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ABSTRACT

For climate services to be relevant and informative for users, scientific data definitions need to match users’

perceptions or beliefs. This study proposes and tests novel yet simple methods to compare beliefs of timing of

recurrent climatic events with empirical evidence frommultiple historical time series. The methods are tested

by applying them to the onset date of the monsoon in Bangladesh, where several scientific monsoon defini-

tions can be applied, yielding different results for monsoon onset dates. It is a challenge to know which

monsoon definition compares best with people’s beliefs. Time series from eight different scientific monsoon

definitions in six regions are compared with respondent beliefs from a previously completed survey con-

cerning the monsoon onset.

Beliefs about the timing of the monsoon onset are represented probabilistically for each respondent by

constructing a probability mass function (PMF) from elicited responses about the earliest, normal, and latest

dates for the event. A three-parameter circular modified triangular distribution (CMTD) is used to allow for

the possibility (albeit small) of the onset at any time of the year. These distributions are then compared to the

historical time series using two approaches: likelihood scores, and the mean and standard deviation of time

series of dates simulated from each belief distribution.

The methods proposed give the basis for further iterative discussion with decision-makers in the devel-

opment of eventual climate services. This study uses Jessore, Bangladesh, as an example and finds that a

rainfall definition, applying a 10mmday21 threshold to NCEP–NCAR reanalysis (Reanalyis-1) data, best

matches the survey respondents’ beliefs about monsoon onset.

1. Introduction

Of the several different functions climate services

have (Miles et al. 2006), one is to translate climate re-

search into practical applications useful for decision

support (Brooks 2013; Visbeck 2008). If we want to

communicate climate information as part of a climate

service program, we must evaluate how appropriate this

information is. We have to evaluate how well this in-

formation speaks to the stakeholders, as their decisions

are based on their view of the world, and their experi-

ences with weather and climate (Lemos 2008;Marx et al.

2007; Moss et al. 2013; Rosenzweig and Binswanger

1993; Weber 2006). It is therefore important to under-

stand how the stakeholders define weather events or

seasons that impact their lives, in order to understand

the gap between producers and users of climate infor-

mation (Buontempo et al. 2014). This gap can be par-

ticularly wide if stakeholders’ definitions of an event

differ from the wider research community (Pennesi

2007; Stiller-Reeve et al. 2015). We must ensure that the

producers and the users of scientific information are
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talking about the same phenomenon. For a climate

phenomenon (e.g., the monsoon onset), the producers

should define it in a way that yields timing and variability

that the users can relate to. In this way, we increase the

potential to develop science products that ‘‘fit’’ stake-

holder needs (Ray et al. 2007). This paper attempts to

make this fit by evaluating the timing of seasonal onsets

given by different scientific definitions against the beliefs

of stakeholders. Whereas in a previous paper (Stiller-

Reeve et al. 2015), we made general comparisons be-

tween scientific definitions and belief, here we develop

statistical tools to make quantitative comparisons.

One important climate phenomenon to millions of

people around the world is the monsoon, in particular

monsoon-related rainfall. Scientific information about a

monsoon onset might be useful if it aligns with the beliefs

of the intended stakeholders. This alignment is sometimes

elusive. Pennesi (2007) showed that different ways of de-

fining the wet season in Brazil led to distrust in the official

forecasts.Monsoon definitions also diverge in Bangladesh,

where the people define the monsoon differently in dif-

ferent locations (Stiller-Reeve et al. 2015). Furthermore,

scientific narratives about when the monsoon starts also

vary and depend on the scientific definition of the mon-

soon that is applied. There is still no consensus on how to

define themonsoon in the research community (Wang and

LinHo2002;Yang et al. 2012; Zeng andLu2004).Over the

years, research has postulated several monsoon definitions

for Southeast Asia. These definitions use different vari-

ables and thresholds to designate the monsoon onset and

withdrawal.While some use rainfall observations (Ahmed

andKarmakar 1993; Matsumoto 1997) or gridded datasets

(Ashfaq et al. 2009; Wang and LinHo 2002; Zeng and Lu

2004; Zhang 2010), others use proxies for rainfall like

outgoing longwave radiation (Zhang et al. 2004) or those

that are based on indices related to atmospheric circulation

(Wang et al. 2009; Zhang 2010). Over Bangladesh, these

monsoon definitions can give varying results that some-

times compare poorly with the beliefs of local people

(Stiller-Reeve et al. 2015).

In a previous study, researchers asked the people of

Bangladesh in the locations shown in Fig. 1 when they

believed the monsoon normally started, as well as the

earliest and latest onset dates over the past 20 years

(Stiller-Reeve et al. 2015). The results from this survey

showed that the respondents in Sylhet, northeast Ban-

gladesh, believed the monsoon started particularly early.

This perceived onset was roughly onemonth before onset

dates from most scientific definitions. The challenge is

how to best compare the onset dates given by the scien-

tific definitions with the elicitations from the respondents.

In this study, we use a modified triangular distribution

to model the beliefs of the respondents and to compare

them to historical time series of the monsoon onsets

from empirical definitions (historical time series). Using

these modified triangular distributions, we further de-

velop two methods for comparison: one uses log-

likelihoods and the other uses time series simulations.

In the next section, we present the data for comparison,

including a closer look at the results from the question-

naire survey and a description of how we generate the

historical climate time series of the monsoon onset,

according to different scientific definitions. In section 3,

we describe the statistical model and the method that we

apply to compare the scientific and societal narratives

about the monsoon onset. We explain why we use the

triangular distribution and how we modify it for the

present application. We illustrate the method and discuss

the results in section 4, with a focus on the Jessore district

in Bangladesh. Section 5 summarizes our results and

presents some ideas for future research.

2. Data

a. Public perception

In 2011, colleagues at the Bangladesh Centre for

Advanced Studies carried out a survey in six different

locations around Bangladesh, as shown in Fig. 1 (Stiller-

Reeve et al. 2015). In each location, around 200

FIG. 1. Locations in Bangladesh where the questionnaire study was

carried out by Stiller-Reeve et al. (2015).
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respondents participated. These respondents were cho-

sen by the field teams by random sampling with several

simple criteria. The respondents should be

1) over 40 years old,

2) permanent residents of the settlement concerned, and

3) agricultural workers.

Other professions were also represented, but the agri-

cultural workers composed 93.0% of the entire survey.

The respondents answered questions about monsoon

onset timings, eliciting the respondents’ beliefs of how

the monsoon progresses across the country.

Questions were designed as straightforward as possi-

ble to leave little room for misunderstanding. Re-

spondents stated when the monsoon normally started,

followed by their opinions on the earliest and latest

monsoon onsets during the previous 20 years. In the

present study, these three answers (earliest, normal, and

latest monsoon onsets) provide the foundation for the

comparison with the historical time series. We do not

delve any further into the backgrounds of the re-

spondents in this paper and solely use their answers to

help develop and test our proposed methods to compare

their beliefs with historical climate time series.

b. Historical time series

To generate time series of monsoon onsets, we chose

different monsoon definitions and different datasets to

which to apply them. Each monsoon definition aims to

pinpoint the transition between the premonsoon and

monsoon seasons. To do this, a definition usually uses a

specific parameter, such as rainfall, wind direction, or

proxies for each of these. A definition usually applies a

threshold to this parameter, which signifies the seasonal

shift. Since these thresholds can be exceeded throughout

the year, a definition also needs to identify a transition.

This transition is commonly defined by how long a

threshold must be exceeded before the monsoon is de-

clared. In this study, we use three different parameters

and five different thresholds on four different datasets, as

described in Table 1. We designate the transitions using

the method developed by Stiller-Reeve et al. (2014). The

parameters and thresholds that we use in this study are

based on previously published studies on the monsoon

onset. These studies were designed for different scientific

objectives, without necessarily a climate service applica-

tion in mind. Therefore, our results are in no way meant

to undermine any of the previous work to which we refer.

Instead, we use these definitions as our starting point to

inform practices within climate services.

We apply the different monsoon definitions to the

four datasets. Even though these data cover different

periods, they all span the period 1978–2007. Hence, we

choose this period to compile a climatology of onsets

that is consistent for all the datasets. We keep the data

resolution consistent for analysis by bilinearly in-

terpolating all the results to 0.258, which is identical

to the highest-resolution dataset. We realize that the

datasets may not be ideal at these higher resolutions,

especially in regions of rapid topographic changes.

Northeast Bangladesh is one such region where the flat

plain is hugged by theKhasi Hills to the north. However,

since we aim to compare local perceptions with data, it is

favorable if the data themselves are also ‘‘local.’’ The

highest resolution gives us the possibility to extract time

series from closer to the survey locations. All the in-

terpolated datasets are converted to Julian pentad

values, which is commonly used in monsoon research

(Matsumoto 1997; Wang and LinHo 2002). A Julian

pentad is one of seventy-three 5-day periods that the year

(if we exclude 29 February in leap years) can be separated

into (e.g., 1–5 January). In the following section, we de-

scribe the different monsoon definitions that we apply in

this study. The mean onsets over Bangladesh using the

different definitions and datasets are shown in Fig. 2.

1) RAINFALL: SPATIALLY STATIC THRESHOLD

We apply a static threshold to the rainfall datasets.

The threshold is static because it does not change spa-

tially. The advantage of using a static value for the

monsoon onset is that it facilitates the comparison of

results between different regions. The problem is that it

TABLE 1. Overview of the different monsoon definitions and data to which we apply them.

Threshold type Data source Original resolution Threshold Historical time series tag

Rainfall static APHRODITE 0.258 5mmday21 rain1_5_aphr

Rainfall static NCEP–NCAR T64 5mmday21 rain1_5_ncep

Rainfall static APHRODITE 0.258 10mmday21 rain1_10_aphr

Rainfall static NCAR-NCEP T64 10mmday21 rain1_10_ncep

Rainfall variable APHRODITE 0.258 Pentad mean (mmday21) rain2_aphr

Rainfall variable NCEP–NCAR T64 Pentad mean (mmday21) rain2_ncep

OLR NOAA OLR 2.58 240Wm22 olr_noaa

Wind NCEP–NCAR 2.58 1ve y-wind 850 hPa wind_ncep

2ve u-wind 200 hPa
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does not consider local effects and is usually chosen

somewhat subjectively.

In this study, we use a 5mmday21 threshold (Ahmed

1994; Ahmed and Karmakar 1993). We also apply a

10mmday21 threshold, justified by the considerable

convective activity in Bangladesh, especially in the

northeast, betweenMarch andMay (Yamane et al. 2010).

These thresholds are applied to pentad rainfall values in

two datasets. We chose two datasets so that we could also

compare results from data with different resolutions.

With this in mind we selected the APHRODITE rainfall

dataset (Yatagai et al. 2012) and NCEP–NCAR re-

analysis (Reanalysis-1) (Kalnay et al. 1996).

The APHRODITE dataset contains daily rainfall

values (mmday21) over the Asian monsoon region at a

0.258 resolution. The dataset is created using observa-

tions from rain gauges over the Asian monsoon region

and spans 1951–2007. The data are not very reliable

over Bangladesh during the early 1970s, presumably

because of domestic turmoil around the time of Ban-

gladeshi independence. The Reanalysis-1 data for

precipitation rate are resolved on a T62 Gaussian grid.

Around Bangladesh, this implies a resolution of

roughly 1.98. The units are kgm22 s21, which were

converted to mmday21. The NCEP–NCAR data

were linearly interpolated to the same grid as the

APHRODITE data.

2) RAINFALL: SPATIALLY VARIABLE THRESHOLD

Spatially variable thresholds for determining the

monsoon onset vary from grid point to grid point. Here,

we determine the rainfall threshold by calculating the

mean pentad rainfall (mmday21) for each grid point

(Matsumoto 1997). For example, if a grid point features a

2500-mmaverage annual rainfall, the thresholdwill be set

to 6.85mmday21, equivalent to a total pentad amount of

34.25mm.We apply theses thresholds to the interpolated

Reanalysis-1 and APHRODITE datasets.

FIG. 2. The average monsoon onsets from the historical time series. The Bangladeshi border is shown in dark gray, and the 500-m

topography contour is shown in light gray. The figures show the results (according to the time series tags in Table 1) from (a) rain1_5_aphr,

(b) rain1_5_ncep, (c) rain1_10_aphr, (d) rain1_10_ncep, (e) rain2_aphr, (f) rain2_ncep, (g) olr_noaa, and (h) wind_ncep.
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3) OUTGOING LONG WAVE RADIATION

Outgoing longwave radiation (OLR) datasets have

the benefit of being available over land and ocean. OLR

is also used because direct rainfall observations over

many tropical regions are not very reliable. As OLR is a

proxy for deep convection, OLR also acts as a proxy for

monsoonal rainfall.

Previously, researchers applied static thresholds to

identify themonsoon onset usingOLRdata. In this study,

we use interpolated OLRNOAA data (Liebmann 1996),

with a resolution of 2.58, which we interpolated to 0.258.
The data were provided by the NOAA/OAR/ESRL/

Physical Sciences Division (PSD), Boulder, Colorado,

from its website (http://www.esrl.noaa.gov/psd/). After

converting the data to pentad values, we apply a thresh-

old of 240Wm22 as our monsoon criteria. This threshold

has been used in previous studies concerning the South-

east Asian (Zhang et al. 2004) and West African mon-

soons (Fontaine et al. 2008).

4) WIND DIRECTION

As the advent of the monsoon is associated with a

reversal in atmospheric circulation, we also include a

definition based on wind direction. Definitions such as

these are very dependent on the climate of the region in

question. Around Bangladesh, the monsoon circulation

can be characterized by a reversal in flow both at the

surface and higher altitudes. We therefore chose a def-

inition that takes into account the reversal of wind di-

rection at two levels in the atmosphere. At the lower

levels, we use the same threshold as Zhang (2010), that

the winds must have a southerly component. This is an

appropriate criterion, as the southerly winds advect

moisture from the Bay of Bengal across Bangladesh.

Ramage (1995) also defines the monsoon as the period

when the winds are reversed compared with the winter

months. As the winds are mainly from the north during

the (boreal) winter, the southerly wind criterion seems

justified (Ahmed 1994; Ahmed and Karmakar 1993). At

higher levels (200 hPa) we use a criterion that takes into

account the formation of the easterly jet, associated with

the meridional temperature contrast related to the

South Asian monsoon circulation. The second criterion

therefore stipulates that the winds at 200hPa must have

an easterly component. We apply these criteria to data

from Reanalysis-1, which have a resolution of 2.58, in-
terpolated to 0.258.

c. Time series tags

Table 1 gives an overview of the different monsoon

definitions we have applied in this study, along with the

details of the data sources. Table 1 also presents the tags

that we will use to refer to the results from the different

monsoon definitions. The tags are also used in Fig. 2,

which shows the average onsets for the different defi-

nitions across Bangladesh between 1978 and 2007. We

extract historical time series from the closest grid points

to the locations where the earlier questionnaire survey

was completed (see Fig. 1). These historical time series

and questionnaire results are the foundation of the

analysis in this study. We will now describe our meth-

odology and present a detailed analysis from Jessore as

an example.

3. Methodology

a. Probabilistic representation of beliefs

To quantify their uncertain beliefs about the onset

date, we assume that a survey respondent believes that

the monsoon has probability h(x) of starting on date x

for x5 1, 2,. . . ,T, that is, all the calendar dates in a year.

In other words, we consider the onset date to be a ran-

dom discrete variable X having probability mass func-

tion (PMF) given by Pr(X5 x)5 h(x). Respondents

with different beliefs have different PMFs. These PMFs

are calculated by fitting appropriate parametric func-

tions to each response from the previous survey.

Various parametric functions could be used to calcu-

late these PMFs. The triangular distribution is a good

starting point, as it is a continuous probability distribu-

tion used when the underlying probability is unknown

(Kotz and van Dorp 2004). Recently, Marimo et al.

(2015) used triangular distributions to generate ‘‘ob-

servations’’ of temperatures. These observations were

used to assess how 289 undergraduate students in-

terpreted uncertainty in forecasts. The triangular dis-

tribution is favorable, as it is simple and has been widely

used in expert elicitation in risk analysis (Johnson 1997)

and project management scenarios (Back et al. 2000;

Briand et al. 2000; Galway 2007). Here, we consider the

Bangladeshi people as experts regarding the timing of

themonsoon in their local area. The respondents gave us

answers for the earliest (xE), the normal (xN), and the

latest (xL) monsoon onset dates, which correspond to

the three parameters used to construct a triangular dis-

tribution: minimum, maximum, and the most likely

value, respectively. However, the triangular distribution

is not suitable for this application because there is a

nonzero chance of monsoon onsets in data falling out-

side of the ranges of the distribution. This unrealistic

belief of impossibility leads to singularities in likelihood

scores and so the triangular distribution has to be

modified to allow for a small chance of onset dates lying

outside the range. A further complication is that our

date variable is periodic and so the modified triangular
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distribution has to be defined on a circular domain.

Therefore, we propose a circular extension to the

modified triangular distribution, that is, a triangular

distribution modified to have upper and lower ‘‘wings’’

(Vally et al. 2014).

Our circular modified triangular distribution

(CMTD), h(x), is assumed to be a continuous periodic

piecewise linear function with four segments (see

Fig. 3b): an asymmetric triangle withmaximumat x5 xN
that drops off to a low probability at x5 xE and x5 xL,

and then wings that drop off to zero at xN 6T/2. In other

words, there are small nonzero probabilities outside the

earliest and latest onset dates that linearly decline to

zero half a year before and after the normal onset date,

respectively. The PMF is easily constructed using shifted

variables y5 x2 xN 1 (T1 1)/2 to define the function

shown in Fig. 3a:

g(y)5

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

«(y2 0:5)
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T1 0:52 y
L

, y
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(1)

where yN 5 (T1 1)/2, yE 5 xE 2 xN 1 (T1 1)/2, and

yL 5 xL 2 xN 1 (T1 1)/2. The PMF is then given by g(y)

shifted back to x coordinates and scaled so that its sum

over all x values is unity:

h(x)5
g(y)

�
T

y051

g(y0)

. (2)

The regularization parameter « controls the chance of

the monsoon occurring outside of the earliest and latest

onset dates and can be tuned toward zero to recover an

unmodified triangular distribution.

The beliefs of two respondents are used in Fig. 3 to

illustrate how the CMTD is constructed from the an-

swers from each individual respondent. It also illustrates

how the people’s beliefs can vary in one geographical

location. Respondent A believed that the monsoon

normally begins at JP 34. This person gave an earliest

onset of JP 34 and a latest onset at JP 39. Hence, the

probability mass function is heavily skewed to the left

since xN 5 xE. The probability mass function is also

sharp, as respondent A believed the monsoon would

always start within a period of 5 pentads (25 days). Re-

spondent B’s probability mass function is much flatter

and more symmetric. This is due to the respondent’s

belief that the monsoon could start within a longer pe-

riod of 14 pentads (70 days) with a normal onset at JP 30.

b. Simulation

Previous studies have shown that people in monsoon

regions are dependent on the timing of the mon-

soon onset (Gadgil and Kumar 2006; Rosenzweig and

FIG. 3. Answers from two arbitrary respondents A and B to illustrate how we construct the PMFs. (a) First, we

centralize each of the respondent’s answers on Julian pentad 37 and construct the function with highest point equal

to 1. Here we take «5 0:1 as an example. (b) Then we shift the function back to the original answers given by the

respondents and normalize. The figure also illustrates how we obtain likelihoods from an onset date of JP 30.
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Binswanger 1993). These people may therefore be in-

terested in when the monsoon starts on average and also

by how much it varies from year to year. With the

CMTD elicited from each respondent, we can simulate

an artificial time series and calculate its mean and

standard deviation.

We simulate the time series using the cumulative mass

function of each CMTD and randomly generate numbers

between 0 and 1. In our simulations, we generate 10000

random numbers. The cumulative mass function is then

used tomap these values back onto Julian pentads between

1 and 73 and thereby simulating an artificial time serieswith

10000 onset dates. From these simulations, we derive the

mean and standard deviation and compare them with the

equivalent values from the historical climatic time series.

c. Log-likelihood score

We can also consider the match between the re-

spondents’ beliefs and the historical time series by using

log-likelihoods to construct a score. We have eight his-

torical time series for each location in Bangladesh. Each

time series has up to 30 monsoon onset dates for the

period 1978–2007. By considering each CMTD in turn,

we read the likelihoods for each of the dates in a his-

torical time series. Figure 3b shows how we obtain the

likelihood of a monsoon onset of JP 30 for respondents

A and B. The likelihoods are much higher for dates that

fall close to the respondent’s answer for normal onset

date (xE). We take the log of these probabilities and

construct a log-likelihood score (S) for each re-

spondent’s CMTD as follows:

S5
l2 l

min

l
max

2 l
min

, (3)

where

l5 logP
N

i51

h(x
i
)5 �

N

i51

logh(x
i
) (4)

and

l
max

5 n log[max
x
h(x)]5 n log[h(x

n
)] (5)

and

l
min

5 n log[min
x
h(x)] . (6)

We repeat this process for each respondent and each

historical time series. For each historical time series, we

average the scores. This gives us an overall score in-

dicating how well the historical time series reflects the

respondents’ beliefs. This overall score is what we refer

to as the log-likelihood score.

Before we consider these scores in more detail, we

should understand the impact of the size of the distri-

bution’s wings. In other words, we investigate how the

choice of « influences the analysis. To assess the effect of

the value of «, we calculate the log-likelihood scores for

each historical time series at Jessore and different «.

In Fig. 4, we see how the log-likelihood scores for each

of the eight historical time series vary as we let « go

toward zero. The log-likelihood scores diverge and

flatten for reduced «, as we give progressively less weight

to the dates that lie outside the beliefs of the re-

spondents. Hence, the more we reduce «, the easier it is

to make a comparison between the final log-likelihood

scores. Reducing « toward zero also gives a probability

mass function closer to a triangular distribution that best

matches the respondents’ beliefs. Following the argu-

ments above, we set «5 10215 in our time series simu-

lations and log-likelihood scoring.

However, a time series containing 30 dates equal to xE
would get a perfect log-likelihood score of 1. Thus, even

FIG. 4. Log-likelihood scores for each of the definition time series

as « is reduced toward zero. This analysis used the respondents’

answers from Jessore. The top lines are color-coded for easier

referencing.
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though a person might perceive variability in the mon-

soon onset date, the time series with a perfect score

would have no variability. The log-likelihood score is

therefore a good choice of comparison if we are most

interested in how well the historical time series repre-

sents the respondent’s perception of normal onset xN
rather than variability.

In the next section we present the results from the

simulations and the log-likelihood score. We have eight

historical time series to compare with up to 200 re-

spondents at six different locations around Bangladesh.

Presenting a detailed analysis of all locations will rapidly

become convoluted, so we restrict our presentation ar-

bitrarily to one example location: Jessore. However, we

present and discuss the log-likelihood score results for

all other locations.

4. Example: Jessore

Jessore is a district in western Bangladesh with a

population of 2.8 million (2011 census). The district

covers just over 2600km2 and nestles the Indian border

to the west. The questionnaire survey (Stiller-Reeve

et al. 2015) was carried out in the Monirampur Upazila

in the eastern part of the Jessore District. Monirampur’s

main crops are paddy and wheat with its main export

crop being dates.

a. Public perception

In the questionnaire, 190 people from Jessore an-

swered questions about how they define themonsoon, as

well as the timing of its onset. Figure 5 shows each re-

spondent’s CMTD covering their answers for the earli-

est, normal, and latest monsoon onset dates. We also

calculated the Bayesian model average (Hoeting et al.

1999) from all the CMTDs to indicate overall percep-

tion. The Bayesian model average is calculated by the

mean of the probabilities from all the respondents’

CMTDs at each Julian pentad from 1 to 73. The

Bayesian model average shows a peak at pentad 35. This

corresponds to a date around 20 June. By comparing the

Bayesian model average peak to the mean onsets in

FIG. 5. The PMFs for each of the respondent’s answers in Jessore (gray shading). The Bayesian model

average (blue line) overlies with 95% confidence intervals shaded in red.
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Fig. 2, we see that the time series rain1_10_ncep initially

gives the closest match.

b. Historical time series

Figure 6 shows the time series from each of the

monsoon definitions (Table 1) from the closest grid

point to Jessore. We present both the onset and

withdrawal dates, as this shows that the definitions

and the methodology can also be used for estimat-

ing monsoon withdrawal and therefore monsoon

length. The rain1_10_aphr definition did not yield

satisfactory results under this framework, which

could be due to an inappropriately high threshold for

this dataset. Hence, we exclude the rain1_10_aphr

results from further analysis in Jessore, because we

are looking for time series to compare with the re-

spondents’ beliefs.

As an initial comparison we included the answers

from respondents A and B for normal onset in Fig. 7. By

visual comparison we see that rain1_10_ncep best

matches the beliefs of respondent A, whereas olr_noaa

seems to best reflect the beliefs of respondent B.

FIG. 6. Historical time series from the different monsoon definitions that we applied in this study. The graphs show both monsoon onset

and withdrawal. The red and blue dashed lines show respondents A and B’s answers for normal monsoon onset, respectively, to give

a comparison. The graphs show the results from (a) rain1_5_aphr, (b) rain1_5_ncep, (c) rain1_10_aphr, (d) rain1_10_ncep, (e) rain2_aphr,

(f) rain2_ncep, (g) olr_noaa, and (h) wind_ncep at the nearest grid point to Jessore.
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c. Simulation

We simulate a time series from the Bayesian model

average of the respondents’ beliefs. With this time se-

ries, we construct a box-and-whisker plot that acts as a

benchmark for the comparison with the historical time

series. These plots, as shown in Fig. 7, give an initial

impression of how the spread of the historical time series

compare to the respondents’ beliefs. We see large dif-

ferences between the seven remaining historical time

series. The rain1_10_ncep time series appears to give a

good estimate of the mean, but it does not yield a large

enough variability. To investigate this further, we ana-

lyze other values calculated from the time series simu-

lations from each respondent.

By calculating the means and standard deviations

from the respondents’ simulated time series, we can di-

rectly compare to the equivalent values from the his-

torical time series. Figure 8 shows these results for each

of the historical time series. Each of the black dots

represents the simulated time series for each of the

Jessore respondents. The large red dots represent the

time series from the different historical time series. In

the figure, the dots and lines resemble hedgehogs.

In the hedgehog plots, we notice the large spread in

the respondents’ beliefs with regard to the mean mon-

soon onset date and its variability. The respondents in

Jessore perceive normal monsoon onsets anywhere be-

tween Julian pentad 26 and 39, with a standard deviation

between 1 and 6 pentads. Despite this large spread, we

notice a cluster around a mean onset of 34–36 Julian

pentads and a standard deviation of 2–4 pentads.

From visual inspection, the historical time series from

rain1_5_ncep (Fig. 8a), rain2_aphr (Fig. 8d), and olr_noaa

(Fig. 8f) have particularly early onsets and misrepresent

the respondents’ beliefs. Of the remaining historical

time series, rain2_ncep (Fig. 9e) and rain1_5_ncep

(Fig. 9b) give good estimates for standard deviation

FIG. 7. Plot showingbox-and-whisker plots fromeachof thehistorical time series (excluding rain1_10_aphr).

For comparison, the box-and-whisker plot overlay the Bayesian model average of the PMFs of the

respondents’ beliefs. A simulated time series is generated from the Bayesian model average. The box-

and-whisker plot from this time series is included at the top to facilitate the visual comparison.
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compared with the respondents’ beliefs, but again the

onsets seem too early. The rain1_10_ncep time series

(Fig. 8c) gives a low estimate for standard deviation

but a mean onset date comparable to the clustering of

respondents’ beliefs.

d. Log-likelihood score

1) JESSORE

All of the log-likelihood scores for the different his-

torical time series are shown in Table 2 for Jessore. The

scores quantify our speculation that the rain1_10_ncep

time series compares well to the respondents’ beliefs of

normal onset date xN . We previously acknowledged that

the log-likelihood score rewarded time series that fluc-

tuate least around the peak value of the probability mass

functions. This is the case for the two historical time

series that achieved the best log-likelihood scores:

rain1_10_ncep and wind_ncep. Both of these time series

have means close to the Bayesian model average peak

(see Fig. 7), but they also feature much less variability

than the respondents’ overall beliefs. As we descend in

Table 2 and concomitantly compare with the box-and-

whisker plots in Fig. 7, we realize that the mean values

for the historical time series move progressively farther

from the peak in the Bayesian model average. This

happens despite some of the historical time series having

standard deviations that compare well with the re-

spondents’ beliefs. The log-likelihood score is preferable

to use if the mean onset is most important rather than

the variability.

2) OTHER LOCATIONS

The highest log-likelihood scores for all six locations

are displayed in Fig. 9. The figure reflects the diversity

with respect to the monsoon onset in Bangladesh. No

FIG. 8. Hedgehog plots showing how themean and standard deviation of the historical time series relate to the same values from the time

series simulated from the respondents’ PMFs. The plots show the comparisons for (a) rain1_5_aphr, (b) rain1_5_ncep, (c) rain1_10_ncep,

(d) rain2_aphr, (e) rain2_ncep, (f) olr_noaa, and (g) wind_ncep.

OCTOBER 2016 S T I L LER -REEVE ET AL . 503



single historical time series is noticeably better than the

others. The rain1_10_ncep time series best matches the

respondents’ beliefs in Jessore and Sylhet, but it comes

second in Bogra and Chandpur. This could indicate

that a 10-mm rainfall threshold could be more appro-

priate for defining the monsoon in Bangladesh, at least

when using Reanalysis-1 data. The wind-basedmonsoon

definition (wind_ncep) comes out on top at three loca-

tions: Bogra, Chandpur, and Cox’s Bazar. As we see

from Figs. 7 and 8, the wind_ncep time series shows the

least variability of all the historical time series. There-

fore, if the wind_ncep time series fluctuates around the

Bayesian model average peak for any location, then it

would likely get the best log-likelihood score.

5. Conclusions

Our main objective was to develop tools to facilitate

the comparison between climate time series datasets and

local beliefs. We are motivated by climate services and

the goal to transform climate research into practical

applications and mitigation strategies. To achieve this,

we have to evaluate how well science and the beliefs of

stakeholders align. We have therefore developed

methods to compare different scientific monsoon onset

definitions with the beliefs of local people in Bangla-

desh, using Jessore as an example.

We generated eight historical time series of the

monsoon onset, applying different scientific onset defi-

nitions to different datasets. Each of the time series

covered the period 1978–2007. In addition to the his-

torical time series, we also had data on the local people’s

beliefs of the earliest, normal, and latest monsoon onset

dates. These data were collected during a questionnaire

survey in 2011 that covered six regions in Bangladesh.

Our challenge was to find ways to compare the three

answers respondents gave with historical time series of

monsoon onsets.

We can find different ways to make this comparison if

we first construct a probability mass function around the

beliefs of the survey respondents. Here we argued that

the triangular distribution was an appropriate point of

departure. In particular, the distribution is based on

three parameters that correspondwith the three answers

the Bangladeshi respondents gave. We had to adapt the

distribution to make it circular and unable to take zero

probabilities. We called the resulting distribution a cir-

cular modified triangular distribution (CMTD). The

CMTDs represented the beliefs of the respondents and

could be used to compare with the historical time series

of monsoon onsets: 1) time series simulation and 2) log-

likelihood scores.

From the CMTDs we simulated artificial time series.

The properties of these simulations could be compared

directly with equivalent properties from the different

historical time series. We decided to calculate and

compare the mean and standard deviation. By illus-

trating these values in a hedgehog plot (Fig. 8), we could

qualitatively evaluate how the historical time series

compare with the respondents’ beliefs. For the Jessore

example, most of the historical time series estimated

monsoon onsets much earlier than most of the respon-

dents’ beliefs. The historical time series rain1_10_ncep

used a threshold of 10mmday21 and seemed to match

the people’s beliefs best, at least with regard to mean

monsoon onset.

Even though we evaluated the results from the sim-

ulations visually, we also aimed to develop ameasure for

the comparison between the historical time series and

respondents’ beliefs. To measure the comparison, we

applied log-likelihoods and constructed a score. The

score for each of the historical time series indicated how

well they corresponded to the respondents’ beliefs. The

log-likelihood score supported the assumptions from the

TABLE 2. Log-likelihood scores for each of the historical mon-

soon onset time series in Jessore. The higher the log-likelihood

score (max 1), the better the comparison with the people’s beliefs.

Historical time series Log-likelihood score

rain1_10_ncep 0.88

wind_ncep 0.84

rain1_5_ncep 0.76

rain2_ncep 0.73

rain1_5_aphr 0.61

olr_noaa 0.58

rain2_aphr 0.54

FIG. 9. Map showing the top two log-likelihood scores at each

questionnaire location and the corresponding historical time series.
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simulations that the mean of rain1_10_ncep was par-

ticularly good, despite the standard deviation being

too low.

The comparisons we have made in this study relied

upon the application of CMTDs around the beliefs of

the survey respondents. Using the CMTDs, we have

demonstrated two different ways to evaluate how well

different empirical monsoon definitions correspond to

local belief. With regard to Bangladesh specifically, our

results present some challenges. We showed that scien-

tific definitions of the monsoon onset vary widely, as do

the people’s perceptions. In general, the subjective be-

liefs of individuals will never perfectly match scientific

data definitions, and hence methods such as those pro-

posed in this study are required to understand this gap.

Applying the CMTD aided the comparison between

science and belief, pinpointing stark contrasts among

different definitions. However, if these methods are to

be used in future climate services, it will also be crucial

to gain a deeper understanding of the decision-making

processes of the users in relation to the monsoon onset

and to integrate the CMTD results back into a contin-

uous dialogue with the stakeholders or users in ques-

tion. In such a dialogue, it will likely emerge that some

of the stakeholders’ perceptions are incorrect, just as

some of the scientific definitions are unusable. The

CMTDmethods and tools could be adapted to exclude

some perceptions or to weigh others, allowing the di-

alogue to focus toward a robust result. The methods

could also be used for other recurrent meteorological

phenomena where scientific definitions and stakeholder

perceptions may diverge.
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