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INTRODUCTION

This chapter reviews how Event Loss Tables (ELTs) produced by catastrophe models are
used to simulate insurance losses due to natural hazards. A formal statistical interpretation is
presented in terms of a static mixture of compound processes and implications for clustering
of losses are discussed. The consistency of this approach is then critiqued on the basis of phys-
ical understanding of natural hazard processes. A more dynamic nonstationary approach is
demonstrated using various idealized dynamical mixing models and results are compared
for an artificial ELT typical of windstorm losses. The tail of the aggregate loss distribution
is found to be highly sensitive to the modeling choices. The chapter concludes with a sum-
mary of main findings and some ideas for further developments.

LOSS SIMULATION

The most direct way to estimate insurance loss distributions would be to use historical
claims data. However, such an approach is not reliable due to the rarity and quality of the
loss event data, the shortness of the historical records, and the nonstationarity of the losses
(e.g., due to technological and economic trends). An alternative approach known as catastro-
phe modeling (Friedman, 1972) relies upon developing a model to simulate a large sample of
hazard events, and then for each of these synthetic hazards, vulnerability and exposure
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information are used to calculate property damage and subsequent insurance losses. Cat(as-
trophe) models have become the de facto approach to quantify natural hazard risk after the
unprecedented losses in the early 1990s; examples include the cluster of windstorms that
affected Europe in 1990, Hurricane Andrew in 1992, and the Northridge earthquake of
1994 (Grossi and Kunreuther, 2005). Many cat models use a discrete event simulation
approach whereby random numbers for hazard variables are drawn from a simplified para-
metric stochastic model of the hazard process that has been fitted to past data. Alternatively,
a large sample of plausible hazard events can also be generated ab initio by direct numerical
simulation from a complex physical model of the hazard (e.g., a regional climate model).
However, such numerical simulation is often computationally expensive and requires ad
hoc bias correction to adjust for model misrepresentation of extreme events. This chapter
will focus on the more common stochastic simulation approach.

Event Loss Table Definition

For a given insurance portfolio (i.e., spatial vulnerability and exposure information), most
probabilistic cat models produce an ELT, which can be used to create plausible simulations of
losses for the forthcoming insurance period (hereafter, assumed to be the forthcoming calen-
dar year). An ELT typically has thousands of rows each of which represents the properties of
a certain possible type of hazard, namely, its rate of occurrence p and a set of parameters ¢
that describe the distribution of losses that would be incurred if such an event were to
happen. The distribution is bounded from above by the maximum exposure and represents
uncertainty in losses for this given hazard event due to imperfect knowledge of vulnerability
and exposure in the portfolio (so called secondary uncertainty).

Fig. 3.1 shows a scatter plot of rate and the loss expectation (i.e., the mean of the loss dis-
tribution) for each of I = 55,000 rows from an artificial ELT created by simulation from a
bivariate lognormal distribution fitted using maximum likelihood to mimic ELTs typically
generated by European windstorm catastrophe models. Rates and losses vary over many or-
ders of magnitude with rows having larger mean losses tending to have smaller and less un-
certain rates.

An ELT is essentially a very large set of model parameters for a finite mixture model of
compound Poisson processes that can then be used to simulate losses. Losses in a year (or
other desired time period) are assumed to be a mixture of independent losses drawn from
distributions specified by parameters given by each row of the ELT. The N = )" N; losses
in a year consist of N; ~ Poi(p;) losses drawn independently from a known cumulative distri-
bution function F(x;0;) for each row i = 1,2,...,I in the table. Because the total rate is usually
small and there are many rows in the ELT, most of the N; counts are 0, a few are 1, and
very few are greater than 1.

In the simplest case, each type of hazard in the ELT leads to an exact loss, in other words,
there is no additional so-called secondary uncertainty caused by imperfect knowledge of
vulnerability and exposure. In such cases, losses from row i of the ELT are always identical
fixed values equal to the expected loss ¢; = E(X;) and the cumulative distribution function
Pr(X < x) = F(x;0;) is a step function equal to 0 when x < #; and 1 when x > ;. More generally
when there is secondary uncertainty, this can be represented either by specifying parameters
of distributions (e.g., the 3-parameter Beta distribution) for each row in the ELT, or by
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FIGURE 3.1 Scatter plot of rate against expected loss (on logarithmic axis scales) for the 55,000 rows of the
illustrative ELT typical of European windstorm losses. Negative association due to smaller rates for higher losses is
typical of most hazards.

replicating each row in the ELT and dividing its rate among a discrete set of fixed loss values
according to their probabilities (J.C. Rougier, personal communication).

To simulate losses, one could loop over all the rows in the ELT. However, it is much faster
to first find the total number of events in a year by drawing from a Poisson distribution
N ~ Poi(p), where p = )" p;, and then draw N losses from distributions having ¢ sampled
N times by replacement from the 6; each with probability p;/p (for a proof see Rolski et al.,
2009; Section 4.2.2). For example, in the case of no secondary uncertainty, this can be done
using the following R language code:

rhosum <— sum(rho)
N <— rpois(rhosum)
losses <— sample(x=theta, size=N, replace=TRUE, prob=rho/rhosum)

where rho and theta are the column vectors of rates and expected losses, respectively, in
the ELT.

Loss Distribution Functions: CEP, OEP, and AEP

Decisions about risk capital, portfolio management, and premium pricing are based on
summary measures of distributions of various simulated loss variables. Following common
practice, consider the time period of interest to be 1 year. Suppose that in year k there are
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Ni > 0 single event losses {Xj;j =1,...,Ni}, which have annual maximum loss My = max
{Xjk;j = 1,...,Ni} and annual aggregate loss Sy = Xy + Xok... + Xk The following distribu-
tions are then usually estimated from simulated loss data:

e Conditional Exceedance Probability CEP(x) = Pr(Xjx > x): distribution of single event
loss;

* Occurrence Exceedance Probability OEP(x) = Pr(Mj > x): distribution of maximum loss;

* Aggregate Exceedance Probability AEP(x) = Pr(S; > x): distribution of aggregate loss.

It should be noted that these distributions depend in different ways on the joint distribu-

tion of rate and loss parameters represented by the ELT, for example, CEP(x) = p~! 3" p;in
0;>x

the special case of no secondary uncertainty. Hence, caution needs to be exercised not to
modify the joint distribution when merging and deleting rows in ELTs but to increase compu-
tational speed (so-called boiling down). Various risk measures are used to summarize exceed-
ance probability distributions (Embrechts et al., 2005). One of the most widely used measures
is the return value for a specified return period, for example, the T = 200-year return value,
AEP '(1/T), is obtained by reading off the aggregate loss corresponding to the 1/T exceed-
ance probability from the AEP curve. This is simply the 1 — 1/T’th quantile of the aggregate
loss distribution sometimes also referred to as Value-at-Risk VaR;_j/r (Embrechts et al., 2005;
Section 2.2). It should be noted that unless there is only one event per year, CEP~'(1/T) is not
the T-year return value for single event losses, i.e., the loss that is exceeded on average every
T years. However, this metric has some undesirable properties: for example, it is not subad-
ditive, i.e., the quantile of a sum of losses from two portfolios can exceed the sum of the quan-
tiles of each individual portfolio. Subadditivity is one of the most important axioms of
coherence for diversification as it guarantees that an aggregate portfolio made up of smaller
portfolios is not exposed to greater risk than the sum of the constituent portfolios (Dowd and
Blake, 2006). A more coherent measure is provided by Expected Shortfall ES,—the expectation
of losses that exceed the p’th quantile (sometimes also referred to as Tail Value at Risk TVaR
and Tail Conditional Expectation). Expected shortfall can be obtained either by Monte Carlo
simulation or by integration of VaR quantiles over the tail of the loss distribution:

1
VaR,dq = E(X|X > VaR,)
p

ESP:E

Expected shortfall ES,, is never less than VaR,, and when P =0, is simply the expectation
E(X), i.e., the mean loss. Both VaR and ES risk measures will be used here to summarize loss.

CLUSTERING

Scientific Background

Unlike losses simulated from an ELT, natural hazard events are not generally independent;
background conditions can cause hazards to arrive in close succession, which enhances the
risk of large aggregate losses, e.g., the winter 2013/14 cluster of European windstorms
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Christian, Xavier, Dirk, and Tini caused insured losses of 1.38, 0.96, 0.47, and 0.36 billion USD
that in total exceeded 3 billion USD.

By fitting stochastic models to historical storm track data, new scientific discoveries have
been made in recent years about the clustering of windstorms. Notably,

¢ there is more clustering than expected due to chance, i.e., there is significant overdisper-
sion in storm counts to the south and north of the Atlantic storm track region and over
West Europe (Mailier et al., 2006);

* clustering can be largely explained by dynamic modulation of Poisson rates by the
North Atlantic Oscillation and other large-scale climate modes (Mailier et al., 2006);

¢ clustering increases for more intense windstorms especially over North Europe and
Scandinavia (Vitolo et al., 2009), which is most likely related to the fact that rate and in-
tensity of windstorms are positively correlated and increase together over large parts of
North Europe (Hunter et al., 2016).

Similar findings have been reproduced in storms simulated by climate models (Kvamsto
et al., 2008; Pinto et al., 2013; Economou et al., 2015). These results are stimulating new
research into mechanisms for clustering of extreme storms (e.g., Rossby wave breaking; Pinto
et al., 2014). Furthermore, many of these aspects of clustering also apply to other natural haz-
ards such as hurricanes (Mumby et al., 2011) and floods (Villarini et al., 2013).

Overdispersion in Counts

A simple way to characterize clustering is to assess the variance in counts of events. If the
events occur randomly in time with no clustering, then the number of events N in a fixed time
period will be Poisson distributed with a variance equal to the constant mean rate. If clus-
tering is present, this will be associated with additional variation that causes the variance
to exceed the mean counts—a phenomenon known as overdispersion. Clustering is sometimes
more narrowly defined to be additional variance in counts to that accounted for by Poisson
sampling AND known variations in the rate, i.e., more variance than can be explained by a
nonhomogeneous Poisson process. Overdispersion can be assessed by the statistic
¢ = Var(N)/E(N) — 1, which indicates clustering when positive. This statistic has been
extensively used in the studies mentioned in the previous section.

To understand how clustering behaves for more extreme events, it is useful to consider
overdispersion in the number of events N(u) that have losses/intensities exceeding threshold
u. Vitolo et al. (2009) used such a quantity to show that there was increased clustering for
windstorms with more extreme vorticities on the northern flank of the Atlantic storm track
that extends into Scandinavia and North Europe.

For losses generated from an ELT, the Laws of Total Expectation and Variance can be used
to show that the expectation and variance of N(u) are given by

E(N) = Zl)i(l — F(u;0;))

i=1

Var(N) = 32 (pi(1 = Fu: 69) + pi(1 = F(u;6,)°; )

i=1
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For generality to allow row counts to be negative binomially as well as Poisson distrib-
uted, it is assumed that the row counts N; have expectation E(N;) = p; and variance
Var(N;) = pi(1+¢;), where ¢; is a prescribed overdispersion for counts generated by row i.
By taking the ratio of these expressions, the overdispersion in N(u) is given by

S pi(1 — F(u;6)¢,
S pi(1 — F(u;6)))

¢(u) =

which leads to various interesting deductions. Firstly, ¢(u) is strictly positive only if one or
more of the rows has overdispersion (i.e., ¢; > 0) and so if the rows all have Poisson counts
with ¢; = 0 then there is no overdispersion in the total counts above any threshold. Secondly,
in the presence of secondary uncertainty as u — %, 1 — F(u;6;) — 0 and so ¢(u) — 0, ie.,
overdispersion and clustering vanish in total counts of extreme losses even if row counts
are overdispersed (e.g., negative binomial). Finally, in the special case of no secondary uncer-
tainty, 1 — F(u;0;) is only either 0 or 1 and so overdispersion simplifies for independent row
counts to

E i

0;>u

i.e., a weighted average of the overdispersion in each of the rows with losses 0; that exceed
the threshold u. When all the rows have the same dispersion ¢; = ¢, this leads to overdisper-
sion in the total counts that is independent of threshold, i.e., ¢(1) = ¢ but this is a singular
result valid only when there is absolutely no secondary uncertainty.

Building Clustering into ELT Calculations

Scientific evidence for storm clustering has led to several recent attempts to build clustering
into cat model loss simulations. The simplest approach is to assume that row counts are inde-
pendently distributed as negative binomial rather than as Poisson distributions. From the argu-
ments in Section Overdispersion in Counts above, this will result in overdispersion of losses
above low thresholds that unfortunately vanishes for more extreme losses. Khare et al.
(2015) describe a more sophisticated approach that splits the ELT into K > 1 independent clus-
ters/groups of mutually dependent rows that have negative binomial counts with different
shape parameters (overdispersion) for each cluster. Such an approach will also result in vanish-
ing overdispersion in total counts above sufficiently high thresholds. Furthermore, there is little
scientific evidence for believing that there are a finite number of independent groups of wind-
storm type—a continuum is perhaps more justifiable for describing vortex features in a turbu-
lent atmosphere. An alternative approach for creating clusters of losses is to create a parent loss
using Poisson sampling from the ELT and then generate offspring losses by making repeated
draws from the secondary uncertainty distribution of the parent row. Such a Neymann-Scott
process has been implemented on the financial platform at Willis Re but it is difficult with
this approach to get overdispersion to increase for more extreme losses. Furthermore, it could
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be argued that such a process is nonphysical in that it creates clusters of losses for a given haz-
ard rather than creating losses for a cluster of hazards as occurs in the real world.

DYNAMICAL MIXTURE MODELS

Concept

Fig. 3.2 shows a simple graphical model for how ELT simulations can be made more
dynamical. Random (mixing) variables Z and Z’ can be introduced to represent time-
varying drivers, which modulate the rate and loss distribution parameters (e.g., the North
Atlantic Oscillation and Scandinavian Pattern indices for European windstorms; see Hunter
et al., 2016). The drivers can be either independent or correlated with one another and can be
specific to the spatial location of the portfolio.

As a first step, one can ignore modulation of losses and replace the static p; rates in an ELT
with dynamical rates A(Z) that depend on a time-dependent random mixing variable Z(t),
which modulates the hazard rate. Such an exogenous mixing approach is already a common
practice in credit risk modeling (Crouhy et al., 2000; Frey and McNeil, 2003). Credit risk port-
folios take a similar form to ELTs; a portfolio will consist of a bank’s loans each of which is
characterized by a probability of defaulting and a corresponding loss. Although loans are

1% stage: data

simulated losses Xl , X2, ey XNZ

2" stage:

process parameters ( 9 l 7\’ l )
i’'th row of Event Loss 2

Table

3" stage: !

mixing variables Z € > Z

background modulation

FIGURE 3.2 Schematic graph showing the hierarchical relationship between variables used to simulate losses
from an ELT. Blue arrows (light gray in print versions) denote dependency, i.e., random variables at the tip are drawn
from distributions controlled by variables at the base, for example, X ~ F(#;) and N; ~ Poi(};). Black arrows denote
deterministic functions and the dashed arrow represents association that may exist between variables that drive rates
and those that drive hazard intensity (e.g., for windstorms over Scandinavia; see Hunter et al., 2016).
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assumed to default independently of each other, they can be affected by the same set of back-
ground factors such as the rate of inflation, interest rates etc. To include these drivers in credit
risk models, probabilities of loans are regressed on a common set of random variables that
represent these factors.

Adopting a Generalized Linear Model approach, the counts from row i of the ELT can be
modeled as N; ~ Poi(4;), with the rate depending on the mixing variable via g(A:(Z)) =
Boi + 61,Z, where g(.) is a monotonic function known as a link function. When
gil(ﬁo,i + 61,Z) is Gamma distributed, this gives a Gamma-Poisson mixture for counts,
which is equivalent to assuming negative binomial counts. The simplest dynamical model
is obtained by considering an identity link function and a mixing variable that can take
only binary values, 0 and 1, each with probability 0.5, i.e., Z ~ Ber(0.5). Binary mixing is a
crude coin-toss approach for modeling years that can have either low or high states (i.e.,
Z =0 or Z =1) of some climate mode such as the North Atlantic Oscillation. A more contin-
uous approach is to represent the climate index using a standardized Gaussian distributed
variable, i.e., Z ~ N(0,1). Following usual practice in Poisson regression, the link function
g(.) is then chosen to be the canonical logarithmic link, which prevents having negative
rate parameters. The rates of each row are then log-normally distributed and analytic expres-
sions can be used to find the first and second moments for each row. Since the lognormal
distribution is often quite similar to the Gamma distribution, this gives counts for each
row that are close to having a negative binomial distribution. However, it should be noted
that the counts in all the rows (and not just groups) of the ELT are now correlated with one
another since they each depend on the mutual mixing variable Z.

Estimation of the Mixing Parameters: B; and (1,

Because of the lack of driver information from hazard models, it is not possible to regress
ELT rates on known drivers such as leading modes of climate variability. Therefore, alterna-
tive approaches are required for estimating the mixing parameters. A simple method of mo-
ments approach for finding these parameters is to impose constraints on the expectation
E(N;) = E(¢(4;)) and the variance of row counts Var(N;) = (1+¢;)E(N;), where overdispersion
¢; = Var(g(A))/E(g(4)). To ensure that mean behavior is similar (e.g., expected loss), it is
natural to assume that the expectation of the row counts should equal that of the static
approach i.e., E(N;) = p;. Overdispersion can be set to nonnegative values ¢; > 0 for each
row to reproduce desired clustering behavior in the losses such as a believable overdispersion
profile ¢(u). These two constraints for each row give two equations that can be solved to find
the beta parameters, e.g., 81; = \/¢;p;/VarZ and By ; = p; — 61,,E(Z) when the link function is
the identity function g(4;) = A;. For the special case where the overdispersion of row i is cho-
sen to be ¢; = ¢p;/p and the rates are modulated by a binary Z ~ Ber(0.5) mixing variable
via an identity link function (i.e., binary mixing), beta estimates are given by

»31,1' = 2p; ?
I

B Bii
50,1' = pi— >
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When ¢; = ¢p;/p and the rates are modulated by a Gaussian Z ~ N(0,1) mixing variable
via a logarithmic link function (i.e., lognormal mixing), beta estimates are given by

Bri = \/log(1 +¢/p)

log(1
Boi = logp; _M

Note that the 8 ; slope parameters increase monotonically with the clustering parameter ¢,
i.e., increased clustering is associated with greater dependence of the rates on the mixing var-
iable. The above expressions assume for convenience that rates increase with the mixing var-
iable, but negative relationships (e.g., the effect of ENSO on US hurricanes) can also be easily
represented, e.g., by reversing the signs of the (1, slope parameters and for binary mixing
setting 81; = p; + 1, / 2. Since rates can never be negative, ¢ > p is nonadmissible for the bi-
nary mixing model, whereas any value ¢ > 0 is allowed when using the logarithmic link
function.

Choice of Row Overdispersion: Scaling Properties

The special case ¢; = ¢p;/p can be proven to give dynamical rates for each row that scale
similarly with the mixing variable, i.e., 4; = pi(Z) where E(f(Z)) =1 and Var(f(Z)) = ¢/p.
Conversely, rates scaling as A;=pf(Z) with E(f(Z))=1 implies ¢; = ¢p;/p where
¢/p = Var(f(Z)). This powerful equivalence holds for all possible distributions of mixing
variable and choices of link function. An important consequence of such scaling is that the
CEPs (and the mean loss per event) are independent of Z and so the mixing variable only
affects the rates but not the distribution of the single event losses (see Hunter, 2014; Appendix
Q). Finally, such scaling guarantees that Cov(4;, 4;) = bpip; / p, and hence overdispersion in
the number of all losses ¢(0) = ¢ when the link function is the identity.

The scaling choice, ¢; = ¢p;/p, generally leads to ¢(u) decreasing from ¢ to zero with
increasing threshold u. However, one may wish to create dynamic mixing models that can
reproduce counts that have different clustering profiles, for example, overdispersion that
stays constant with threshold, e.g., ¢(u) = 0.3 for all u. For the simplest case with no second-
ary uncertainty, this can be achieved by iteratively estimating the beta parameters starting at
the row in the ELT that has the largest mean loss 6(1). The dispersion parameter for this row
can be estimated by setting it equal to the dispersion of counts exceeding 0, ie.,
¢y = ¢(01))- The dispersion parameters for rows with progressively smaller ¢; can then be
found iteratively by rearranging expressions for ¢(u) such as this one is valid for linear
link functions when there is negligible secondary uncertainty:

¢i¢j,0i,0j
O;i>u 0;>u

> P

O >u

p(u) = 3.1

See Section 5.3.4 of Hunter (2014) for more details.
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Models and Simulations

To illustrate these approaches, simulations have been made with five different ELT simu-
lation models:

¢ MI: static sampling with no mixing, i.e., constant rates giving ¢(u) = 0

* M2: dynamic sampling with a binary mixing and ¢; = ¢p;/p with ¢ =0.3

* M3: dynamic sampling with lognormal mixing and ¢; = ¢p;/p with ¢ =0.3
* M4: dynamic sampling with binary mixing designed to give ¢(u) =0.3

* MS5: dynamic sampling with lognormal mixing designed to give ¢ (1) = 0.3.

For each model, losses were simulated by the following algorithm:

Make J=100000 random draws of Z to represent varying annual conditions;

For j in years 1,2,...,J
{
Calculate new rates 27(zj) for each row in the ELT;
Draw annual counts Nj~Poi(A(zj)) with total rate A(zp) = 3 A;(z));

i
Draw Nj lTosses from loss distribution having parameters 6 sampled N; times by
replacement from the 6; row parameters with probability A;(z;)/a(z;) .

}

Results
Clustering

Fig. 3.3 shows how the overdispersion of the annual counts of the simulated losses de-
pends on the threshold for each of the models. The static model, M1, is simply a mixture
of compound Poisson processes and so has no dispersion for all threshold choices. Models
M2 and M3 have decreasing dispersion with threshold, which closely follows ¢ = CEP(u),
which is obtained by substituting ¢; = ¢p;/p into Eq. (3.1). Models M4 and M5 have suc-
ceeded in generating losses that have constant dispersion of 0.3 in counts above any threshold
value, although the binary model shows a drop off due to the nonadmissibility condition
mentioned earlier.

Aggregate Exceedance Probability

Fig. 3.4 shows AEP curves for simulated losses from the models M1—MS5. Little difference
can be seen between the curves for models M1, M2, and M3. Models M4 and M5 with con-
stant overdispersion have AEP curves that differ from those of the other models for aggregate
losses that are rarer than the 0.05 exceedance probability (20 year return period).

Constant overdispersion has substantially increased the risk of extreme aggregate loss as
can be seen in risk measures shown in Table 3.1. The value-at-risk VaRg g95 for the models
M2 and M3 are not significantly different from that of M1, but VaR 995 for M4 and M5 are
18% and 32% greater than that for model M1. The difference between the expected short-
falls ESp995 is even more pronounced, with M5 having a shortfall that is 50% greater
than that of M1. All models give the same expected annual aggregate loss, with a
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TABLE 3.1 Summary of Simulated Annual Aggregate Losses. For the VaR and ES
Risk Measures, the Results for Models M2—M5 are Reported in Terms
of Percentage Change From the Values for M1. The Overdispersion for
all the Simulated Losses From Models M2—M5 are Close to the Chosen
Value of 0.3—Any Differences are Solely Due to Sampling Variations

Model Mean Loss Overdispersion VaRg g95 ESy.995
M1 6.4 0 26.8 30.5
M2 6.4 0.30 +1.4% +3%
M3 6.4 0.32 +1.3% +3%
M4 6.4 0.27 +17.1% +19%
M5 6.4 0.29 +32.9% +50%

consequence of constraining expectations of the rate parameters to be equal to the original
rates for each row.

Fig. 3.5 shows AEP curves for the simulated losses conditional on specific ranges of the
mixing variable Z. Not unexpectedly, the upper tail of the AEP curve depends strongly
upon the value of the mixing variable for all the dynamical models M2—MS5. The effect is
greatest for the models with constant overdispersion.

Conditional Exceedance Probability

Fig. 3.6 shows CEP curves for the simulated losses conditional on specific ranges of the
mixing variable Z. Models M2 and M3 give almost identical CEP curves to that from the
M1 static approach as to be expected for rates that scale with Z (see Section Choice of Row
Overdispersion: Scaling Properties). This is no longer the case for CEP curves for simulations
from M4 and M5 where exceedance probability increases with Z. This positive association is
clearly apparent in the scatter plot of the annual mean losses versus Z values simulated by
model M5 (Fig. 3.7).

CONCLUDING REMARKS

This chapter has reviewed the assumptions used in stochastic simulations of natural catastro-
phe losses. For mathematical convenience, ELT simulation methods often assume that losses are
identically and independently distributed in different years. Unfortunately, this static approach
is inconsistent with the dynamical nonstationary behavior of the natural environment: natural
hazards such as storms are known to be strongly influenced by climatic conditions that vary
in time. Therefore, static simulation methods underestimate dependency and clustering espe-
cially for large loss events, which leads to large systematic underestimation of aggregate losses.

Loss calculations can be made more dynamical and realistic by introducing random vari-
ables to modulate the parameters in each row of the ELT. For hurricanes and windstorms,
these mixing variables represent the behavior of large-scale indices describing modes of vari-
ability such as the El Nino/Southern Oscillation and the North Atlantic Oscillation. Such a
dynamical mixture approach is similar to recent approaches used to model portfolio credit
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FIGURE 3.5 Conditional AEP curves simulated by models M2—MS5 for different ranges of mixing variable. CEP
curve for model M1 is shown as reference (solid black line) and gray shading indicates the 95% Dvoretzky-Kiefer-
Wolfowitz bounds (Hunter, 2014).

risk, e.g., the CreditRisk + method based on binary mixing variables. This chapter has illus-
trated these approaches by applying four different toy mixing models to an ELT constructed
to be typical of that used in practice for European windstorms. All of these models increase
the probability of large aggregate losses (i.e., thicken the tail of the AEP curve), especially
those models designed to maintain clustering for large loss events.

To make further progress, it is necessary to develop better more reliable methods for quan-

tifying how clustering of hazards depends on intensity; for example, does it stay constant or
sometimes even increase with threshold? To properly capture intensity-rate correlations,
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FIGURE 3.6 Conditional CEP curves simulated by model M5 for different ranges of mixing variable. CEP curve
for model M1 is shown as reference (solid black line) and gray shading indicates the 95% Dvoretzky-Kiefer-Wolfowitz
bounds (Hunter, 2014). By definition, models M1, M2, and M3 give CEP curves that do not depend on the mixing
variable (see Section Estimation of the Mixing Parameters: 8,; and 87 ).
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FIGURE 3.7 Scatter plot of mean loss per event (i.e., ratio of aggregate loss and number of events per year) versus

mixing variable Z for 100,000 years simulated by model M5. Mean loss shows a strong nonlinear dependence on the
mixing variable as indicated by the robust smoothing curve (LOWESS trend; gray line).
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mixing models need to be developed that can allow the parameters of the loss distribution to
be modulated rather than just the rate parameters. More robust estimation methods need to
be developed for finding the beta parameters for each row of the ELT, e.g., for the case of
increasing clustering profiles in the presence of secondary uncertainty.
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