitch cycles (Berger 1978, Imbrie et al., 1992, Loutre 2002). These variations in the eccentricity, obliquity, and precession
of the Earth’s orbit can be reconstructed for the relevant epochs using a public domain computer program (Paillard et al., 1996). The basic
series so obtained are shown in Figure 3. These series are included in our descriptive model of the paleoclimate as non-stochastic explanatory
variables.††

The model is formulated as follows. Letting L denote the lag operator, such that Lyt D yt�1 for a dated variable yt , let A.L/ DPq
jD0AjL

j .m �m/ be a finite-order matrix polynomial with A.0/ D Im. Also, let ƒ.L/ D
Pr
jD0ƒjL

j denote a m � p polynomial,
ut am-vector of zero-mean random shocks, and d t (p�1) the vector of known orbital variables. Assuming the variables have means of 0, let
the evolution of them-vector y t of variables generated by the geophysical system be described by the vector autoregressive (VAR) equation

A.L/y t D ƒ.L/d t C ut (1)

††It is possible using the same software to compute series for imputed insolation at different latitudes. However, there is some uncertainty as to which of these various
insolation series is relevant. We choose to let the dynamic model determine directly how orbital variations influence the target variables.
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Here,m is unknown, as are the identities of many of the elements of y t that are in any case unobserved. Letm D 4Cm´ and y t D .x
0
t ; ´
0
t /
0

where xt (4 � 1) denotes the observables and ´t (m´ � 1) the unobserved variables. As to the possible identities of these variables, note
that Kaufmann and Juselius (2013) present a 10-equation model comparable with ours and including our four variables, using measurements
available for a shorter time span. There are of course many other phenomena that might appear in (1) but evade observation entirely. However,
in Appendix B, we show how ´t can be eliminated, and the reduced four-dimensional system for xt approximated by a VAR of the form

B.L/xt D ‡ .L/d t C "t (2)

There is a temptation to see (2) as a “mis-specified” version of (1) with omitted variables, but its parameters are functions of those of the
big system and simply require correct interpretation. They represent partial knowledge of the climate system given missing information, but
there are some testable restrictions on B.L/ and ‡ .L/ that reflect restrictions of interest on A.L/ and ƒ.L/.

It is further shown in Appendix B that (2) can be expressed in the reparameterized form

C .L/�xt D D.L/�d t CE.xt�1 �…d t�1/C "t (3)

where � D 1 � L and C .L/ and D.L/ are derived lag polynomials, with C .0/ D I4 if A.0/ D Im and E D �B.1/. Assuming B.1/
nonsingular, the system possesses fixed relations of central tendency, defined by setting the exogenous variables to constants d and the shock
vector to 0, of the form

x D …d (4)

where … D B.1/�1‡ .1/. Equation (3) is the form of the system to be estimated. Relaxing the assumption that the data have means of 0,
their locations are accounted for by including intercepts in these dynamic relations. This is observationally equivalent to placing intercepts
in the steady-state relations and ensures that the equation residuals have unconstrained means of 0 in the sample.
E is often called the matrix of error correction coefficients, the off-diagonal elements establishing directions of Granger causation in the

system. Granger causation of a variable xjt by another variable xkt might be characterized as correlation between xjt and xk;t�l for l > 0
after partialing out the effects of other predictors, in particular, xj;t�l . The condition would be technically fulfilled by a partial correlation
of �xjt with lagged �xkt , implied by non-zero off-diagonal elements of the terms in C .L/, but such effects are transitory, representing
influences on the rate of approach to a new level, but not on the new level itself. The causality relations of interest are those where �xjt is
partially correlated with deviations of xk;t�1 from its steady-state relations with the exogenous drivers in (4). It is only the coefficients of E
that can tell us how far, for example, shocks to greenhouse gas concentrations have permanent effects on temperature or ice volume.

A useful feature of this model is that the structure is valid whether or not the system contains unit roots and is therefore robust to the
assumption of stationarity. In nonstationary systems, there are fewer steady-state relations than variables, and E has reduced rank. In that
case, steady-state paths are undefined, but cointegration means that linear combinations of these relations are trend free. However, in our
set-up, E has rank 4 allowing (4) to define a steady-state path. The diagonal elements of E must be negative to reflect the mean reversion
properties of the system.

By suitable choice of lag length, the model should return uncorrelated residuals. However, we find that clusters of larger than average
shocks are observed around the glacial–interglacial transitions, as might be expected during periods of rapid climatic change. Taking account
of such behavior is necessary to ensure valid inferences, and a natural model to explain volatility clustering is “generalized autoregressive
conditional heteroscedasticity” or GARCH (Bollerslev, 1986). Letting Et�1"2t D ht .4 � 1/ denote the vector of conditional variances of
the process "t , the first-order multivariate GARCH equation takes the form

ht D !C ˛"
2
t�1 C ˇht�1 (5)

where ˛ and ˇ are 4�4matrices. Letting Oht denote the diagonal matrix in the elements ht , the shock process is represented as "t D Oh
1=2

t ut
where by hypothesis ut � i:i:d:.0; I4/. The GARCH model requires the distribution of the shocks to be symmetric and, as noted previously,
our decision to work with the logarithmically transformed variables ensures symmetry to the best approximation. The so-called “ARMA in
squares” form of the GARCH model, with representation

"2t D ! C ı"
2
t�1 Cwt � ˇwt�1 (6)

where ı D ˛ C ˇ and wt D "2t � ht ; is a convenient form for estimation and has the benefit that the eigenvalues of ı fix the covariance
stationarity conditions for the volatility model. ı and ˇ are the parameters we estimate.

5. ESTIMATION RESULTS
The four-equation model consisting of (3) plus (6) was fitted to the data by Gaussian maximum likelihood.‡‡ This estimator is robust to
the form of the shock distribution and is consistent and asymptotically normally distributed under fairly mild regularity conditions; see,
for example, Davidson (2000) for an account of the estimation theory supporting these assertions. The order of the polynomials C .L/ and
D.L/ is in both cases set at two, on the basis of parsimony considerations and evidence from the estimation diagnostics. The coefficients

‡‡All calculations reported in this paper were made with the package Time Series Modelling 4 (Davidson, 2015) running under the Ox 7 programming system (Doornik,
2013).
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Table 5. Estimated matrix E with robust standard errors in parentheses

Temp CO2 CH4 Ice

Temp �0:184
.0:037/

��� 0:090
.0:058/

0:038
.0:038/

�0:138
.0:055/

��

CO2 0:047
.0:012/

��� �0:107
.0:019/

��� �0:053
.0:014/

��� �0:048
.0:019/

��

CH4 0:127
.0:031/

��� 0:026
.0:058/

�0:316
.0:034/

��� �0:123
.0:048/

��

Ice �0:028
.0:012/

�� �0:033
.0:020/

� �0:010
.0:012/

�0:121
.0:018/

���

Table 6. 95% confidence intervals for 1-kyr changes
(columns) following unit deviations from steady state (rows)

(a) �Temp �Ice

CO2 Œ�0:113; 0:974� Œ�0:117; 0:004�

CH4 Œ�0:078; 0:243� Œ�0:026; 0:010�

(b) �CO2 �CH4

Temp Œ0:005; 0:015� Œ0:030; 0:087�

Ice Œ�0:050;�0:006� Œ�0:281;�0:037�

are otherwise estimated unrestrictedly. However, in the GARCH equation, we constrain the matrices ı and ˇ to be diagonal and hence rule
out cross-equation volatility effects. The complete estimation outputs are reported, with commentary, in the Supporting Information. Here,
we give the findings pertinent to our causality analysis, and Table 5 shows the estimates of the matrix E with the associated robust standard
errors, and one, two, and three stars indicating statistical significance at the 10%, 5% and 1% levels, respectively, under asymptotic criteria.

The diagonal elements of this matrix are all significantly negative, indicating mean reversion as implied by the presumption that the sys-
tem is globally stationary. Present interest focuses on the off-diagonal elements, which are (with change of sign) the sums of the relevant
coefficients of B.L/ in (2) and measure the total effect of these. If element ejk (row j , column k) is nonzero, then variable j is changing
whenever variable k deviates from the steady-state path defined by (4). The elements relating temperature to future CO2 and CH4 concen-
tration, and ice volume to future CO2, are significantly positive at the 1% level and that relating ice to future CH4 is significant at the 5%
level. On the other hand, the effects of CO2 and CH4 on future temperature are statistically insignificant at the 10% level, and the effect of
CO2 on future ice volume is insignificant at the 5% level.

Because the model is logarithmic, the coefficients are unitless, and the results are best evaluated by considering what they imply about
actual changes in the specified units of measurement. These can be approximated at the points of sample means, according to the formulations
in Table 1. Letting X1; : : : ; X4 denote measurements in the original units with sample means NX1; : : : ; NX4, the change �Xj following a unit
shock to Xk can be approximated by

�Xj D ejk

NXj
NXk

Given the appropriate interval estimate of ejk , approximate Gaussian confidence intervals are constructed by the formula

Pr

 
�Xj 2

NXj
NXk

�
Oejk � ´˛=2sjk ; Oejk C ´˛=2sjk

�!
� 1 � ˛ (7)

where Oejk is the point estimate from Table 5, sjk its standard error, and ´a represents the usual Gaussian quantile such that Pr.´ > ´˛/ D ˛:
Table 6 presents scenarios showing the ranges of predicted changes over 1 kyr, with 95% confidence. The bounds in the table are computed

from formula (7) setting ´0:025 D 1:96: The sample means used in the formula can be found in Table S1 of the Supporting Information,
although note that for temperature and ice, these are modified to incorporate the shifts of origin and sign in Table 1. Table 6(a) shows the
ranges of predicted 1 kyr changes in temperature (oC) and ice following unit shocks (1 part per 104) to gas concentrations. Table 6(b) shows
the corresponding predicted responses of gas concentrations to shocks to the climatic variables. In all the former cases, but none of the
latter, 0 is included in the intervals. The results indicate positive causal effects of climate on subsequent atmospheric gas concentrations,
but little evidence for the reverse causation. These conclusions may well reflect the evidence cited in the introduction on the timing of
glacial transitions.

We next consider evidence on the role of the orbital cycles in driving glacial changes. Estimates of the matrix … are shown in Table 7.
The coefficients of precession are significant at the 5% level, but eccentricity plays no statistically significant role. Plots of the estimated
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Table 7. Estimated matrix …, robust standard
errors in parentheses

Eccentricity Obliquity Precession

Temp 0:334
.3:87/

�0:960�
.0:606/

�34:14
.13:95/

��

CO2 �0:677
.1:91/

�0:368
.0:286/

�16:81
.6:586/

��

CH4 �1:733
.2:49/

�0:745
.0:388/

� �22:15
.8:84/

��

Ice �0:847
.2:04/

0:542
.0:316/

� 18:31
.7:376/

��

Figure 4. Solved model paths with disturbances set to 0 (thick lines). The observations from Figure 1 are shown for comparison

steady-state deviations, xt �…dt , are included in Figure S9 of the Supporting Information. These curves are dominated by the orbital cycles
but not by the glacial cycles, showing that the steady-state relation between xt and d t does succeed broadly in tracking the ice ages, even
though there are substantial higher frequency oscillations that need to be accounted for by the system dynamics.

The role played by the cycles is shown in Figure 4, which plots (broad lines) the solutions of the model when shocks are set to 0 throughout.
Hence, it shows what, according to our model, Milankovitch theory predicts the glacial cycles to look like. Note that the plotted curves are
the fitted linear combinations of nine periodic series, the current, and once and twice lagged values the three orbital variables in Figure 3.
The figure also reproduces the series from Figure 1 for comparison (narrow lines). Over some historical periods, notably, between 300 and
50 kyr BP, the match between the series is close, illustrating clear empirical support for Milankovitch theory. But over other periods, such as
that known as “marine isotope stage 11” between 450 and 350 kyr BP, the match is very poor. This is a period in which near-circularity of
the Earth’s orbit diminished the variations in eccentricity and precession (Figure 3) coincident with one of the longest and most pronounced
interglacial episodes. The model can provide no clue as to what might account for this divergence, but it is worth observing that the model
residuals (plotted in Figures S7 and S8 of the Supporting Information) show at most a modest structural break, or sustained change in
predictability, over that period. The endogenous dynamics of the system appear able to account for much of the observed discrepancies.
There is no corresponding call for additional forcing influences needed to make our model “work”, in the sense of predicting variations over
1 kyr steps.

6. CONCLUDING REMARKS
In this paper, we have applied some conventional time series inference techniques to a set of paleoclimate series, with a view to a better under-
standing of the role of Milankovitch theory in glacial cycles, and also to see whether any conclusions can be drawn via these methods about
the timing of changes in greenhouse gas concentrations and glacial/interglacial changes. The model shows that the endogenous dynamics
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of the climate system can be modeled quite effectively by a linear autoregressive scheme applied to the logarithmically transformed series,
with allowance for local volatility effects in the transitions. Orbital variables (save eccentricity) do appear to play a statistically significant
role in this explanation, according to the estimates of… in Table 7. Some aspects of the Milankovitch story remain mysterious, however.

We have demonstrated significant Granger causation of greenhouse gas concentrations by prior climatic conditions. The reverse causation,
of climate by prior changes in greenhouse gas concentration, remains unproven, reinforcing an inference that has been made previously
about the timing of glacial–interglacial transitions, although it is the large uncertainty (reflected in the width of confidence intervals) that
matters more to this conclusion than the proximity of point estimates to 0. However, we should draw attention to our earlier caveats about
the interpretation of Granger causality. The hypotheses we would really like to test are on the elements of (1), and specifically Axx.L/ in
(B.1) in Appendix B. Restrictions on E in (3) reflect these only under certain restrictions on the role of the unobservables, specifically, that
Ax´.L/ and/or A´x.L/ in (B.1) are restricted in an appropriate way. While a 0 element of E must imply a corresponding 0 in Axx.1/, the
reverse implication does not hold. Our reported findings need to be interpreted in this light.
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APPENDIX A: TESTS OF I(1) AND I(0)
Table A.1 shows a conventional battery of classic and more recently derived tests for unit roots and stationarity/weak dependence, performed
on the transformed series shown in Figure 1. The p-values shown are computed either from asymptotically exact tables, where available,
or from Monte Carlo simulations. Where p-values are available for a discrete range of significance levels, upper bounds according to the
tabulated points are indicated by “<”. ADF denotes the Augmented Dickey–Fuller test (Said and Dickey, 1984), the PP test is from Phillips
and Perron (1988), and the DF-GLS and P tests are from Elliott, Rothenberg and Stock (1996). The KPSS test is from Kwiatkowski et al.
(1992), the V/S test from Giraitis et al. (2003), and the modified RS test from Lo (1991). These last three tests represent different ways of
comparing the cumulated process with a Brownian motion. The single rejection at the 5% level by the V/S test of CO2, given the consensus
of the results, is plausibly a type 1 error. The RL test from Lobato and Robinson (1998) and the HML test from Harris et al. (2008) are for
the “weak dependence” null hypothesis, that the spectral density is finite at the origin. While the HML test rejects in each case, it is valid
only for linear processes and hence likely to be inappropriate here. Compare Figures S3–S6 the Supporting Information.

Table A.1. Tests of unit roots (I(1)) and stationarity/weak dependence (I(0))

Temperature CO2 CH4 Ice

Statistic p-value Statistic p-value Statistic p-value Statistic p-value

ADF� �4:73 Œ3� < 0:01 �4:23 Œ3� < 0:01 �6:08Œ1� < 0:01 �5:81Œ7� < 0:01

PP�� �4:94 Œ5� < 0:01 �4:10 Œ5� < 0:01 �6:19Œ3� < 0:01 �4:48Œ10� < 0:01

DF-GLS� �4:56 Œ1� < 0:01 �3:93 Œ3� < 0:01 �5:83Œ1� < 0:01 �5:23Œ7� < 0:01

P�� 0.530 Œ4� < 0:01 0.757 Œ4� < 0:01 0:399Œ7� < 0:01 0:687Œ10� < 0:01

KPSS�� 0.129 Œ13� < 0:46 0.228 Œ13� < 0:22 0:132Œ12� < 0:44 0:057Œ13� < 0:83

V/S�� 0.063 Œ13� 0.563 0.202 Œ13� 0.037 0:048Œ12� 0.729 0:055Œ13� 0.650
RS�� 1.072 Œ13� < 0:66 1.65 Œ13� < 0:06 0:975Œ12� < 0:81 1:082Œ13� < 0:69

RL��� �1:23 Œ12� 0.891 �0:50 Œ12� 0.691 �1:30Œ12� 0.093 �1:14Œ12� 0.88
HML � 7.631 0 7.60 0 7.67 0 7.60 0

�Lags (in square brackets) chosen by Akaike (1969) criterion.
��HAC variance computed with Parzen kernel and bandwidth (in square brackets) chosen by the Newey and West (1994) plug-in
method.
���Bandwidth (in square brackets) from Lobato and Robinson (1998) formula.
�Setting c D 1;L D 0:66. See Harris et al. (2008) for details.

APPENDIX B: DERIVATION OF THE VECTOR ERROR-CORRECTION MODEL SYSTEM
Partition system (1) as

�
Axx.L/ Ax´.L/

A´x.L/ A´´.L/

� �
xt
´t

�
D

�
ƒx.L/

ƒ´.L/

�
d t C

�
uxt
u´t

�
.4 � 1/

.m´ � 1/
(B.1)

Solving out ´t yields the reduced system

QB.L/xt D Q‡ .L/d t C vt (B.2)

where

QB.L/ D jA´´.L/jAxx.L/ �Ax´.L/adjA´´.L/A´x.L/ (B.3a)

Q‡ .L/ D jA´´.L/jƒx.L/ �Ax´.L/adjA´´.L/ƒ´.L/ (B.3b)

and

vt D jA´´.L/juxt �Ax´.L/adjA´´.L/u´t (B.4)
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Note that ifA.0/ D Im, then QB.0/ D I4. System (B.2) has a vector ARMA structure, noting that the right-hand side term in (B.4) is a sum
of finite-order moving averages. Hence, it has a terminating autocovariance sequence and a representation as a finite-order moving average
of white noise elements. There exists a white noise vector "t such that

vt D ‚.L/"t (B.5)

where‚.L/ (4� 4) is a finite-order matrix polynomial and by choice of the covariance matrix of "t , we may set‚.0/ D I4 without loss of
generality. Invertibility of this component allows us to write the reduced VAR as (2) where B.L/ D ‚.L/�1 QB.L/ (with B.0/ D I4) and
ˇ.L/ D ‚.L/�1 Q‡ .L/. While these structures are in general of infinite autoregressive order, their coefficients must be at least 1 summable,
and we assume they can be truncated to finite order in a useful approximation.

If the system is stationary and exhibits mean reversion, the steady-state relations have the form (4). Re-parameterizing the system, so that
the deviations from (4) appear explicitly, is performed using the so-called Beveridge–Nelson decompositions of the matrices (see Phillips
and Solo, 1992). For example,

B.L/ D B.1/CB�.L/.1 � L/

D B.1/LC C .L/.1 � L/

where C .L/ D B�.L/CB.1/ and B�.L/ is the matrix polynomial with coefficients

B�j D �
X1

kDjC1
Bk

Note that B�.0/ D B.0/ � B.1/ and therefore B.0/ D I implies C .0/ D I , by construction. The system (2) can therefore be rewritten
in the so-called vector error-correction model form (3) where D.L/ D ‡ �.L/ C ‡ .1/ similarly to C .L/, and E D �B.1/. Notice that
replacing xt�1 and d t�1 by any lags up to the minimum of the lag orders of D.L/ and C .L/ yields an observationally equivalent system,
apart from a reparameterization of the dynamic components. Hence, there is no loss of generality in choosing this form.

SUPPORTING INFORMATION
Additional supporting information may be found in the online version of this article at the publisher’s web site.
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