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ABSTRACT

Predictability estimates of ensemble prediction systems are uncertain because of limited numbers of past

forecasts and observations. To account for such uncertainty, this paper proposes a Bayesian inferential

framework that provides a simple 6-parameter representation of ensemble forecasting systems and the cor-

responding observations. The framework is probabilistic and thus allows for quantifying uncertainty in pre-

dictability measures, such as correlation skill and signal-to-noise ratios. It also provides a natural way to

produce recalibrated probabilistic predictions from uncalibrated ensembles forecasts.

The framework is used to address important questions concerning the skill of winter hindcasts of the North

Atlantic Oscillation for 1992–2011 issued by the Met Office Global Seasonal Forecast System, version 5

(GloSea5), climate prediction system. Although there is much uncertainty in the correlation between en-

semble mean and observations, there is strong evidence of skill: the 95% credible interval of the correlation

coefficient of [0.19, 0.68] does not overlap zero. There is also strong evidence that the forecasts are not

exchangeable with the observations: with over 99% certainty, the signal-to-noise ratio of the forecasts is

smaller than the signal-to-noise ratio of the observations, which suggests that raw forecasts should not be

taken as representative scenarios of the observations. Forecast recalibration is thus required, which can be

coherently addressed within the proposed framework.

1. Introduction

Recent studies (Riddle et al. 2013; Scaife et al. 2014;

Kang et al. 2014) corroborate that state-of-the-art

atmosphere–ocean models produce skillful pre-

dictions of climate variability on seasonal time scales.

The performance of such forecasting systems is gen-

erally estimated by calculating summary sample sta-

tistics, such as correlation, over a limited sample of past

forecasts and corresponding observations (e.g.,

Goddard et al. 2013). It is then assumed that future

forecasts will exhibit similar performance characteris-

tics (Otto et al. 2012).

However, such measures-oriented forecast verifica-

tion (Jolliffe and Stephenson 2012) provides no inherent

information about uncertainty in the reliability and skill

of the forecast. Uncertainty in forecast quality estimates

can be substantial for the small time samples and en-

semble sizes typical of climate prediction systems.

Without proper uncertainty quantification, it is difficult

to address important questions for the development and

use of climate services, such as the following:

1) Could the observed skill be due to chance sampling:

that is, natural variability in the observed events and

ensemble of forecasts?

2) How might the skill vary for a different nonoverlap-

ping time period (e.g., in the future)?

3) How might the skill vary if a new set of ensemble

forecastswere generatedover the samehindcast period?

4) Are the forecasts exchangeable with the observa-

tions; that is, do the individual model forecasts have

similar properties to the observations?

5) How can nonexchangeable ensemble forecasts be

used to create a reliable probability forecast of future

observations?
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To address such questions, it is helpful to propose a

statistical model capable of representing the joint dis-

tribution ofRmembers of an ensemble forecast, xt,1, . . . ,

xt,R, and their verifying observation yt over a set of times

t 5 1, . . . , N.

The importance of an explicit statistical model has

been recognized for climate change projections, where

statistical models have been used to formalize assump-

tions about climate model output and the observed

present and future climate (Tebaldi et al. 2005; Sansom

et al. 2013). Chandler (2013) argues that a statistical

model can make all subjective model assumptions (and

limitations) explicit, which leads to transparency in

subsequent analyses. The importance of statistical

modeling has also been recognized for weather and

seasonal climate forecasting, where the prevailing ap-

plication is to specify the forecast distribution (i.e., the

conditional distribution of the observations), given the

raw numerical model output. Statistical modeling in

this context is referred to as forecast recalibration; the

goal is to eliminate systematic biases from the numer-

ical model output to improve forecast accuracy. Com-

monly used methods for forecast recalibration include

model output statistics (MOS; Glahn and Lowry 1972),

ensemble dressing (Wang and Bishop 2005), and non-

homogeneous Gaussian regression (NGR; Gneiting

et al. 2005). In these recalibration frameworks, the

forecasts are not perceived as random quantities, and

the full joint distribution of forecasts and observations is

not specified. The present study highlights the benefits

of modeling the full joint distribution of forecasts and

observations, rather than only the conditional forecast

distribution. The joint distribution captures the vari-

ability and dependencies of numerical model forecasts

and verifying observations and thus contains useful in-

formation for forecast verification. The approach of

evaluating forecast quality from the joint distribution is

known as distributions-oriented verification (Murphy

and Winkler 1987). It has not been widely applied be-

cause sample sizes of hindcast datasets are usually too

small to estimate the joint distribution in sufficient

detail. Parametric modeling has been identified as a

useful approach to overcome the curse of dimension-

ality for distributions-oriented forecast verification (e.g.,

Murphy and Wilks 1998; Bradley et al. 2004). In this

study we specify the joint distribution of forecasts and

observations using a parametric statistical model. The

parameters have to be estimated from a small dataset of

past forecasts and observations and are therefore un-

certain. We therefore advocate a framework that uses

Bayesian inference to simultaneously estimate the pa-

rameters and quantify their uncertainty. We show how a

Bayesian framework can be applied to verification and

recalibration of ensemble forecasts based on a small

hindcast dataset.

So how should one model an ensemble forecasting

system so as to capture the relevant dependencies and

variations in forecasts and observations? In this paper,

we study a signal-plus-noise model for an ensemble of

runs from a numerical forecast model and the corre-

sponding observations. The statistical model assumes

the existence of a ‘‘predictable signal,’’ which gener-

ates correlation between forecast model runs and

observations, as well as the existence of ‘‘unpredict-

able noise,’’ which leads to internal variability and

random forecast errors. Signal and noise are modeled

as independent normally distributed random vari-

ables. The members of the numerical forecast en-

semble are assumed to be exchangeable with one

another (i.e., statistically indistinguishable) but not

necessarily exchangeable with the observations. Pos-

sible violations of exchangeability captured by the

chosen signal-plus-noise model include a constant bias

of the mean, a linear transformation of the predictable

signal, and differing signal-to-noise ratios. The signal-

plus-noise model is related to the statistical models

used by Murphy (1990), Kharin and Zwiers (2003),

Weigel et al. (2009), and Kumar et al. (2014). In sec-

tion 2, we discuss these in more detail, describe new

methods for estimating the model parameters, and

present novel applications of the signal-plus-noise

model to verification and recalibration of seasonal

climate forecasts.

In section 3, the proposed statistical framework is

used to analyze recent North Atlantic Oscillation

(NAO) hindcasts made with the Met Office Global Sea-

sonal Forecast System, version 5 (GloSea5; MacLachlan

et al. 2014; Scaife et al. 2014). We demonstrate how

the framework allows us to coherently address ques-

tions 1–5 above: that is, to analyze uncertainty in

correlation skill, assess the exchangeability of fore-

casts and observations, and transform raw ensemble

forecasts into recalibrated predictive distribution

functions.

2. A signal-plus-noise model for ensemble forecasts

The statistical model used here is motivated by a

simple interpretation of ensemble forecasts in the cli-

mate sciences, which assumes that observations and

forecasts share a common predictable component (the

signal), and unpredictable discrepancies arise because of

model errors, internal variability, measurement error,

etc. (the noise). Although the same or similar statistical

models have been used in previous studies (summarized

in section 2b), we will provide a detailed discussion of
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the underlying statistical assumptions and their

implications.

a. The signal-plus-noise model

Let yt be the observation at time t, and xt,r the en-

semble member (or run) r at time t. The time t assumes

values 1, . . . , N, and the ensemble run index r assumes

values 1, . . . , R. The model equations are

y
t
5m

y
1 s

t
1 «

t
and (1a)

x
t,r
5m

x
1bs

t
1h

t,r
, (1b)

where my, mx, and b are constants, and st, «t, and ht,r are

assumed to be independent normal random variables

with mean zero and constant variances s2
s , s

2
«, and s2

h,

respectively.

The marginal expected values of the observations yt
and the ensemble members xt,r are equal to my and mx,

respectively. The random variable st describes an un-

observable predictable signal shared between forecasts

and observations. The coupling parameter b determines

the sensitivity of the forecasts to the predictable signal.

The random variable «t models the unpredictable com-

ponent of observed climate, or weather noise, and the

random variable ht,r models ensemble variability, or

model noise.

The model Eq. (1) includes a number of assumptions

about the forecasts and observations. The data are

normally distributed, and forecasts and observations at

different times are conditionally independent, given

the model parameters. Forecasts and observations

share a common source of variability, which is modeled

by the random variable st. The ensemble members are

statistically exchangeable with one another but are

generally not exchangeable with the observation.

There exist systematic and/or random discrepancies

between model runs and observations, which includes

the possibility of a constant model bias (mx 2 my 6¼ 0)

and possibly different strengths of the predictable sig-

nal and unpredictable noise in forecast and observation

(b 6¼ 1 and s« 6¼ sh).

We have argued in the introduction that it is useful to

specify a model for the full joint distribution of forecasts

and observations. Under the model given by Eq. (1),

forecasts and observations are distributed as a multi-

variate normal distribution:

( y x
1

. . . x
R )

T
;N (m,S) , (2)

with (R 1 1)-dimensional mean vector

m5 (my
m
x

. . . m
x )

T
. (3)

The (R 1 1) 3 (R 1 1) dimension covariance matrix S

has the following entries:

var(y)5s2
s 1s2

« , (4a)

var(x
i
)5b2s2

s 1s2
h , (4b)

cov(x
i
, x

j
)5b2s2

s (i 6¼ j), and (4c)

cov(x
i
, y)5bs2

s , (4d)

for all i, j5 1, . . . ,R. Therefore, themodel Eq. (1) can be

considered as a simplified parameterization of a co-

variance matrix of jointly normal ensemble members

and observations, which assumes exchangeability

among the ensemble members. By modeling the R 1 1

observable random variables yt and xt,r by an un-

observable latent variable st, the number of free pa-

rameters in the covariance matrix S is reduced from

(R 11)(R 1 2)/2 to only 4. Invoking a latent variable

provides a parsimonious description of the joint distri-

bution of forecasts and observations. Note further that

the variance of the ensemble mean is given by

var(x)5b2s2
s 1

1

R
s2
h (5)

and that the covariance cov(xi, y) between observations

and individual ensemble members is equal to the co-

variance cov(x, y) between observations and the en-

semble mean. The correlation skill of the ensemble

mean can thus be expressed in terms of the model pa-

rameters by

r5
cov(x, y)

[var(x)var(y)]1/2
5

bs2
s

[(b2s2
s 1s2

h/R)(s
2
s 1s2

«)]
1/2

.

(6)

The model parameters can be used to assess further

aspects of the quality of the forecasting system. The

forecasts are exchangeable with the observations if and

only if mx 5 my, b 5 1, and s« 5 sh. If these conditions

are met, the ensemble forecast is perfectly reliable (i.e.,

the observation is indistinguishable from the ensemble

members), and the individual ensemble members can be

taken as representative scenarios for the observation. If

the forecast is reliable in the above parametric sense, the

additional criterion s« 5 sh 5 0 indicates a perfect de-

terministic forecast; all ensemble members are then al-

ways exactly equal to the observation. If, on the other

hand, either b 5 0 or ss 5 0, there is no systematic re-

lation between the forecasts and observations (i.e., the

forecasts have no skill). The forecasts are marginally

calibrated (i.e., forecast and observed climatology are

equal) if mx 5 my and b2s2
s 1s2

h 5s2
s 1s2

«.
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The variable st, referred to as the predictable signal,

requires careful interpretation. Essentially, this latent

variable is a model construct that provides covariance;

it cannot be directly observed. However, for climate

predictions, the concepts of signal and noise can be

(and have been) given a physical interpretation (e.g.,

Madden 1976; Von Storch and Zwiers 2001, section

17.2.2; Eade et al. 2014). The predictable signal can be

understood as the slowly varying component of

weather related to longer time-scale processes (e.g.,

ocean circulation). The noise is interpreted as weather

variability, which cannot be predicted deterministically

on time scales of more than a few days. It should be

noted that the signal estimated here is a property of the

observations and the forecasts, and it is not a unique

property of the real world. Different forecasting

models for the same observation can give rise to dif-

ferent signals.

b. Related statistical models

Related models have been widely used for statistical

data analysis, for example, in structural equation mod-

eling (Pearl 2000), factor analysis (Everitt 1984), latent

variable modeling (Bartholomew et al. 2011), and

measurement error models, also known as error-in-

variables models (Fuller 1987; Buonaccorsi 2010). The

same or similar models as our signal-plus-noise model

Eq. (1) have also been used to investigate seasonal-to-

decadal climate predictability. Kharin and Zwiers

(2003) apply the signal-plus-noise model to seasonal

climate forecast variability. Like the present study,

Kharin and Zwiers (2003) use the model to study the

relationship between variability and predictability and

also use the explicit statistical assumptions to calibrate

imperfect ensemble forecasts to improve probabilistic

forecast skill. Their parameter estimation is essentially

based on the method of moments, and parameter un-

certainty is not quantified. The present study extends

Kharin and Zwiers (2003) by carefully quantifying un-

certainty in the statistical model parameters as well as all

derived quantities and by incorporating this uncertainty

in distributions-oriented forecast verification and fore-

cast recalibration. More recently, Kumar et al. (2014)

used the signal-plus-noise model to study the relation-

ship between perfect skill and actual skill in seasonal

ensemble forecasts. They show that perfect skill (i.e., the

ability of the ensemble to predict its own realizations)

can be lower than actual skill (i.e., the ability of the

ensemble to predict the real system). We will address

actual and perfect-model predictability in section 3e,

where we study signal-to-noise ratios in forecasts and

observations. Unlike Kumar et al. (2014), the present

study quantifies uncertainty in the signal-to-noise ratios.

The proposed signal-plus-noise model also relates to

previous frameworks used to interpret ensembles of

climate projections [see Stephenson et al. (2012) and

references therein]. Rougier et al. (2013) apply a latent

variable model to infer future climate from a collection

of exchangeable climate model runs. Chandler (2013)

provides a statistical framework for multimodel en-

sembles, where runs from one climate model are non-

exchangeable with runs from different climate models

and nonexchangeable with the observations. A related

Bayesian framework is used by Tebaldi et al. (2005), who

assume different values of model parameters for present

and future climate. Annan and Hargreaves (2010) work

under the assumption that ensemble forecasts and ob-

servations are fully statistically exchangeable; theirmodel

is thus a special case of the signal-plus-noise model with

b 5 1, mx 5 my, and s« 5 sh.

A noteworthy modification was studied by Weigel

et al. (2009). The observation is similarly decomposed

into signal plus noise, but the ensemble members are

modeled by adding a common random error term dt as

well as individual error terms ht,r to the predictable

signal variable:

y
t
5 s

t
1 «

t
and (7a)

x
t,r
5 s

t
1 d

t
1h

t,r
. (7b)

We note that this additive model implies that the co-

variance between ensemble members is cov(xi, xj)5
s2
s 1s2

d and that the covariance between ensemble

members and observations is cov(xi, y)5s2
s , which im-

plies that cov(xi, y) can never be negative, and cov(xi, xj)

can never be smaller than cov(xi, y). Both scenarios are,

however, conceivable in real systems and should at least

be allowed by a statistical model. Equation (4) shows

that model Eq. (1) does not impose these two re-

strictions; the only similar restriction is that, according

to Eq. (4c), cov(xi, xj) is always positive.

c. Parameter estimation

It is possible to calculate point estimates of the model

parameters using the method of moments. This makes

use of the first and second sample moments of the data

and equates them with the corresponding expected

values in Eq. (4). The estimating equations are given in

appendix C. Such moment estimators are discussed by

Moran (1971) (in the context of linear structural re-

lationships), who notes that, if s2
h were known exactly,

then the moment estimators are also the maximum-

likelihood estimators, and complications can arise because

of negative variance estimates that require modifications

of the estimator equations. Point estimates obtained by

method of moments or maximum-likelihood estimation
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are prone to sampling uncertainty, especially for the

small sample sizes typical of climate prediction sys-

tems. It is therefore important to quantify uncertainty

in the model parameters using either resampling

methods, such as the bootstrap (Efron and Tibshirani

1994), by frequentist variance estimators or confidence

intervals (e.g., Fuller 1987), or by Bayesian estimation,

which we use here.

In Bayesian statistics, degrees of certainty and un-

certainty are expressed by conditional probabilities, and

probabilities are manipulated based on the principle of

coherence: that is, by using only the addition and mul-

tiplication rule of probability calculus (Jaynes 2003;

Gelman et al. 2004; Lindley 2006; Robert 2007). For the

present study, the main object of interest for Bayesian

inference is therefore the joint conditional probability

distribution over all unknown quantities (i.e., the model

parameters), conditional on all known quantities (i.e.,

the hindcast data and observations). From this posterior

distribution, we can derive point estimators (e.g., the

posterior mean or mode) and uncertainty intervals (e.g.,

the 95% parameter values with highest posterior den-

sity).We denote u5 fmx,my,b,ss, s«, shg, the collection
of unknown parameters of the signal-plus-noise model;

s5 fs1, . . . , sNg, the unknown values of the latent signal

variable; and fx, yg5 fxt,1, . . . , xt,R, ytgNt51, the collection

of known forecasts and observations from a hindcast

experiment. The desired posterior distribution for

Bayesian estimation is thus p(u, s j x, y). Derivation of

the posterior distribution requires the specification

of a prior probability distribution p(u, s) over the un-

known quantities, which factors into p(u)PN
t51p(st jss)

in our model. The prior distribution can be used to

incorporate a priori information about the modeled

data into the inference process (we discuss the prior

distribution for our analysis in section 3b). Further-

more, the likelihood function is required, which is the

probability of the data, given specified values of the

model parameters. The likelihood function, denoted

by ‘(x, y j u, s), can be calculated from Eq. (1) using the

distribution law of the normal distribution, and the

independence assumption:

‘(x, y j u, s)5P
N

t51

"
p(y

t
j u, s

t
)P

R

r51

p(x
t,r
j u, s

t
)

#

5 (2ps2
«)

2N/2(2ps2
h)

2NR/2 exp

0
@2

1

2
�
N

t51

8<
:
2
4yt 2 (m

y
1 s

t
)

s
«

3
5
2

1 �
R

r51

"
x
t,r
2 (m

x
1bs

t
)

s
h

#29=
;
1
A . (8)

Using the likelihood function and the prior distribution,

the posterior distribution is then formally calculated by

Bayes rule:

p(u, s j x, y)} ‘(x, y j u, s)p(u, s) , (9)

where the proportionality constant is independent of

u and s and depends only on the data.

A closed-form expression for the joint posterior dis-

tribution using arbitrary prior distributions is not avail-

able. For this paper, we have thus approximated a fully

Bayesian analysis by Markov chain Monte Carlo

(MCMC) integration (Brooks et al. 2011), using the

freely available Stan software (Stan Development Team

2014b), interfaced via the R package RStan (Stan

Development Team 2014a). MCMC is an efficient

computational technique to simulate random draws

from an arbitrary (possibly unnormalized) probability

distribution, such as our posterior distribution given

by Eq. (9). An MCMC program can thus be regarded

as a random number generator that samples from the

posterior distribution. Using an appropriate MCMC

sampler, we can approximate posterior distributions

by smoothed histograms and posterior expectations by

empirical averages of samples drawn from the poste-

rior distribution. The Stan software provides a script-

ing language to translate a user-specified generative

model for the data [such as our signal-plus-noise model

Eq. (1)] into an MCMC sampler. The Stan model code

for our analyses is provided in appendix A. The code

shows that the derivation of the likelihood function

Eq. (8) is not really required to implement the MCMC

sampler in Stan; specification of the generative model

Eq. (1) is enough. We have used the ‘‘no-U-turn

sampler’’ of Stan with all its default settings. All our

posterior distributions are based on 105 Monte Carlo

samples. These were generated by simulating eight

parallel Markov chains, each for 106 iterations, after

discarding a warm-up period of 104 iterations for ini-

tialization of the algorithm. The eight chains were

thinned by retaining only every 80th sample to elimi-

nate autocorrelation. Our procedure for generating

the posterior samples takes about 20min on a desktop

computer with eight CPUs. Reasonable results can,
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however, be obtained without thinning of the Markov

chain, which reduces the time to generate 105 samples

to a few seconds. Potential scale reduction factors

close to one (Gelman and Rubin 1992) and visual in-

spection of trace plots were taken as evidence for

successful convergence and proper mixing of the

Markov chains.

d. Relation between ensemble mean and observations

The signal-plus-noise model can be used to learn

about the relationship between the observations and the

means of the ensemble forecasts. It follows from stan-

dard normal theory (e.g., Mardia et al. 1979, their sec-

tion 3.2) that if the model parameters u are known, the

conditional distribution of the observation yt given the

ensemble mean xt is

(y
t
j x

t
, u);N

"
m
y
1

bs2
s

b2s2
s 1s2

h/R
(x

t
2m

x
),

s2
« 1s2

s

 
s2
h

Rb2s2
s 1s2

h

!#
. (10)

In other words, the relationship between the observa-

tions yt and ensemble means xt is described by a simple

linear regression model for which the intercept, slope,

and residual variance parameters are functions of the

known parameters of the signal-plus-noise model. So if

there was no uncertainty in the signal-plus-noise pa-

rameters, one could use Eq. (10) as a basis for post-

processing the ensemble means to predict the

observations. Correcting dynamical forecasts by linear

regression, also known as MOS (Glahn and Lowry

1972), forms the basis for commonly used post-

processing techniques in seasonal forecasting (e.g.,

Feddersen et al. 1999). In section 3f, we will compare

the simple linear regression approach with a fully

Bayesian posterior predictive approach that accounts

for parameter uncertainty.

Eade et al. (2014) use the relation between signal-

plus-noise interpretation and linear regression in their

postprocessing technique for the ensemble mean and

then adjust the distribution of the ensemble members

around the postprocessed ensemble mean to have the

signal-to-noise ratio implied from the correlation while

retaining year-to-year variability in the ensemble

spread. That is, while Eq. (10) assumes a constant

variance, the method of Eade et al. (2014) allows for

time-varying ensemble variance. But Tippett et al.

(2007) have shown for seasonal precipitation forecasts

that retaining the year-to-year variability of the ensemble

variance does not improve the forecasts. The question of

whether the ensemble spread should influence the width

of the forecast distribution in seasonal NAO forecasting

is not addressed further in this paper.

3. Application to seasonal NAO hindcasts

a. The data

The signal-plus-noise model is demonstrated here

by application to seasonal forecasts of the winter

(December–February mean) NAO, discussed in Scaife

et al. (2014). Seasonal NAO predictability has further

been studied by Doblas-Reyes et al. (2003), Eade et al.

(2014), and Smith et al. (2014). NAO is defined here as

the difference in sea level pressure between the Azores

and Iceland [or nearest model grid points to these two

locations; cf. Scaife et al. (2014)]. A 24-member en-

semble hindcast was generated annually from 1992 to

2011 by the Met Office GloSea5, using lagged initiali-

zation between 25 October and 9 November [details

about GloSea5 can be found in MacLachlan et al.

(2014)]. Raw forecast and observation data are shown in

Fig. 1. In Table 1, we show a number of summary sta-

tistics of the hindcast data. (Data used to generate fig-

ures, graphs, plots, and tables are freely available via

contacting the lead author at s.siegert@exeter.ac.uk.)

b. Prior specification

We use the following independent prior distribution

functions for the model parameters: mx, my ;N (0, 302),

s2
s ;G21(2, 25),s2

«, s
2
h ;G21(3, 100), andb;N (1,0:72),

where G21(a, b) denotes the inverse-gamma distribu-

tion with shape parameter a and scale parameter b. A

random variable X;G21(a, b) has a density function

proportional to x2a21 exp(2b/x). The inverse-gamma

distribution was chosen as a prior because it is a

common choice for variance parameters that can sim-

plify Bayesian calculations. The prior distributions on mx

and my are very wide and uninformative, and we found

FIG. 1. Raw winter NAO ensemble data generated by GloSea5

(small gray-shaded squares), ensemble mean forecasts (large gray

squares), and verifying NAO observations (circles).
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the inference to be insensitive to the choice of these prior

distributions. We found that the inference is more sensi-

tive to the choice of priors on b and the s parameters.

These priors were deliberately chosen to be rather nar-

row: it can be shown by simulation experiments that,

under the prior distributions above, ss has prior mean

’4hPA and prior standard deviation of approximately

2hPa, and sh and s« both have prior mean of approxi-

mately 6.5hPa and prior standard deviation of approxi-

mately 2.5hPa. The parameters of the prior distributions

were chosen by trial and error to yield reasonable prior

distributions on observable quantities. In particular, the

prior distributions of the standard deviation of the en-

semble members f[var(xi)]1/2, cf. Eq. (4b)g and of the

observation f[var(y)]1/2, cf. Eq. (4a)g both have prior

mean of approximately 8hPa and prior standard de-

viation of approximately 3hPa. The correlation co-

efficient of the 24-member ensemble mean and the

observations [cf. Eq. (6)] has prior mean of approxi-

mately 0.4 and prior standard deviation of approximately

0.3, which covers sample correlation coefficients ob-

served in past studies of seasonal winter NAO pre-

dictability [see, e.g., Kang et al. (2014) and Shi et al.

(2015) for collections of seasonal winter NAO correla-

tions obtained by different models]. Furthermore, the

prior probability of the model having lower signal-to-

noise ratio than the observation is approximately 0.5. The

prior distributions on the model parameters therefore

provide reasonable prior specifications for the analyses

of section 3d (correlation coefficients) and section 3e

(signal-to-noise ratios). It is worthwhile to point out

that the priors are for horizontal atmospheric pressure

differences measured in hectopascals; if NAO were

measured differently, the above prior distributions

would have to be rescaled.

The prior distribution is a subjective choice in

Bayesian analysis and is, therefore, often subject to

criticism and discussion. We thus want to describe in

more detail how we have arrived at the above distribu-

tions and why we found default ‘‘uninformative’’ dis-

tributions unsatisfactory. We had initially specified

independent uniform prior distributions on the model

parameters as follows: ss,«,h;U(0, 30) and b;U(21, 2)

to cover physically meaningful ranges of the parame-

ter values, but without favoring a priori one set of

parameters over the other. We have sampled model

parameters from these prior distributions, and substi-

tuted the samples into the analytic expressions of the

correlation coefficient given by Eq. (6). A smoothed

histogram of the thus transformed samples approxi-

mates the derived prior distribution of the correlation

coefficient. We found that the derived correlation prior

has multiple modes, two of which are close to 11

and 21. Since the prior distribution should encode a

priori information (e.g., about NAO prediction skill),

this distribution is clearly unjustified. This example

shows how seemingly objective and uninformative uni-

form prior distributions for the model parameters can

lead to very informative and physically unjustified prior

distributions on meaningful observable quantities. The

uniform priors further produced a prior probability of

over 0.6 that the model has a lower signal-to-noise ratio

(SNR) than the observation. Since the possible anoma-

lous signal-to-noise ratio in NAO predictions is a ques-

tion we wanted to address, we did not want to bias the

result a priori into the direction of a low model SNR.

The chosen prior distributions represent a compromise

between subjective judgements and previously pub-

lished results about NAO variability, signal-to-noise

ratio, and correlation skill.

In appendix D, the sensitivity to varying prior spec-

ification is illustrated for the correlation analysis of

section 3d. The analysis shows that, while different

priors indeed lead to different posteriors, the updated

posterior distributions are similar. For more detailed

discussions about the role and specification of prior

distributions, the reader is referred to the standard

texts on Bayesian statistics given in section 2c, in par-

ticular Gelman et al. (2004). We last note that, if suf-

ficient data is available, the influence of the prior

disappears, and the Bayesian inference is dominated by

the likelihood function (Gelman and Robert 2013).

c. Bayesian updating

Having specified the prior distributions and the like-

lihood function, we now have all the ingredients to ap-

proximate the posterior distribution p(u, s j x, y) by

MCMC. Figure 2 shows 200 MCMC samples and the

estimated posterior distributions of the parameters mx

and my. The posterior distributions of mx and my were

estimated from all 105 MCMC samples. The posterior

TABLE 1. Summary statistics of ensemble means xt and observations

yt and their particular values for the NAO hindcast.

Summary statistics Values

mx 5N21�
N

t51

xt
23.42 hPa

my 5N21�
N

t51

yt 20.94 hPa

y x 5N21�
N

t51

(xt 2mx)
2 5.24 hPa2

yy 5N21�
N

t51

(yt 2my)
2 67.12 hPa2

sxy 5N21�
N

t51

(xt 2mx)(yt 2my) 11.55 hPa2
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distribution ofmx is narrower than that ofmy because the

availability of 24 ensemble members allows for a more

robust estimation of mx than my, which is only based on

one observational time series. Both posterior distribu-

tions, of mx and my, have slightly heavier tails than the

corresponding normal distributions (not shown). The

posterior means (standard deviations) are 23.4 hPa

(0.56 hPa) for mx and 20.9 hPa (1.80 hPa) for my. The

model bias, defined by mx 2 my has posterior mean of

2.55 hPa and posterior standard deviation of 1.64 hPa,

resulting in a posterior probability of a positive bias Pr

(mx . my)5 0.94 and a posterior probability of 0.83 that

the bias exceeds 1 hPa.

Figure 3 shows that MCMC approximation allows for

estimation of the latent variable st, of which 100 samples

from the Markov chain are shown (shifted upward by

my). The estimated time series of st are used in section

3d, where we generate new artificial ensemble forecasts

for the 1992–2011 NAO observations to quantify un-

certainty in correlation coefficients.

The posterior distribution for b is shown in Fig. 4. The

parameter b quantifies how sensitive the forecasts are to

the predictable signal relative to the sensitivity of the

observations. When b 6¼ 0 there is dependency between

forecast and observations; the forecasting system has

skill. From the posterior distribution, the probability

Pr(b . 0) 5 0.99 and Pr(b . 0.2) 5 0.95 so we are confi-

dent that the forecasting system has skill for predicting

the NAO. But are the forecasts reliable; that is, are the

raw ensemble members exchangeable with the obser-

vations? A necessary condition for reliability of the raw

forecasts is that b 5 1, which appears highly unlikely

from our posterior distribution, which gives Pr(b, 1)5
0.99 and Pr(b , 0.8) 5 0.95. This means that individual

raw forecasts should not be taken at face value as pos-

sible realizations of the observations, which is in agree-

ment with the conclusions of Eade et al. (2014) and

highlights that statistical recalibration of the raw fore-

casts is necessary. Note that b, 1 implies that themodel

only contains a damped version of the predictable signal st.

The posterior distribution of b thus indicates an anom-

alously low signal-to-noise ratio of the ensemble, which

we analyze in more depth in section 3e.

Figure 5 shows the posterior distributions of the pa-

rameters ss, s«, and sh. The posterior means (standard

deviations) are 4.66 hPa (1.53 hPa) for ss, 6.26 hPa

FIG. 3. NAO observations (circles), GloSea5 ensemble means

(filled squares), and 100 time series of the variable my 1 st, drawn

randomly from the Markov chain simulation (light gray lines).

FIG. 4. Posterior distribution of b.

FIG. 2. Illustration of MCMC approximation of posterior dis-

tributions. (left) Trace plot of 200 joint samples from the Markov

chain of mx (filled squares) and my (circles). (right) Posterior dis-

tributions of mx (solid line) and my (dashed line), reconstructed

from all 105 samples.

FIG. 5. Marginal posterior distributions of ss (solid line), s«

(dashed line), and sh (dotted–dashed line; scaled by 1/4).
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(1.22 hPa) for s«, and 8.03 hPa (0.26 hPa) for sh. It

should be noted that ss and s« are highly dependent:

according to Eq. (4a), the sum of their squares is con-

strained by the variance of the observations; the total

variance of the observations can be explained either by

lots of signal and little noise or little signal and lots of

noise. If only the observations were available, ss and s«

would be unidentifiable. Only by basing the inference on

the forecast system can ss (and therefore s«) be con-

strained; however, considerable uncertainty remains. In

contrast to s«, the parameter sh is better constrained by

the data, because the individual ensemble members al-

low for estimation of the residual variance around the

ensemble mean. A posterior comparison between the

noise amplitudes yields Pr(sh. s«)5 0.92; that is, there

appears to be more unpredictable noise in the fore-

casting system than in the observations. At the same

time, there is good agreement between the total stan-

dard deviations of the observations and the individual

ensemble members, as defined in Eq. (4): the posterior

mean (standard deviation) is 7.97 hPa (1.09 hPa) for

[var(y)]1/2, and 8.25 hPa (0.28 hPa) for [var(xi)]
1/2.

Note that the model parameters are not invariant

under linear transformations of either the observations

or forecasts. However, since the NAO is often defined

in different ways (e.g., by the leading sea level pressure

empirical orthogonal function, station pressure differ-

ence, or area averaged pressure difference and possibly

transformed to a normalized climate index), it is de-

sirable that forecast performance should be based on

quantities that are invariant to choice of linear scale.

We will therefore now focus on scale-invariant func-

tions of the parameters: namely, the correlation co-

efficient in section 3d and signal-to-noise ratios in

section 3e.

d. Uncertainty in the correlation coefficient

Awidely used evaluation criterion for ensemblemean

forecasts is the Pearson correlation coefficient between

the ensemble forecasts and observations given by

r
xy
5

s
xy

(y
x
y
y
)1/2

. (11)

For the hindcast data presented in section 3a, the sample

correlation is rxy 5 0.62. Uncertainty in correlation co-

efficients is usually quantified by confidence intervals

and p values (Von Storch and Zwiers 2001, section

8.2.3). This section presents a posterior analysis of un-

certainty in the correlation coefficient of NAOhindcasts

of section 3a. We address three precise questions. It

should be noted that the approach outlined below is

applicable to other performance measures, such as the

mean squared error (MSE), the continuous ranked

probability score (CRPS), or the ignorance score.

(i) What is the uncertainty in the population correla-

tion coefficient r, given the hindcast data? In other

words, what are possible values of the correlation

coefficient taken over infinitely many 24-member

ensembles and corresponding NAO observations,

from which the given hindcast data are only a

random sample of size N 5 20? To answer this

question, we consider the population correlation

coefficient r of the 24-member ensemble mean,

expressed as a function of the model parameters,

as given by Eq. (6). We calculate r for each

MCMC sample of the model parameters, and

thereby approximate the posterior distribution

of the population correlation coefficient. Our

prior and updated posterior distributions of r are

indicated by the gray area and the solid line in

Fig. 6, respectively. The posterior distribution of

r quantifies our uncertainty about the correlation

coefficient due to uncertainty in the parameters of

the statistical model and due to the fact that the

ensemble mean can only be estimated imperfectly

by 24 ensemble members [thus the term s2
h/R in the

denominator of Eq. (6)]. As a result of the mode of

the prior distribution of 0.4, the posterior mean of

r of 0.42 is smaller than the actual sample correla-

tion of 0.62. Since 20 samples of hindcast data are

not sufficient to override the prior too much, the

result is biased toward our prior judgments about

NAO skill. It might be argued that this result is

unduly influenced by the prior distribution on the

FIG. 6. Uncertainty in the correlation coefficient. Prior of the

population correlation r (gray area), its posterior distribution

(solid line), the posterior predictive distribution of the sample

correlation over arbitrary 20-yr periods (dashed line), and the

posterior predictive distribution of the sample correlation with

observations fixed at the actual 1992–2011 NAO values (dotted

line). The box-and-whisker plots in the inset indicate the 2.5, 25, 50,

75, and 97.5 percentiles of the distributions.
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correlation. In appendix D, we illustrate the sensi-

tivity of the posterior distribution of the correlation

for different prior distributions. The sensitivity

analysis shows that, even for a very optimistic prior

distribution, with prior mode at a correlation of 0.7,

the posterior mode of the correlation is shrunk

down to about 0.5. The central 95% credible in-

terval derived from the posterior distribution (de-

picted in the inset in Fig. 6) is equal to [0.19, 0.68],

which does not overlap zero, but which also has the

sample correlation value of 0.62 in its upper tail. In

conclusion, the sample correlation coefficient of

0.62 might be an overestimation of the true corre-

lation skill of GloSea5, but we can say with high

certainty that the system does have positive

correlation skill.

(ii) What is the uncertainty in the sample correlation

coefficient rxy for different nonoverlapping 20-yr

forecast periods? To answer this question, we

calculate a large collection of sample correlation

coefficients rxy as follows: We draw a set of

parameters fmx, my, b, ss, s«, shg from the MCMC

output. We use ss to sample a random signal time

series s1, . . . , s20 and then use the other parameters

to generate a random hindcast dataset with R5 24

andN5 20 according to Eq. (1). We then calculate

the sample correlation rxy of the ensemble mean

in this artificial dataset and repeat this process

for all 105 MCMC samples. The resulting distri-

bution is the posterior predictive distribution of rxy
[‘‘predictive’’ because it is a distribution over ob-

servables rather than parameters (Gelman et al.

2004)]. The posterior predictive distribution is

indicated by the dashed line in Fig. 6. This distri-

bution accounts for parameter uncertainty (be-

cause we sample parameters from the posterior)

and also for finite-sample uncertainty (because we

draw a random hindcast dataset of finite lengthN).

The posterior predictive distribution therefore

quantifies our uncertainty about the sample cor-

relation calculated over an arbitrary 20-yr period.

The posterior mean and median of this predictive

distribution are very close to that of the posterior

distribution of r. But the predictive distribution is

wider than the posterior distribution. The 95%

credible interval derived from this distribution is

[20.09, 0.79]. Taking into account finite-sample

uncertainty in addition to parameter uncertainty

increases the overall uncertainty.

(iii) What is the uncertainty in the sample correlation

coefficient rxy for the same 1992–2011 NAO obser-

vations but for a new realization of the ensemble

forecast? To answer this question, we calculate the

posterior predictive distribution of rxy, where the

observations are fixed at their values shown in

Fig. 1. That is, we generate replicated ensemble

forecasts for these particular observations. To do

this, we sample a signal time series s1, . . . , s20 di-

rectly from the MCMC output (sketched in Fig. 3),

instead of generating s1, . . . , s20 randomly. We also

draw the parameters b and sh from the same iter-

ation of the Markov chain. We use these parame-

ters to construct a new 24-member ensemble

forecast using Eq. (1b) and then calculate the

sample correlation with the original 1992–2011

NAO observations. Note that the sampled series

of st is correlated with the original observations,

and therefore the resampled ensemble members

will be correlated with the original observations as

well. The corresponding posterior predictive distri-

bution of r xy is indicated by the dotted line in Fig. 6.

Treating the observations as fixed quantities and

only the ensembles as random decreases the width

of the distribution; the 95% credible interval is now

[0.11, 0.78]. Furthermore, the predictive mean and

mode of this distribution are about 0.5 (i.e., slightly

higher than the means and modes of the previous

distributions). Our best explanation for this shift is

that it is caused by the last three NAO observa-

tions, which represent large excursions from the

mean compared to the previous 17 observations

and thereby bias the correlation coefficient up-

ward compared to randomly sampled observa-

tions from a normal distribution. On the one hand,

this would imply that the normal assumption is

inadequate for the data. On the other hand,

comparison of the two predictive distributions of

rxy (for fixed and arbitrary observational periods)

suggests that, in the future, when NAO might ex-

hibit more normal behavior, the sample correla-

tion using the same model will probably become

smaller than 0.62.

e. Signal-to-noise analysis

It has been noted by Scaife et al. (2014), Kumar et al.

(2014), and Eade et al. (2014) that the signal-to-noise

ratios in seasonal climate predictions can be too low,

which leads to the counterintuitive effect that the en-

semble forecasting system is less skillful at predicting

members drawn from itself than at predicting the ob-

servation. This is problematic because the skill of the

ensemble at predicting itself is often assumed to be an

upper bound of predictability of the real world. Pre-

vious studies have provided only point estimates of

signal-to-noise ratios and have not quantified how
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much uncertainty is in these quantities, which was criti-

cized by Shi et al. (2015). A Bayesian framework allows

us to calculate posterior probabilities for hypotheses re-

lated to signal-to-noise ratios.

In Eade et al. (2014), the ratio of predictable com-

ponents (RPC) was proposed as a measure to compare

levels of predictability in the forecasting system and in

the real world. The predictable component of the real

world (PCobs) was defined as the correlation between

the ensemble mean and the observations, and the pre-

dictable component of themodel (PCmod) was defined as

the ratio of the standard deviation of the ensemblemean

and the mean standard deviation of the ensemble

members. RPC equals the ratio PCobs/PCmod and was

found by Eade et al. (2014) to be about 2 for the NAO

hindcast.

PCobs, PCmod, and RPC, expressed in terms of the

parameters of the signal-plus-noise model are given in

appendix B. Eade et al. (2014) argue that, for a fore-

casting system that ‘‘perfectly reflects the actual pre-

dictability,’’ RPC should be equal to one. If we define a

perfect forecasting system by full exchangeability of

ensemble members and observations (i.e., mx 5 my,

s« 5 sh, and b 5 1) and substitute these equalities into

Eq. (B1c), we find that the perfect value of RPC is

RPC
perf

5

�
11

1

Rs2
s /s

2
«

�21

. (12)

It can be noted from this that RPCperf 6¼ 1 even for a

fully exchangeable system. To obtain RPCperf 5 1, one

also has to have either an infinitely large ensemble (i.e.,

R / ‘) or no unpredictable noise in the system (i.e.,

sh 5 s« 5 0). When both R and s« are finite, RPCperf is

smaller than one.

RPC is a rather complicated function of the parame-

ters b, ss, s«, and sh [cf. Eq. (B1c)], and RPC 5 1 cor-

responds to an imperfect forecasting system. Therefore,

we shall consider instead the SNRs of the forecast sys-

tem and of the observations. The SNRs are simply the

ratio of the standard deviation of the predictable com-

ponent (signal) and the unpredictable component

(noise) of observations and of individual ensemble

members; that is,

SNR
obs

5
s
s

s
«

and (13a)

SNR
mod

5
jbjs

s

s
h

. (13b)

Note that SNRobs and SNRmod are invariant under a

shift or rescaling of the forecasts or the observations.

Substituting the moment estimators from appendix C

into Eq. (13), we obtain SNRobs 5 1.73 and SNRmod 5
0.21 (i.e., the observations appear to be more predict-

able than themodel). But themodel parameters are very

uncertain. Therefore, we should also expect SNRs to be

very uncertain.

Figure 7 shows posterior distributions of SNRobs and

SNRmod derived from the MCMC simulation. The pos-

terior distribution of SNRmod is sharper than that of

SNRobs because 24 ensemble members allow for more

robust estimation than a single observation time series.

We confirm with very high posterior probability the

previous result of Scaife et al. (2014) that, for the

GloSea5 winter NAO forecast, the SNR of the model

is lower than the SNR of the observations. In partic-

ular, we have a posterior probability Pr(SNRobs .
SNRmod) 5 0.99 (updated from prior probability of

;0.5). The sensitivity of this conclusion to the choice of

the prior is briefly discussed in appendix D.

Our posterior analysis assigns very high probability to

the hypothesis that the predictable signal component in

the model is weaker than in the real world. The analysis

of Shi et al. (2015), which is based on a set of winter

NAO hindcasts produced by different models, con-

cludes that such an underconfident ensemble ‘‘merely

suggest an inadequately small sample size.’’ Contrary to

that, the analysis based on our 20-yr dataset (and our

statistical assumptions) confirms the finding of Eade

et al. (2014) with very high confidence, despite the small

sample size: the raw GloSea5 ensemble underestimates

the predictability of the real world, and statistical post-

processing of the raw ensemble is necessary to generate

reliable forecasts.

f. Calibration and prediction

Bayesian inference using the signal-plus-noise model

provides a natural framework for recalibrating forecasts

to produce reliable probability distributions of future

observations. The predictive distribution function for

FIG. 7. Posterior distributions of the signal-to-noise ratio of the

observations (solid line) and of the model (dashed line).
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the unknown observation yt is the conditional distribu-

tion of yt, given the known quantities fx, yg2t (i.e., the

hindcast dataset not including the time instance t), as

well as xt (i.e., the ensemble forecast for yt). The pre-

dictive distribution can be calculated by integrating over

the posterior distribution of the model parameters:

p(y
t
j fx, yg

2t
, x

t
)5

ð
du p(y

t
j x

t
, u)p(u j fx, yg

2t
, x

t
) .

(14)

Note that, according to Eq. (10), the conditional distri-

bution p(yt j xt, u) is a normal distribution, the parame-

ters of which depend on the signal-plus-noise model

parameters. The predictive distribution Eq. (14) can

thus be interpreted as a weighted mixture of normal

distributions, where the weight is given by the posterior

density of the model parameters. A mixture of normal

distributions is itself not, in general, a normal distribu-

tion. We should thus not expect the predictive distri-

butions to be normal, even though our statistical model

is based on the assumption of normality of the data. The

resulting predictive distributions include a suitable

predictive variance that takes into account parameter

uncertainties and forecast uncertainty.We generateN5
20 predictive distributions in leave-one-out mode: that

is, for each t5 1, . . . ,N, the predictive distribution for yt
is calculated under the assumption that yt is unknown

[see Hastie et al. (2009) for further details on cross val-

idation]. The Stan code has to be adjusted slightly to

simulate these out-of-sample predictive distributions

(see appendix A).

We compare the posterior predictive distribution

functions to a simple benchmark given by ordinary lin-

ear regression. Recall that we have argued in section 2d

that, if the model parameters were known, linear re-

gression would be the optimal postprocessing method

for signal-plus-noise models. We regress the observa-

tions yt on the ensemblemeans xt and predict aGaussian

forecast distribution with the residual variance of the

regression; that is,

(y
t
j x

t
);N

�
m

y
1

s
xy

y
x

(x
t
2m

x
), y

y
(12 r2xy)

�
. (15)

The benchmark predictions were generated in leave-

one-out mode as well.

The posterior predictive distributions and the bench-

mark predictions are shown in Fig. 8. In general, the

posterior predictive distributions are wider than the

benchmark predictions; their average standard de-

viations are 7.5 and 6.6 hPa, respectively. The posterior

predictive means are less variable than the benchmark

means; their standard deviations are 3.0 and 5.1 hPa,

respectively.

The larger dispersion of the posterior predictive dis-

tributions leads to the effect that, in themajority of cases

(when the NAO is close to its climatological mean), the

benchmark predictions assign a higher predictive den-

sity to the observation than the posterior predictive

distributions. On the other hand, if the observation is far

FIG. 8. Predictive distributions functions based on simple linear

regression (dashed line) and fully Bayesian, using the signal-

plus-noise model (solid lines). The vertical lines indicate the

observations.
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away from the climatological mean or far away from the

forecast mean, the posterior predictive distributions

assign more density to the observations. We address the

question of which collection of forecasts is better, on

average, by calculating the average ignorance score

(Roulston and Smith 2002). Given a forecast density p

(z) and a verifying observation y, the ignorance score is

defined by

I (p; y)52log
2
p(y) . (16)

The ignorance is a proper scoring rule for probabilistic

forecasts of continuous quantities; its average can be

taken as a summary of forecast performance, indicating

better forecasts by lower values.

In Table 2, we compare the average ignorance scores

of three different forecasts: the leave-one-out climato-

logical forecast, which is simply a normal distribution

with the climatological mean and variance, the linear

regression benchmark, and the posterior predictive

distributions. It is reassuring that the posterior pre-

dictive distributions assign a higher average density to

the observation than both the climatology and the re-

gression benchmark. The additional skill is due to the

wider predictive distributions and the less variable pre-

dictive mean. These two features are a consequence of

accounting for parameter uncertainty by integrating

over their posterior distribution. In conclusion, the

Bayesian analysis using a signal-plus-noise model not

only provides useful evaluation diagnostics but also

provides a natural way of generating skillful and well-

calibrated probability forecasts.

4. Discussion

a. Model criticism

We have used a simplified statistical model to make

inferences about an actual forecasting system, so it is

important to be aware of the limitations of the sta-

tistical model. It is important not to confuse limita-

tions of our statistical model with deficiencies of the

real forecasting system.

There are a number of features of observed climate

indices and their ensemble forecasts for which our

simplified model cannot account. These include the

following: autocorrelation in the ensemble forecasting

system and the observations; a spread–skill relation:

that is, a systematic relationship between the ensemble

spread and the distance between the ensemble mean

and the verifying observation; trend in the observations

and drifts in the model output; and skewness, bi-

modality, or heavy tailedness of the distribution of the

predictand. More work is necessary to develop statis-

tical frameworks for ensemble forecasts that take some

or all of these effects into account without becoming

overly complex. On the other hand, by leaving out all

these details, our model retains a high level of in-

terpretability. Beforemaking themodel more complex,

we also have to ask ourselves, how much information

can we justifiably hope to infer from 20 years’ worth of

annual hindcast data?

b. Model checking

We have tested the validity of our exchangeability

assumptions in section 2a by replacing the observation

with one of the ensemble members. Since we judged the

ensemble members to be exchangeable, replacing the

observation with an ensemble member should produce a

perfect-model scenario, where the observation and en-

semble members are statistically indistinguishable from

each other (i.e., we should have mx 5 my, b 5 1, and

s« 5 sh). After rerunning the posterior analysis under

this perfect-model scenario, we found that the posterior

distributions of mx and my and of s« and sh overlap each

other and provide no indication for nonexchangeability.

Furthermore, the posterior distribution of b does not

rule out the value b 5 1 as strongly as the posterior

distribution shown in Fig. 4. However, we still found the

bulk of the posterior distribution of b to be concentrated

between 0 and 1, resulting in a rather high posterior

probability of Pr(b , 1) ’ 0.95. Furthermore, we

found a posterior probability for an anomalous signal-

to-noise ratio of Pr(SNRperf.obs. SNRmod)’ 0.85 in this

perfect-model scenario. These posterior probabilities

provide evidence that our statistical model might not be

flexible enough to accurately model the data. A possible

explanation for the observed behavior is that the en-

semble members are, in fact, not exchangeable with

each other, which could be the result of the lagged ini-

tialization of GloSea5 on three different dates. Without

further analyses, we are unable to model such an en-

semble with nonexchangeable members, and we leave

this problem open for future studies.

We have also repeated our analyses with different

NAO observations, taken directly from station data at

Lisbon, Portugal, and Reykjavik, Iceland, (NCAR staff

2014a) and from the leading empirical orthogonal

function of sea level pressure anomalies over the

TABLE 2.Average ignorance scores and standard errors for different

forecast methods.

Method Mean ignorance Standard error

Climatology 5.46 0.62

Regression benchmark 5.24 0.62

Posterior predictive 5.02 0.41
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Atlantic sector (NCAR staff 2014b). The posterior

distributions of m and s change slightly because the

alternative observations have different scales. For

the scale-invariant quantities analyzed in sections 3d

and 3e, however, the posterior distributions are almost

identical to the ones we obtained earlier. Our main

conclusions are therefore insensitive to the choice of

NAO observations.

c. Correlation uncertainty under different hindcast
settings

Statistical inference using a signal-plus-noise model

might be useful for design of future ensemble systems.

Simulations from the model can be used to calculate

predictive distributions of correlation coefficients for

different ensemble sizes R and for different sample sizes

N. In practice, the hindcast length N and the ensemble

sizeR can usually not be chosen independently, but their

choice is constrained by the available computational

resources. Given that the computational expense of a

planned hindcast experiment, defined by the product

NR, is fixed, how should N and R be chosen? One pos-

sible criterion might be to consider the range of possible

values of the correlation coefficient. Figure 9 shows that,

for a given computational expense (i.e., NR constant),

there is a trade-off between mean and spread of the

distribution of possible correlation values. Higher ex-

pected correlation can be obtained by increasing the

ensemble size R while decreasing the hindcast length N.

At the same time, however, the risk of getting very low

sample correlations (e.g., not significantly different

from 0) increases if N is decreased. This is because the

spread of possible correlation values becomes wider

but also because, the larger N is, the smaller will be

the correlation values that are deemed significant by

statistical tests.

5. Conclusions

This study has shown how a statistical model can be

used to diagnose and improve the skill and reliability of

an ensemble forecasting system. The distributions-

oriented approach (Murphy and Winkler 1987) pro-

vides a complete summary of the forecasting system and

observations using a signal-plus-noise model, the pa-

rameters of which can be estimated by Bayesian infer-

ence. Posterior distributions of the parameters can be

used to simulate properties of any desired performance

measure and its uncertainty under hypothetical designs

of the ensemble forecasting system. The framework

provides a straightforward method for calculating cali-

brated probability forecasts for future observables for a

given set of ensemble forecasts.

We conclude by revisiting the five questions specified

in the introduction, which guided the analysis of NAO

hindcasts produced by the GloSea5 seasonal climate

prediction system. Question 1: There is indeed much

sampling uncertainty in the correlation between the

ensemble mean and observations. But there is also

strong evidence of actual positive correlation skill: the

95% credible interval of [0.19, 0.68] does not overlap

zero. Question 2: Our analysis suggests that very dif-

ferent correlation skill might be observed over differ-

ent 20-yr periods. In particular, the value of 0.62 is in

the upper tail of the correlation distribution, suggest-

ing a high chance of a decrease in correlation skill if

GloSea5 were evaluated over different periods.

Question 3: The skill uncertainty over the same 1992–

2010 evaluation period is smaller than over arbitrary

20-yr evaluation periods. Our results suggest that the

20-yr period is unusual and produces higher-than-

normal correlation skill. The reasons for this are not

entirely clear but might be related to large deviations of

NAO in the years 2008–10. Question 4: Forecasts are

certainly not exchangeable with the observations and

can therefore benefit from recalibration. A particular

feature of nonexchangeability is the anomalous signal-

to-noise ratio (SNR). We show with over 99% poste-

rior probability that the SNR is smaller in the model

than in the observations: that is, the predictable signal

in the model is too weak. Question 5: The probabilistic

framework used in this study allows us to derive a re-

calibrated predictive distribution (i.e., the conditional

distribution of the observation), given the ensemble

forecast. We found that the Bayesian method of

FIG. 9. Posterior predictive distribution of correlation co-

efficients for different combinations of N and R. The box-and-

whisker plots indicate the 2.5, 25, 50, 75, and 97.5 percentiles of the

predictive distributions; the diamonds indicate the mode and the

dots indicate the mean. The plots are grouped according to their

computational expense N 3 R.
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integrating over the parameter uncertainty distribution

improves the forecast skill compared to a simpler

recalibration method.

It is worthwhile to highlight a few important advan-

tages of a Bayesian framework over more traditional

approaches. First, the proposed statistical model is

based on explicit assumptions, which creates trans-

parency in how we interpret the observed data and

about how we think forecasts are related to the real

world. Transparency is the basis for critically discussing

assumptions and revising these assumptions if neces-

sary. Second, all the analyses to answer our research

questions are coherently based on the exact same as-

sumptions about the data. There are established

methods to address each of our research questions in

isolation: for example, a Student’s t test for the corre-

lation coefficient (Von Storch and Zwiers 2001), anal-

ysis of ratio of predictable components (RPC; Eade

et al. 2014) to address signal-to-noise ratio, and non-

homogeneous Gaussian regression (NGR; Gneiting

et al. 2005) for forecast recalibration. But these

methods are not explicitly based on the same statistical

assumptions. An explicit statistical model allows us to

address different questions in a coherent way without

changing our assumptions about the data. Last, un-

certainty quantification is a crucial aspect of analyzing

small climate hindcast datasets. In Bayesian analyses,

probability is the primitive quantity, and uncertainty

quantification is therefore built into the analysis by

default. All questions can be addressed by posterior

probability distributions, which not only communicate

our best guesses but also our degree of uncertainty. On

the other hand, computational methods for Bayesian

analyses can be expensive, the specification of suitable

prior distributions is problematic, and all conclusions

are conditional on the parametric model assumptions

being correct.

In future studies, it will be of interest to relax model

assumptions (e.g., to include serial dependence in the

signal time series) and to extend the model to allow for

possible sources of nonstationarity (e.g., climate change

trends), as well as spread–skill relationships. A more

disciplined way of specifying the prior distribution over

model parameters is needed. It will also be of interest to

develop computationally efficient methods for modeling

spatial ensemble hindcasts and observations available at

many gridpoint locations.
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APPENDIX A

Stan Model Code

For the diagnostic analysis, where all N observations

and ensemble forecasts are known, the following algo-

rithm in Stan code was used to approximate the poste-

rior distribution.

data f
int,lower51 . N;
int,lower51 . R;
matrix[N,R] x;
vector[N] y;

g
parameters f

real mu_x;
real mu_y;
real,lower50 . sigma2_eps;
real,lower50 . sigma2_eta;
real,lower50 . sigma2_s;
real beta;
vector[N] s;

g
model f

mu_x ; normal(0, 30);
mu_y ; normal(0, 30);
beta ; normal(1, 0.7);
sigma2_s ; inv_gamma(2, 25);
sigma2_eps ; inv_gamma(3, 100);
sigma2_eta ; inv_gamma(3, 100);
s ; normal(0, sqrt(sigma2_s));
y ; normal(mu_y 1 s, sqrt(sigma2_eps));
for (n in 1:N)

for (r in 1:R)
x[n,r] ; normal(mu_x 1 beta * s[n],

sqrt(sigma2_eta));
g
To generate the predictive distributions for section 3f,

where the Nth observation is assumed to be unknown,

the following algorithm in Stan code was used:

data f
int,lower51 . N;
int,lower51 . R;
matrix [N,R] x;
vector [N-1] y;

g
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parameters f
real mu_x;
real mu_y;
real,lower50 . sigma2_eps;
real,lower50 . sigma2_eta;
real,lower50 . sigma2_s;
real beta;
vector[N-1] s;
real s_new;

g
model f
mu_ x ; normal(0, 30);
mu_ y ; normal(0, 30);
beta ; normal(1, 0.7);
sigma2_s ; inv_ gamma (2, 25);
sigma2_eps ; inv_ gamma (3, 100);
sigma2_eta ; inv_gamma(3, 100);
s ; normal(0, sqrt(sigma2_s));
y ; normal(mu_y 1 s, sqrt(sigma2_eps));
for (n in 1:(N-1))

for (r in 1:R)
x[n,r] ; normal(mu_x 1 beta * s [n],

sqrt(sigma2_eta));
s_new ; normal(0, sigma_s);
for (r in 1:R)

x[N,r] ; normal(mu_x 1 beta * s_new,
sqrt(sigma2_eta));
g
generated quantities f
real y_new;
y_new ,- normal_rng(mu_y 1 s_new, sqrt

(sigma2_eps));
g

APPENDIX B

Ratio of Predictable Components as Functions of
Model Parameters

This appendix complements section 3e. PCobs, PCmod,

and RPC, expressed in terms of the parameters of the

signal-plus-noise model are given by

PC
obs

5
bs2

s

[(s2
s 1s2

«)(b
2s2

s 1s2
h/R)]

1/2
, (B1a)

PC
mod

5

 
b2s2

s 1s2
h/R

b2s2
s 1s2

h

!1/2

, and (B1b)

RPC5

(
11s2

h/(b
2s2

s )

(11s2
«/s

2
s )[11s2

h/(Rb
2s2

s )]

)1/2

. (B1c)

APPENDIX C

Method of Moment Estimators for the Signal-Plus-
Noise Model

To calculate moment estimators for the parameters of

the signal-plus-noise model Eq. (1), we use the summary

measures given in Table 1 and additionally the average

ensemble variance:

y
x
5 (NR)21 �

N

t51
�
R

r51

(x
t,r
2 x

t
)2 . (C1)

Equating the analytical first and second moments [cf.

Eq. (4)] of the signal-plus-noise model with sample

moments and solving for the model parameters, we

obtain estimating equations for the model parameters.

The equations and corresponding values for the NAO

data of section 3a are summarized in Table C1.

APPENDIX D

Sensitivity to Choice of Priors

Bayesian analyses are sensitive to the choice of prior

distributions. This is desired for the present study; we

want our prior judgments about diagnostic quantities to

have an impact on our conclusions, especially because

the sample size is small. To illustrate the sensitivity to

the choice of prior distributions, we consider the vari-

ability of the posterior distribution of the correlation

coefficient r [cf. section 3d and Eq. (6)] when the prior

parameters are varied. We found the shape of the prior

distribution on r to be sensitive to the shape and scale

parameters of the inverse-gamma prior distribution on

s2
s . We have varied these parameters within values that

produce believable prior distributions on r. We have

then calculated new posterior distributions of r using the

alternative prior specifications. The varying prior dis-

tributions and updated posterior distributions of r are

TABLE C1. Estimating equations for parameters in the signal-

plus-noise model derived by method of moments and estimated

values for the GloSea5 NAO hindcast data.

Estimating equations Values

m̂x 5mx 23.42 hPa

m̂y 5my 20.94 hPa

ŝ2
h 5 yx 62.17 hPa2

b̂5 s21
xy (yx 2R21yx) 0.23

ŝ2
s 5 b̂21sxy 50.35 hPa2

s2
« 5 yy 2 ŝ2

s 16.77 hPa2
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shown in Fig. D1. As expected, because of the small

sample size, the posterior distributions vary consider-

ably as a result of the variability of the prior. But the

differences between the different prior distributions are

greater than the differences between their updated

posterior distributions. Bayesian updating leads to a

consensus between differing prior judgments. Note

further that the optimistic prior distributions with prior

mode at approximately 0.7 are shrunk toward a mode at

approximately 0.5, which is smaller than the sample

correlation of 0.62 for the data.

In section 3e, we have shown that there is a high pos-

terior probability of an anomalously low signal-to-noise

ratio of the model: Pr(SNRobs . SNRmod) . 0.99. This

probability is sensitive to the choice of the prior param-

eters. Note that, changing only the prior distribution of

s2
s , the prior distribution of the correlation changes but

the prior probability Pr(SNRobs . SNRmod) ’ 0.5 does

not change. We found that, changing the prior of s2
s in

such a way that the correlation prior becomes more

pessimistic, the posterior probability for (SNRobs .
SNRmod) decreases. For the prior specifications that yield

the most pessimistic prior expectation of the correlation

of approximately 0.3 in Fig. D1, the posterior probability

of an anomalous SNR reduces to approximately 0.85.
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