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Abstract. This paper discusses how epistemic uncertainties
are currently considered in the most widely occurring natural
hazard areas, including floods, landslides and debris flows,
dam safety, droughts, earthquakes, tsunamis, volcanic ash
clouds and pyroclastic flows, and wind storms. Our aim is to
provide an overview of the types of epistemic uncertainty in
the analysis of these natural hazards and to discuss how they
have been treated so far to bring out some commonalities
and differences. The breadth of our study makes it difficult
to go into great detail on each aspect covered here; hence the
focus lies on providing an overview and on citing key liter-
ature. We find that in current probabilistic approaches to the
problem, uncertainties are all too often treated as if, at some
fundamental level, they are aleatory in nature. This can be
a tempting choice when knowledge of more complex struc-
tures is difficult to determine but not acknowledging the epis-
temic nature of many sources of uncertainty will compromise
any risk analysis. We do not imply that probabilistic uncer-
tainty estimation necessarily ignores the epistemic nature of
uncertainties in natural hazards; expert elicitation for exam-
ple can be set within a probabilistic framework to do just that.
However, we suggest that the use of simple aleatory distri-

butional models, common in current practice, will underes-
timate the potential variability in assessing hazards, conse-
quences, and risks. A commonality across all approaches is
that every analysis is necessarily conditional on the assump-
tions made about the nature of the sources of epistemic un-
certainty. It is therefore important to record the assumptions
made and to evaluate their impact on the uncertainty esti-
mate. Additional guidelines for good practice based on this
review are suggested in the companion paper (Part 2).

1 Introduction

With the increasing appreciation of the limitations of tradi-
tional deterministic modelling approaches, uncertainty esti-
mation has become an increasingly important part of natural
hazards assessment and risk management. In part, this is a
natural extension of the evaluation of frequencies of hazards
in assessing risk, in part an honest recognition of the limita-
tions of any risk analysis, and in part because of the recog-
nition that most natural hazards are not stationary in their
frequencies of occurrence.
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Figure 1. Hazard–magnitude–footprint–loss, illustrated by an ashy
volcanic eruption (© Jonty Rougier).

The consideration of uncertainty in risk assessments has,
however, been relatively uncommon, particularly in respect
to the epistemic uncertainties, i.e. those that are not well
determined by historical observations and therfore represent
gaps in knowledge. In this review we discuss the impact of
epistemic uncertainties on risk assessment and management
for different types of natural hazards. Throughout, we believe
it is important to think about the full hazard–magnitude–
footprint–loss setting (e.g. Rougier et al., 2013), which may
be stakeholder specific (Fig. 1). This means that any risk
assessment involves a modelling cascade, each element of
which involves epistemic uncertainties, with the potential for
the uncertainty in risk to grow, or be constrained by addi-
tional data, within each component in the cascade (e.g. Beven
and Lamb, 2014).

Probabilistic risk analyses typically assume – even though
they do not have to – that the different sources of uncer-
tainty can, at some fundamental level, be treated as random
or aleatory variables (and that all possible futures have been
considered so that the probability assessments can be taken
as complete). There is, however, an increasing appreciation
that this is not the only type of uncertainty that arises in such
analyses across natural hazard areas (Hoffman and Ham-
monds, 1994; Helton and Burmaster, 1996; Walker et al.,
2003; Brown, 2004, 2010; Van der Sluijs et al., 2005; Wa-
gener and Gupta, 2005; Refsgaard et al., 2006, 2007, 2013;
Beven, 2009, 2012, 2013, 2016; Warmink et al., 2010; Stein
et al., 2012; Rougier and Beven, 2013; Beven and Young,
2013; Simpson et al., 2016; Mulargia et al., 2017; Almeida et
al., 2017). In particular, since the time of Keynes (1921) and
Knight (1921), it has been common practice to distinguish
between those uncertainties that might be represented as ran-
dom chance, and those which arise from a lack of knowl-
edge about the nature of the phenomenon being considered.
Knight (1921) referred to the latter as the “real uncertain-

ties” and they are now sometimes called “Knightian uncer-
tainties”. While Knight’s thinking predated modern concepts
and developments in probability theory (e.g. de Finetti, 1937,
1974; Cox, 1946), the distinction between uncertainties that
can be treated simply as aleatory and as additional knowl-
edge uncertainties holds.

An argument can be made that all sources of uncertainty
can be considered as a result of not having enough knowl-
edge about the particular hazard occurrence being consid-
ered: it is just that some types of uncertainty are more ac-
ceptably represented in terms of probabilities than others. In
current parlance, these are the “aleatory uncertainties” while
the Knightian real uncertainties are the “epistemic uncertain-
ties”. Aleatory uncertainties represent variability, impreci-
sion and randomness, or factors that can be modelled as ran-
dom for practical expediency, which can be represented as
forms of noise within a statistical framework. Within epis-
temic uncertainties it is possible to subsume many other un-
certainty concepts such as ambiguity, reliability, vagueness,
fuzziness, greyness, inconsistency, and surprise that are not
easily represented as probabilities.

This distinction is important because most methods of
decision-making used in risk assessments are based on the
concept of risk as the product of a probability of occurrence
of an event (the hazard, magnitude and footprint compo-
nents in the model cascade) and an evaluation of the con-
sequences of that event (the loss component). If there are
important uncertainties in the assessment of the occurrence
that are not easily assessed as probabilities, or if there are
significant epistemic uncertainties about the consequences,
then some other means of assessing risk decisions might be
needed. Given the lack of knowledge, there is also plenty of
opportunity for being wrong about the assumptions used to
describe sources of uncertainty or having different belief sys-
tems about the representations of uncertainties (e.g. Marzoc-
chi and Jordan, 2014; Beven, 2016); hence testing the impact
of the assumptions and choices made is becoming increas-
ingly important (Pianosi et al., 2016). Epistemic uncertain-
ties are also sometimes referred to as “deep uncertainties” in
risk analysis and natural hazards (e.g. Cox Jr., 2012; Stein
and Stein, 2013).

For the practical purposes of this review, we will define
epistemic uncertainty as those uncertainties that are not well
determined by historical observations. This lack of determi-
nation can be because the future is not expected to be like
the past or because the historical data are unreliable (imper-
fectly recorded, estimated from proxies, or missing); because
they are scarce (because measurements are not available at
the right scale or long enough period); because the structure
of that uncertainty does not have a simple probabilistic form;
or because we expect the probability estimates to be incom-
plete (unbounded or indeterminable, e.g. Brown, 2004).

In what follows we consider the key sources and impact of
epistemic uncertainties in different natural hazard areas. We
also recognize that different types of hazard mitigation strat-

Nat. Hazards Earth Syst. Sci., 18, 2741–2768, 2018 www.nat-hazards-earth-syst-sci.net/18/2741/2018/



K. J. Beven et al.: Part 1: A review of different natural hazard areas 2743

egy might have different sensitivities to the treatment of epis-
temic uncertainties (e.g. Day and Fearnley, 2015). We see
the typical audience of this opinion piece as a natural hazard
scientist who is likely aware of uncertainties in his/her own
specific hazard area, while having a limited understanding of
other hazard areas and of the approaches available to deal
with epistemic uncertainties. Our aim is to discuss how epis-
temic uncertainties have been recognized and treated in the
different hazard areas, to bring out some commonalities and
differences. It is difficult to go into great detail on each aspect
covered here; hence the focus is on providing an overview
and on citing key literature. In the second part of the pa-
per we discuss the different opinions about the options for
addressing epistemic uncertainty and we discuss open prob-
lems for implementing these options in terms of what might
constitute good practice (Beven et al., 2018).

2 Floods

2.1 Floods and key epistemic uncertainties

Floods account for about one-third of all economic losses
from natural hazards globally (UNISDR, GAR 2015). The
frequency and magnitude of flood disasters is likely to in-
crease with a warming atmosphere due to climate change and
with increased exposure of a growing population (Winsemius
et al., 2016), which suggests that the fractional contribution
to global disaster losses is likely to increase even further.
There are five aspects of flood risk assessment that involve
important epistemic uncertainties. The first is the assessment
of how much rainfall or snowmelt input occurs (either in past
or future events); the second is the frequency with which such
events might occur and how that might be changing; the third
is how much of that input becomes flood runoff; the fourth is
the footprint of the flood inundation; and the fifth is the as-
sessment of either past or potential damages (see discussion
in Sect. 11 below). These all apply in the assessment of ex-
pected damages for events of different magnitude for making
decisions in managing the flood risk and in the management
of flood incidents in real time (e.g. Sayers et al., 2002).

2.2 Uncertainty quantification in flood hazard
estimation

In the context of flooding, uncertainties in inputs and runoff
generation are often avoided by estimating the probability
of exceedance for different magnitudes of event in terms of
an extreme value distribution of discharges. That does not
mean that such uncertainties are not important (such as lack
of knowledge about the effects of a poorly known spatial pat-
tern of inputs on runoff generation, the role of antecedent
conditions in controlling runoff generation, or estimates of
historical flood peak discharges), only that they are assumed
to contribute to some underlying statistical distribution of
events that is fitted to the available historical data. This pro-

vides estimates of frequency as if the series of historical
floods is drawn from a stationary distribution, which is not
easily modified to allow for future change (e.g. Prudhomme
et al., 2010).

The epistemic uncertainty is then convolved into a ques-
tion of what statistical distribution should be used. This ques-
tion has often been resolved by institutionalizing the uncer-
tainty into a particular choice of standard distribution. Dif-
ferent countries have chosen different distributions and, in
some cases, have changed that choice over time. There are
good theoretical reasons to choose the generalized extreme
value (GEV) distribution. Asymptotically a sample of ex-
tremes with independent occurrences in successive time pe-
riods (e.g. years) from an arbitrary underlying distribution of
events should have the form of the GEV distribution. It was
the distribution of choice for the analysis of annual maxi-
mum floods in the UK Flood Studies Report (NERC, 1975).
However, the time series available for the analysis of floods
are often relatively short, so the asymptotic condition may
not be approached, and the occurrences of events may not be
independent in time or space (e.g. Eastoe and Tawn, 2010;
Keef et al., 2013). Thus, in revising the UK methodology in
the Flood Estimation Handbook, a change was made to rec-
ommend the Generalized Logistic Distribution as it resulted
in fewer sites being assigned parameters that suggested some
upper limit to flood magnitudes (IH, 1999). Many other dis-
tributions have been used elsewhere. A recent development
in flood risk management has been concerned with the joint
occurrences of flood events, rather than looking at individ-
ual sites independently. This requires specifying not only one
distribution but joint distributions and the correlation struc-
ture between them (e.g. Keef et al., 2013), but which may not
be well defined by historical data.

The choice of a particular distribution essentially controls
the form of the upper tail of the distribution and consequently
the assessment of risk. This is common to the other natural
hazards that are considered below. Good practice suggests
that the statistical uncertainty associated with the tail of the
fitted distribution should be evaluated (although this is rarely
reported even where it is provided by the analysis software),
but essentially we have additional epistemic uncertainties as
to which distribution to choose and whether to treat that dis-
tribution as stationary or whether clusters of events might
come from some more complex stochastic structure (e.g.
Koutsoyiannis, 2003, 2010; Montanari and Koutsoyiannis,
2012). If this is the case, then it might result in a signifi-
cant increase in the range of uncertainty relative to classical
statistical analysis (e.g. Koutsoyiannis and Montanari, 2007)
irrespective of other sources of epistemic uncertainty.

These issues have led some people to return to considering
the inputs and runoff generation over a catchment more di-
rectly in flood risk estimation. This approach was pioneered
by Eagleson (1972) using a simple derived distribution model
of runoff generation, but increased computer power has al-
lowed continuous simulation over long periods of time us-
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ing rainfall-runoff models, which has the advantage that the
variation in antecedent wetness of a catchment prior to an
event is part of the simulation (e.g. Beven, 1987; Cameron et
al., 1999, 2000; Lamb and Kay, 2004; Blazkova and Beven,
2004, 2009; Wagener et al., 2004). In some cases it is pos-
sible to use long series of observed rainfall data to simulate
discharges, but for the very long series that are needed to es-
timate more extreme events it is necessary to use a stochastic
model of the inputs (similar to the weather generators used
to produce future sequences in climate change impact assess-
ments). However, this only shifts the epistemic uncertainty
issue of the choice of appropriate distributions or more com-
plex stochastic structures for the space–time characteristics
of rainfall (e.g. Chandler et al., 2014). The extreme events
generated from such a weather generator depend on the tails
of the assumed distribution(s) and there will again be epis-
temic uncertainty about what type of distribution to use, even
where rainfall series are longer than discharge records.

A further advantage of the continuous simulation approach
is that the weather generator can be modified to represent
future climates (e.g. Cameron et al., 2000; Wilby and Des-
sai, 2010; Prudhomme and Davies, 2009; Prudhomme et al.,
2010), and that input data might be more readily available
for sites for which there are no discharge records (the pre-
diction in ungauged basins problem, Wagener et al., 2004;
Blöschl et al., 2013; Hrachowitz et al., 2013). This latter case
still requires that the parameters of a rainfall-runoff model be
specified. This is also an epistemic uncertainty issue, even if
extrapolations from gauged sites are often made using sta-
tistical regression or pooling group methods (e.g. Lamb and
Kay, 2004); a process that will be influenced by model struc-
tural uncertainty and other uncertainty sources (e.g. McIn-
tyre et al., 2005; Wagener and Wheater, 2006). Experience
in predicting the flood characteristics in this way has been
somewhat mixed; successful in some basins, but with signifi-
cant over or underestimation in others (Lamb and Kay, 2004;
Blöschl et al., 2013). Improvements to such methods might
still be possible but epistemic uncertainty will remain a con-
straint on accuracy.

Further uncertainties arise in the estimation of the foot-
print of the flood event. There may be different areas at risk
of inundation according to whether the risk is from pluvial,
fluvial, coastal, or groundwater flooding. By making assump-
tions about various sources of uncertainty in the modelling of
inundation, a (Monte Carlo based) forward uncertainty anal-
ysis can be used to predict uncertainties in inundation areas
and depths (e.g. Berry et al., 2008). In some cases, histor-
ical flood mapping is available that can be used to condi-
tion hydraulic models of inundation and constrain the uncer-
tainty in model predictions (Bates et al., 2014). The gener-
alized likelihood uncertainty estimation (GLUE; Aronica et
al., 1998; Romanowicz and Beven, 2003; Pappenberger et al.,
2007; Neal et al., 2013; Beven et al., 2014; Beven and Lamb,
2014) and more formal Bayesian methods (Romanowicz et
al., 1996; Hall et al., 2011) have both been used in this type

Figure 2. Uncertainty in inundation extent resulting from simula-
tions of the flood with annual exceedance probability of 0.01, river
Eden valley in the vicinity of Carlisle, Cumbria, UK. The uncer-
tainty scale results from a behavioural ensemble of LISFLOOD-FP
inundation models with different parameters sets, weighted accord-
ing to fit to the 2005 flood outline, and driven by realizations from
the joint distribution of peak discharges in the river Eden and the
Caldew and Petteril tributaries (from full details see Neal et al.,
2013).

of conditioning process (e.g. Fig. 2; see also other examples
in Beven et al., 2014).

Recent improvements in flood inundation modelling have
been less a result of reducing uncertainties in inputs and hy-
draulic parameters, but rather due to reductions in uncer-
tainties in topography as lidar surveys have become more
widely available or in land surface properties through re-
motely sensed information (e.g. Wood et al., 2016). How-
ever, lidar cannot identify all the barriers to flow on a flood
plain (e.g. Sampson et al., 2012). A further issue can be that
effective hydraulic parameters identified for one magnitude
of event might not hold for a larger magnitude event (e.g.
Romanowicz and Beven, 2003), which would introduce epis-
temic uncertainty. It is also common to assume that the effec-
tive parameters are spatially constant which, when interact-
ing with other sources of uncertainty, might mean that it is
not possible to get good fits for inundation observations ev-
erywhere in the modelled domain (e.g. Pappenberger et al.,
2007; Savage et al., 2016).

In many situations, flooding is constrained by the exis-
tence of natural levees or artificial flood defences. Such de-
fences are always associated with a residual risk of being
overtopped and/or failing, a risk that will vary due to fac-
tors including construction methods, programme of mainte-
nance, and unauthorized modifications (van Gelder and Vri-
jling, 2014). These are all subject to epistemic uncertainties
but are often dealt with through using fragility curves that
give a probability of failure as a function of water level (e.g.
Lamb et al., 2017). Although expressed in terms of probabil-
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ities, such fragility curves are often treated as deterministi-
cally known (Gouldby et al., 2010).

2.3 Uncertainty quantification in real-time flood
management

In flood incident management, epistemic uncertainties might
lead to deterministic predictions being biased, even where
models of flood discharges and extent of inundation have
been calibrated for past events. This is usually handled in
one of two ways. Traditionally it was handled by the experi-
ence and expertise of the flood forecasters who would make
subjective adjustments to model outputs available to them as
an event progressed and more information became available.
In doing so they would qualitatively allow for perceived epis-
temic uncertainties based on past experience. This approach
is still used in many countries. An extension of this approach
is to base estimates of the uncertainty in model predictions
based on the performance of the model in past events. A
method such as quantile regression can be used for this sit-
uation (López López et al., 2014). The problem for both ap-
proaches is that past experience may not be a good guide to
the peculiarities of a new event.

A different strategy is to assume that all uncertainties can
be treated statistically and use a data assimilation approach
to correct for over or under-prediction as the event proceeds.
Techniques such as the Kalman filter, or stochastic autore-
gressive modelling, can be used with the advantage that an
estimate of the variance of the forecast can also be updated
at the same time (see, for example, Sene et al., 2014; Young
et al., 2014; Smith et al., 2012, 2013a). No explicit account
of potential epistemic uncertainties is normally made in this
approach; the aim is only to improve the forecast and min-
imize the forecast variance at the required lead time as new
data become available for assimilation. The approach will of-
ten work well when the required lead time is less than the
response time of the upstream catchment so that the data as-
similation can rely on measured inputs. It works less well in
flash flood situations in small catchments with short response
times so that forecasts of the inputs are needed to produce a
forecast with reasonable response time (Alfieri et al., 2011;
Smith et al., 2013b; Yatheendradas et al., 2008). Rainfall
forecasts from numerical weather prediction (NWP) models
are still not sufficiently accurate for this purpose but are now
used routinely (such as in the European Flood Awareness
System hosted at ECMWF, Bartholmes et al., 2009; De Roo
et al., 2011) for providing flood alerts some days ahead.

2.4 Floods and the safety of dams

The safety of dams is an interesting example of a hazard
that involves both natural forcing and engineering design, but
one in which the consequences of failure can be catastrophic.
Lists of dam failures (e.g. Vogel, 2001) show that such events
are not common, but the International Commission on Large

Dams (ICOLD, 1995) has estimated that some 0.5 % of all
dams failed in the period 1951–1986. The most fatalities es-
timated are for the failure of several dams in Henan Province
in China in 1975 which killed an estimated 171 000 people
and destroyed the houses of 11 million people.

Multiple causes that are subject to epistemic uncertainties
(e.g. hydrological forcing, landslides upstream, poor design,
or poor maintenance) make dam failures difficult to predict,
and most countries take a highly precautionary approach to
regulating for dam safety. Dams and spillway channels for
large dams are commonly designed to cope with the estimate
of the flood with an annual exceedance probability of 0.0001.
This is a much smaller probability than for designing nor-
mal flood defences, because of the potential consequences
of a failure, but means that such estimates are dependent on
epistemic uncertainties in estimating such tail probabilities.
In addition, the greatest forcing might not come from the
highest flood peak if it is of short duration, but from the in-
flow volume associated with an event of longer duration but
smaller peak. One way of assessing such effects is to run a
continuous simulation model and examine the impact of the
most extreme events generated over with long realizations
(e.g. Blazkova and Beven, 2009). The continuous simulation
approach means that the antecedent conditions prior to any
event are handled naturally, but clearly the outputs from such
simulations are dependent on the epistemic uncertainties as-
sociated with all the model components, including the tail as-
sumptions for the driving distributions, the choice of rainfall-
runoff model, and the estimation of model parameters given
the historical data.

Predicting the downstream footprint of a dam failure and
the consequent threat to life and potential damage can also
be difficult. There are hydraulic models available designed
to cope with the high discharges and sharp wave fronts ex-
pected with a dam failure (Cao et al., 2004; Xia et al., 2010),
but the application in any real case study will depend on the
epistemic uncertainty associated with the characteristics of
a breach in the dam acting as an upstream boundary con-
dition for the hydraulic model and the momentum losses in
the downstream area as a highly sediment-laden fluid inter-
acts with the valley bottom infrastructure and vegetation. It
is also difficult to verify the outputs of such a model (though
see Hervouet and Petitjean, 1999; Begnudelli and Sanders,
2007; and Gallegos et al., 2009; for examples of field scale
validation), while predictions of velocities, as well as depths,
will be important in assessing the consequences.

3 Landslides and debris flows

3.1 Landslides and key epistemic uncertainties

Globally, landslides are directly responsible for several thou-
sand deaths per year (Petley, 2012). A widely cited example
is that of the Welsh village of Aberfan, where a flowslide
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from a colliery spoil tip killed 144 people, 116 of whom
were children, at the Pantglas Junior School in October 1966
(Johnes, 2000). More recently, the Gansu mudslide, which
occurred after heavy rain in August 2010 in China, killed
an estimated 1765 people. However, despite the large risks
posed by landslides, the ability of research to guide and in-
form management decisions is limited by high levels of un-
certainty in model assessments of slope stability. In landslide
risk assessment epistemic uncertainties arise from a range of
sources, including errors in measurement data, gaps in the
understanding of landslide processes and their representation
in models, and from uncertain projections of future socio-
economic and biophysical conditions (Lee and Jones, 2004).

3.2 Uncertainty quantification in landslide hazard
estimation

Landslide risk can be assessed qualitatively or quantitatively.
The choice depends on the scale of work (national, regional,
local or site-specific), and also on the quality and quan-
tity of data available. For site-specific slopes, physically
based deterministic models centred on slope stability anal-
ysis are commonly used to assess the probability of landslide
occurrence. Stability conditions are generally evaluated by
means of limit equilibrium methods, where the available soil
strength and the destabilizing effect of gravity are compared
in order to calculate a measure of the relative stability of the
slope known as the factor of safety. The limit equilibrium
method relies on significant simplifications, such as that the
failing soil mass is rigid, the failure surface is known, and
the material’s failure criterion is verified for each point along
this surface. These simplifications limit both accuracy and
applicability. Epistemic uncertainties related to the limited
understanding of system processes and functioning can lead
to large errors in such model predictions. For example, in
1984, an embankment dam in Carsington, England, slipped,
despite the fact that limit equilibrium analysis had indicated
that the slope was not expected to be at risk of failure. This
discrepancy has been shown to be caused by epistemic errors,
as brittle soils may exhibit strain-softening behaviour when
loaded, leading to progressive failure, a phenomenon which
cannot be reproduced using conventional limit equilibrium
stability analyses. For this type of soil, finite element anal-
ysis using appropriate numerical algorithms and constitutive
models are required to achieve a more accurate prediction of
stability, which means that better accounting of process un-
certainty can sometimes be remedied by more detailed mod-
elling (Potts et al., 1990).

All physically based slope stability models are subject
to epistemic uncertainties in both the constitutive relation-
ships chosen and the parameter values required by those re-
lationships. Parameter variability is often assessed by making
small scale laboratory measurements of parameters, such as
cohesion and coefficient of friction but the resulting values
may not be directly applicable on a large scale because of the

effects of spatial heterogeneities, and additional factors such
as root strength (Christian et al., 1994; Rubio et al., 2004;
Hall et al., 2004; Hürlimann et al., 2008; Hencher, 2010).
Although spatial variability of soil properties has been rec-
ognized as an important source of epistemic uncertainty in
the literature (e.g. El-Ramly et al., 2002; Griffiths and Fen-
ton, 2004), it has often been ignored in previous analyses us-
ing limit equilibrium methods. The use of constant values for
soil properties over soil deposits may lead to unreliable esti-
mates of the probability of failure of a slope (El-Ramly et
al., 2002; Griffiths and Fenton, 2004; Cho, 2007; Griffiths et
al., 2009). To account for this source of uncertainty in slope
stability problems, some investigators combine limited equi-
librium methods with random field theory (e.g. Cho, 2007).
Random field theory allows soil properties to be described by
a randomly generated distribution, instead of a single value
across the entire modelled space.

The finite-element method has the added advantage of be-
ing capable of simulating water flow and coupled hydrome-
chanical behaviour under saturated and unsaturated condi-
tions (Alonso et al., 2003; Gens, 2010). Time-varying bound-
ary conditions to simulate the effect of rainfall and vegetation
can be used (e.g. Nyambayo and Potts, 2010). Even at sites
where the costs of extensive field investigations can be justi-
fied, there is much that remains unknown about the subsur-
face, including the detail of water flow pathways and knowl-
edge of the hydromechanical behaviour of soils. Understand-
ing the trade-off between data support, model complexity,
and predictive uncertainty is therefore crucial.

To accommodate uncertainty caused by parameter vari-
ability in both limit equilibrium and finite-element methods
of analysis, Monte Carlo simulation and/or the first-order–
second-moment (FOSM) method are commonly used (e.g.
Christian et al., 1994; Wu and Abdel-Latif, 2000; Haneberg,
2004; Cho, 2007). These methods consider the uncertainties
introduced by the inputs in different ways. Monte Carlo sim-
ulation starts by repeatedly sampling from the probability
distributions of the random variables. A deterministic com-
putation on each of generated input set is performed and the
factor of safety is calculated. Subsequently, the aggregated
results of all sets provide an approximation of the probability
distribution of the factor of safety. Alternatively, the FOSM
method can be used to estimate the probability of slope fail-
ure. This probabilistic method determines the stochastic mo-
ments of the performance function. As the input variables are
randomly distributed, the performance function is also ran-
domly distributed, which the FOSM method characterizes in
terms of its mean and standard deviation. In both methods,
therefore, the uncertain parameters are treated as aleatory
variables.

Detailed slope stability models require geotechnical infor-
mation on site conditions that can be prohibitively costly
to obtain and so tend to be employed only in small ar-
eas for cases where high risk is anticipated, while simpler
strategies might suffice in many straightforward cases. Over
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large and complex areas, where the use of detailed physi-
cally based models is not feasible, statistical and data-driven
models relating the probability of spatial landslide occur-
rence (i.e. susceptibility) and local geo-environmental con-
ditions (e.g. geological, topographical and land-cover con-
ditions) are used instead (e.g. Guzzetti et al., 1999, 2005,
2006; Ercanoglu and Gokceoglu, 2002). These models have
become standard in landslide susceptibility assessment at a
regional scale (Corominas et al., 2014). By estimating where
the slope is most likely to fail (but not the recurrence of fail-
ure, i.e. the temporal frequency or magnitude of the expected
landslide), these models can be of great help in land-use plan-
ning, guiding planners in the delimitation of suitable areas for
future development. Guzzetti et al. (2006), for example, es-
tablished for the Collazzone area, Italy, a landslide suscepti-
bility model through discriminant analysis by finding a com-
bination of predictor variables that maximizes the difference
between the populations of stable and unstable slopes with
minimal error. The generalization of a very complex prob-
lem into a relatively simple statistical model, necessarily in-
troduces errors in model predictions, arising from errors in
the predictors used to establish the model, uncertainty in the
classification of the terrain units, etc.

Despite the above discussed limitations of more complex
models for landslide risk studies, computational advance-
ments do make the use of mechanistic models more feasible
for future applications – even when considering uncertainty
and when running the model over regional scales. Almeida
et al. (2017) demonstrated this possibility by applying the
widely used CHASM model (Holcombe et al., 2012) within a
Monte Carlo (MC) framework. The MC framework allowed
for the consideration of uncertainties due to poorly defined
geophysical slope properties, which is particularly problem-
atic for developing regions such as the study’s Caribbean
island location where data support is poor, but hazard risk
is especially high. More importantly, Almeida et al. (2017)
demonstrated how epistemic uncertainty can be considered
as well. The uncertainty considered originated from a lack
of knowledge about how intensity–duration–frequency (IDF)
curves might vary under future climate change. Such IDF
curves provide the design rainfall used by engineers in slope
failure risk assessments. Almeida et al. (2017) used a bottom-
up approach in which (in this case) a classification and re-
gression tree (CART) was developed to identify how much
the design rainfall has to change before specific slopes be-
come significantly more likely to fail (for a more general
discussion of such an approach see Ray and Brown, 2015).
Hence, while future rainfall intensities are unknown, this in-
formation still enables engineers to assess which slopes are
at a higher risk of being impacted than others.

Another large source of uncertainty affecting the assess-
ment of landslide susceptibility is often introduced by the un-
avoidable imprecision with which experts approach a prob-
lem, given limited information. To account for the uncertain
and inexact character of the available information and for the

possibility of limited information concerning a real system,
fuzzy-based risk assessment models have been suggested in
the literature (e.g. Ercanoglu and Gokceoglu, 2002; Lin et al.,
2012). For example, based on a landslide inventory database,
Ercanoglu and Gokceoglu (2002) applied factor analysis to
determine the important weights of the factors condition-
ing landslides in the area (slope angle, land use, topograph-
ical elevation, dip direction of movement, water conditions,
and weathering depth). Fuzzy-set theory is then applied, ac-
counting for the judgemental uncertainty (fuzziness, vague-
ness, imprecision) introduced by the way experts approach
the problem. In a rule-based fuzzy model, the fuzzy prepo-
sitions are represented by an implication function (e.g. “If
slope angle is very low then landslide susceptibility is non-
susceptible”) commonly called fuzzy if-then rules or fuzzy
conditional statements. The fuzzy if-then rules are then used
to produce a fuzzified index map for each factor conditioning
landslides. These maps are thereafter combined (by overlay-
ing) to produce a landslide susceptibility map.

In the context of long-term landslide risk management, as
for other natural hazards fields, such as floods or earthquakes,
the probability of exceedance is often calculated for differ-
ent sizes of events in terms of an extreme value distribution.
This approach has advantages over a simulation-based anal-
ysis, the results of which may be affected by uncertainties
in input forcing data. However, this does not mean that un-
certainties in factors contributing to landslides are ignored
in probabilistic estimates of landslide risk. Instead, proba-
bilistic estimates implicitly account for input uncertainty by
fitting a statistical distribution of events to available histori-
cal data. As in the case of floods, the epistemic uncertainty
is convolved into a question of what statistical distribution
should be used and how uncertainty in the tail behaviour
is estimated. Probabilistic models such as binomial model,
Poisson model (Crovelli, 2000) and the power-law distribu-
tion (Hungr et al., 1999; Dussauge-Peisser et al., 2002) have
been suggested in the literature to estimate the frequency (or
return period) of landslides of a given size.

3.3 Uncertainty quantification in real-time landslide
warning systems

In the context of real-time warning systems, slope failure
is commonly estimated by establishing landslide-triggering
thresholds of the initiating agent. The application of trigger-
ing thresholds has been used, for example, in early warn-
ing systems in areas prone to rainfall-induced landslides, by
establishing relationships between landslide occurrence and
rainfall indicators, such as antecedent rainfall, duration, in-
tensity and cumulative rainfall (Aleotti, 2004; Cepeda et al.,
2012). An empirical model between rainfall and landslide
initiation has been used to issue warnings during the storms
of 12 to 21 February 1986 in the San Francisco Bay Area
(Keefer et al., 1987). Since information regarding data qual-
ity is often lacking, one common way to deal with uncer-
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tainty involves tracing the rainfall threshold curves that cor-
respond to different percentiles and then deciding on a mini-
mum threshold satisfying some performance criterion (e.g.
rainfall threshold curve established so that includes 90 %
of the historical events; Aleotti, 2004). Nevertheless, epis-
temic uncertainty introduced by lack of knowledge on land-
slide occurrence can be significant. For example, Gariano et
al. (2015) show that even a small (1 %) underestimation in
the number of the considered landslides can result in a sig-
nificant decrease in performance of an early warning system.

4 Droughts

4.1 Droughts and key epistemic uncertainties

Drought has the potential to cause widespread fatality and
economic damage, particularly when a drought event might
last for years or even decades (van Loon et al., 2016a, b). As
with floods, droughts may be characterized either in terms
of their natural severity or their impacts. The definition of
drought depends on the type of water deficit being considered
(rainfall, stream flow etc.). Drought follows the hydrological
cycle, as precipitation deficits (meteorological droughts) lead
to low soil moisture levels (agricultural/soil drought) and
decreased river flows (hydrological drought) which in turn
may lead to lowering of reservoir levels and water shortages
(socioeconomic drought). Drought periods associated with
high temperatures may also have cascading impacts such as
the large number of excess deaths in Europe in the sum-
mer of 2003 (Robine et al., 2008). Unlike many other haz-
ards, droughts other than in their most meteorological defi-
nitions are co-creations of human and environmental effects,
in which the hazard–footprint–loss chain is non-linear. Epis-
temic uncertainties in drought risk assessments stem from
unknown future climate conditions, from unknown future
water demand scenarios and lack of knowledge about how
society might respond to long-term droughts, from low-flow
measurements with poorly understood errors, and from struc-
tural errors in hydrological models used to assess the im-
pact of potential future rainfall deficiencies altered by cli-
mate change (Singh et al., 2014). Epistemic uncertainties in
estimates of drought-related consequences and losses stem
from the scarcity of data on and the difficult valuation of the
impact and damage induced by water shortages.

4.2 Uncertainty quantification in drought hazard
estimation

Drought hazard is widely assessed using indices, such as
the standardized precipitation index (SPI) or Palmer drought
severity index (PDSI). The most straightforward of these
consider single environmental variables, such as precipita-
tion (SPI) or groundwater level (Standardized Groundwa-
ter Index, Bloomfield and Marchant, 2013). In such cases,
sources of uncertainty are restricted to the reliability of

recorded observations, which may arise for instance from
missing data or incomplete and short records (Hong et al.,
2014; Hu et al., 2014). However, the information content of
such indices can be low as rainfall or groundwater levels are
not the sole drivers of drought impacts. By contrast, more
complex indices such as PDSI and the crop moisture index
provide a more applicable representation of drought, but with
more sources of potential uncertainty due to multiple data
sources, parameterizations, and model structures imposed by
the indices. For instance, the Palmer drought severity index
or the crop moisture index assume that land use and soil prop-
erties are uniform over large spatial scales, which makes it
difficult to accurately identify the spatial extent affected by
a drought (Narasimhan and Srinivasan, 2005). Parameter un-
certainty in some drought indices is rarely considered when
characterizing drought, yet it has been shown to play a sig-
nificant role in the identification of major drought events and
in the derivation of relevant drought statistics (Samaniego
et al., 2013).

Under specific local conditions, shortage of rainfall can
have an influence on water availability for human use at a
regional scale within 4 months (Marsh et al., 2007). Long
droughts can be difficult to characterize as multiple periods
of drought can be interrupted by wet weather events, with-
out sufficient rainfall arriving to restore water storage. Ac-
knowledging this, long drought events such as the 1890–
1910 drought in England and Wales and the Millennium
drought in Australia can be pernicious, gradually depleting
water stored in aquifers and reservoirs. Historically, drought
indices and other water availability metrics such as deploy-
able output (DO) in the UK have been presented without
associated quantification of uncertainty. This is unfortunate,
both in terms of the complexity of the calculation of such
figures and because these terms are widely adopted by le-
gal and regulatory systems. Recently, a risk-based approach
has been proposed by Hall et al. (2012). Under this ap-
proach, probabilistic uncertainties are considered explicitly
within the model and simulations are based on environmen-
tal time series, allowing metrics such as the probability of
water shortages to be determined. This allows uncertainties
to be examined simultaneously – conditional on the time se-
ries used to inform the model being representative of those
driving the real system. As with other hazard areas, defin-
ing the probabilities required may also be subject to lack of
knowledge.

Estimation of stream flow, and in particular low flows, is
essential for hydrological drought analysis, thus the choice of
methods to model and estimate low-flow characteristics can
introduce epistemic uncertainties in drought risk assessment.
Distributions fitted to low flows are susceptible to bias in-
troduced by the fitting methodology and distribution choice
(Ries and Friesz, 2000). Uncertainty is introduced in obser-
vations because many river gauging methodologies are espe-
cially poor at recording low flows (Barmah and Varley, 2012;
Tomkins, 2014; Coxon et al., 2015). As gauging methods
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record proxy observations of flow, epistemic uncertainty in
functional relationships (i.e. changes in channel cross sec-
tion or vegetation affecting the correlation between stage
and discharge) is likely to have a relatively greater effect
on the absolute errors of low-flow observations (Tomkins,
2014; McMillan and Westerberg, 2015). While there is sig-
nificant attention paid to information-rich events such as re-
cession rates following flood events, the assumption that re-
cession parameters determined in this way are optimal for
determining the hydrology of extended low-flow series is not
valid (Prudhomme et al., 2012, 2013). Hydrological mod-
els, which are routinely applied to model low-flow occur-
rence and to characterize hydrological drought duration and
deficits in response to particular climatological conditions,
also introduce epistemic uncertainty in drought risk assess-
ments. For example, Duan and Mei (2014) have shown that
hydrological model structural uncertainty induces large dif-
ferences in drought simulation, while Hartmann et al. (2017)
demonstrated that fluxes connecting surface and groundwater
are often modelled with insufficient process realism in large-
scale hydrologic models, the scale where drought assessment
is most relevant.

Drought risk can be characterized using metrics of drought
duration and intensity (the deficit of water during a drought
event), or the joint probability of a sequence of reduced flow
events either in isolation or in combination with a water sup-
ply system model to assess future drought risk. Drought du-
ration is indicative of drought severity rather than directly
responsible for consequence in itself, as a long period of low
flow is not necessarily worse than a short, sharp drought. In-
tensity can be considered a more robust metric of shortage
as deviation from a threshold state can develop as a con-
sequence of brief periods of extreme shortfall, longer mild
shortfall or some combination of the two. Both these meth-
ods are sensitive to the identification of a threshold, which
can be non-stationary due to environmental factors. Autocor-
relation in drought series can be difficult to identify due to the
requirement of capturing both the different temporal scales
(daily, annual) and the continuous range of low flows, as cor-
relation in Q99 events may be independent from correlation
in Q95 events.

Epistemic uncertainties related to future climate condi-
tions influence drought risk assessment for water resource
planning purposes. A number of studies have investigated
forward uncertainty analysis of the potential impacts of cli-
mate change on droughts (e.g. Wilby and Harris, 2006). Bor-
gomeo et al. (2014) developed a risk-based method to in-
corporate epistemic uncertainties related to climate change
in water resources planning and to assess drought and
water shortage risk in water supply systems. This risk-
based method incorporates climate change epistemic uncer-
tainty by sampling the United Kingdom Climate Projec-
tions’ (UKCP09) change factor distribution. Sampling dif-
ferent vectors of change factors allows for exploration of
some degree of epistemic uncertainty in the future climate,

within the range of the UKCP09 scenarios. Epistemic uncer-
tainties arising from emissions scenarios and climate model
choice has been addressed using a similar approach by Paton
et al. (2013).

Although climate models may provide information about
future drought risks, there are issues here about how far
current climate models can reproduce the type of block-
ing high-pressure conditions that lead to significant droughts
in Europe. Consequentially, the probabilities of multi-year
droughts under future climates will almost certainly be
poorly estimated. In this context, the historical periods of
1933–1934 and 1975–1976 in the UK are still used as ex-
treme cases for water resource planning purposes. This is
a form of precautionary approach that does not require any
estimate of probability associated with that event, but one
which involves some epistemic uncertainty about whether a
more extreme event might occur in future. Worst-case sce-
nario approaches have been applied by Kasprzyk et al. (2009)
and Harou et al. (2010) to assess drought risk and evaluate
drought management strategies in water resource supply sys-
tems undergoing change when human interventions modify
vulnerability in a risk-based analysis, in addition to any cli-
mate changes (Mechler et al., 2010).

5 Earthquakes

5.1 Earthquakes and key epistemic uncertainties

Predicting earthquake occurrence is difficult, especially large
seismic events in the very near future. Recently, the 2011
Tōhoku earthquake in Japan has highlighted that estimation
of the maximum magnitude of mega-thrust subduction earth-
quakes involves significant epistemic (“deep”) uncertainty
related to segmentation of seismic sources and maximum
magnitude (Stein et al., 2012; Kagan and Jackson, 2013),
which can lead to the gross underestimation of earthquake
scenarios. In a rather different scenario, during the 2010–
2011 Christchurch sequences in New Zealand, the complex
behaviour of interacting fault systems caused clustering of
multiple major events in the Canterbury region that also re-
sulted in major economic impact. Generally, earthquake haz-
ards are influenced by the stochastic nature of earthquake oc-
currence and their size as well as by uncertainties in ground
motions at sites of interest, which are contributed to by un-
certainties in source, path, and site characteristics.

A standard approach for characterizing potential future
earthquakes is probabilistic seismic hazard analysis (PSHA;
Cornell, 1968; McGuire, 2001, 2004). PSHA was an engi-
neering endeavour to develop a set of seismic hazard esti-
mates for aiding the revision and implementation of seismic
design in national building codes, using numerical methods
that reflected limitations in the computing power of the time.
In PSHA, key uncertainties related to earthquake occurrence
in time and space, earthquake magnitude, and ground mo-
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tion prediction are all captured. However, in the past, ma-
jor earthquakes have often been surprises, indicating that our
knowledge is not perfect and that some of the probabilistic
assumptions were inappropriate. We learn new things from
these events and are sometimes required to revise theories
and pursue alternative frameworks in the light of new obser-
vations (e.g. Mulargia et al., 2017).

5.2 Uncertainty quantification in earthquake hazard
estimation

PSHA takes into account numerous earthquake sources and
scenarios and integrates their contributions probabilistically
as if all variables considered are aleatory in nature. Out-
puts from PSHA are provided in various forms, such as site-
specific hazard curves for safety-critical facilities and a re-
gional hazard contour map. The contour map shows expected
ground motions (e.g. peak ground acceleration and spectral
accelerations) across a wide area or region at a selected an-
nual exceedance probability level (typically 1 in 500 to 1 in
10 000).

Representations of uncertainties in PSHA. PSHA involves
various types and sources of uncertainties, and thus it is cru-
cial to adopt an adequate mathematical framework to han-
dle uncertainties as probabilities for individual model com-
ponents and their dependency (Woo, 2011). Physically, these
uncertainties can be associated with earthquake occurrence
processes in time and space, seismic wave propagation, and
seismic effects on structures and socioeconomic systems.
PSHA also allows the identification of critical hazard sce-
narios at different probability levels through seismic disag-
gregation (McGuire, 2004). This essentially closes the loop
between probabilistic and deterministic seismic hazard ap-
proaches, which are complementary in nature (McGuire,
2001). The deterministic scenario approaches (e.g. Zuccolo
et al., 2011) allow the use of more definitive models and data,
but without attempting to associate a probability with a given
scenario. For evaluating seismic risk impact to safety-critical
facilities and infrastructure, both approaches should be im-
plemented and should also be accompanied by rigorous sen-
sitivity analysis.

Epistemic uncertainties arise both in the choice of struc-
ture for the component models and in the effective values
of the parameters necessary. As with the other natural haz-
ards, this means that when model predictions are compared to
observational data the prediction errors can have a complex
structure that may not be simply aleatory. In PSHA, repre-
sentations of alternative hypotheses and assumptions for in-
dividual model components are often framed with a logic tree
approach (Kulkarni et al., 1984), and the final estimates of
seismic hazard parameters are obtained by integrating rele-
vant uncertain model components and by weighting of alter-
native assumptions. A benefit of using a logic tree, despite its
simplicity, is the transparency in characterizing epistemic un-
certainties. In this regard, the logic tree approach is similar to

the condition tree of analysis assumptions outlined by Beven
and Alcock (2012). Nevertheless, major difficulties arise be-
cause not all models, which analysts wish to apply are based
on consistent data or assumptions, and the probabilities of al-
ternatives in the logic tree are often poorly known, unknown,
or unknowable (Bommer, 2012; Stein and Stein, 2013).

Thus, in practice, given these epistemic sources of uncer-
tainty, it is not a trivial task to assign weights to individual
branches of the constructed logic tree and, often, resorting
to expert elicitation is the only practical solution. For major
industrial facilities (e.g. dams and nuclear power plants), the
development of the logic tree is often carried out according
to the Senior Seismic Hazard Analysis Committee (SSHAC)
guidelines for using expert advice (Budnitz et al., 1997). In
the face of epistemic uncertainties and a wide spread in ex-
perts’ opinions, special care is essential to avoid the inflation
of elicited uncertainties and parameter distributions (Aspinall
and Cooke, 2013).

Two of the critical elements in PSHA, which are linked but
are both subject to considerable epistemic uncertainties, are
the estimation of long-term occurrence rates of large earth-
quakes and the evaluation of the maximum magnitude for
use in a PSHA, for a given seismotectonic environment. On
occasion, the upper bound of the maximum magnitude may
not be constrained either physically or statistically (Kagan
and Jackson, 2013). The difficulty simply stems from the
fact that records of seismicity data are insufficient to derive
such long-term occurrence rates reliably, solely from histor-
ical catalogues or instrumental databases. The quality, com-
pleteness, and reliability of an earthquake catalogue evolves
over time, affected by the distribution of human settlements
and the way in which major events in the historical record
have been reported or recorded, by advances in measurement
technology and, more recently, the wider geographical cov-
erage of seismographic networks. This often results in inho-
mogeneous detection and monitoring capabilities of instru-
mental catalogues (Tiampo et al., 2007), which need to be
accounted for in evaluating earthquake occurrence rates. In
addition, new information from terrestrial and ocean geodesy
(McCaffrey et al., 2013; Bürgmann and Chadwell, 2014) will
help constrain seismic hazard estimates derived from PSHA.

Epistemic uncertainties in earthquake occurrence charac-
terization. Estimating frequency of occurrence of events for
an individual fault or fault system and their magnitudes is
highly uncertain and depends strongly on assumptions (Mur-
ray and Segall, 2002). In particular, it is difficult to deter-
mine the continuity of fault segmentation (Shen et al., 2009).
In such cases, different hypotheses regarding the rupture be-
haviour of the fault system may be represented by branches
of a logic tree. Recent PSHA studies for potentially active
but less well-instrumented seismically active regions (e.g. the
East African Rift) have extended the modelling basis for re-
gional seismicity beyond historical and instrumental earth-
quake catalogues by using information from mapped geo-
logical faults and geodetically determined rates of strain ac-
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cumulation (e.g. Hodge et al., 2015). It is noteworthy that
while such PSHA assessments remain significantly uncer-
tain, they may be better able to capture potential extreme
(surprise) events. Rigorous sensitivity analysis should in-
clude testing alternative hypotheses and comparing the im-
pacts of the adopted assumptions on regional seismic hazard
assessments (see, for example, the flooding example by Sav-
age et al., 2016). In this regard, a PSHA should be reviewed,
even from a modern instrumental perspective, such that a bet-
ter understanding of seismic hazard assessments and their un-
certainties can be achieved (Woo and Aspinall, 2015).

It has become more established in recent years that the
mean occurrence rates of earthquakes on many mature fault
systems and in subduction zones (where multiple plates meet
and interact) are non-Poissonian and quasi-periodic (in con-
trast with a homogeneous Poisson model in the classical
formulation of PSHA), and thus the hazard and risk poten-
tial posed by specific faults or subduction zones may be re-
garded as time-dependent (Sykes and Menke, 2006). Both
physics-driven occurrence models (Shimazaki and Nakata,
1980) and statistics-based renewal models (Cornell and Win-
terstein, 1988; Matthews et al., 2002) have been adopted in
PSHA. A notable example of an active seismic region that
is affected by a renewal earthquake process is the Cascadia
subduction zone. A unique aspect of this subduction zone is
that repeated occurrences of Mw9-class mega-thrust earth-
quakes – due to subduction plate motions – have been recog-
nized from field evidence only relatively recently (Satake et
al., 2003; Goldfinger et al., 2012). In other words, the occur-
rence and rupture processes of the Cascadia subduction zone
involve major epistemic uncertainties, and yet detailed haz-
ard and risk assessments are necessary from an earthquake
disaster preparedness viewpoint. In the last decade, various
seismic hazard and risk studies for possible risk mitigation
have been carried out by adopting a wide range of time-
dependent models and possible rupture scenarios as a way of
trying to account for sources of epistemic uncertainty (Goda
and Hong, 2006; AIR Worldwide, 2013). This situation con-
trasts with the case for the 2011 Tōhoku earthquake, where
the consideration of extreme events was not taken up in risk
mitigation actions prior to this event, even though there were
indications of the impacts of past major tsunami-inducing
events in the region (Stein et al., 2012). In this case and that
of the Cascadia zone, current knowledge and understanding
of subduction events are likely to be further updated in the
very near future by seafloor geodesy in particular and so the
scientific assessment framework and tools for better quan-
tifying the characteristics and patterns of such earthquakes
should also evolve dynamically.

Characterizing seismicity for the purposes of PSHA is al-
ways challenging, even in areas with plentiful data, and even
more so when it comes to estimating background or diffuse
seismicity away from known active regions or in low seis-
micity areas. Conventionally, this has been tackled, follow-
ing Cornell (1968), by developing an area source zone model,

each component of which is associated with an annual occur-
rence rate (above a minimum magnitude) and a Gutenberg–
Richter type magnitude distribution. However, because earth-
quakes are a manifestation of a geological process, epistemic
uncertainties in relation to earthquake magnitude-occurrence
rates – especially at high magnitudes – should not be de-
rived solely from the statistical properties of recent moni-
toring datasets or even historical catalogue information, ei-
ther of which is just a limited snapshot sample of the un-
derlying process. The danger here is that the analyst, in con-
sidering how to characterize a seismicity model for PSHA,
is seduced into deriving a model conditioned on the avail-
able data, rather than understanding the probative weight of
that data given an infinitude of plausible causal process mod-
els: naively letting “the data speak for itself” in PSHA can
easily be undermined by future events, as evinced by the
Tōhoku earthquake. Thus epistemic uncertainty quantifica-
tion of seismicity should be based on a wider assessment that
integrates in other difficult aspects, using expert judgment
– such as slip and strain or stress rates and geological and
tectonic controls – in order to supplement the limitations of
available data (Aspinall, 2013; Aspinall and Cooke, 2013).
This precept applies equally, or should do, to other factors
and parameters in a PSHA, e.g. maximum magnitude and fo-
cal depth distribution. The corollary to this, in practice, is that
rigorous sensitivity testing of input parameters can provide a
wider perspective for epistemic uncertainty in earthquake oc-
currence characterization.

Epistemic uncertainties in ground motion modelling. In
modern practice, considerable effort has been invested in re-
spect of ground motion prediction equations, which consti-
tute another major source of uncertainties in PSHA. Empir-
ically derived prediction models using observed strong mo-
tion records are inherently limited by the availability of such
data. Even following the dramatic expansions of strong mo-
tion networks in active seismic regions (e.g. California and
Japan), near-source strong motion data and strong motion
data for very large earthquakes (with the notable exception
of the 2011 Tōhoku earthquake) are still lacking. This reality
forces us to update existing empirical ground motion mod-
els from time-to-time by incorporating newly available data
or to use computational model simulations of strong motion
(e.g. Skarlatoudis et al., 2015). Another important issue, re-
lated to ground motion modelling using observed records, is
that the majority of the existing ground motion models have
been developed based on the ergodic assumption (Anderson
and Brune, 1999). The ergodic assumption in the context of
ground motion modelling implies that the ground motions
required at a specific location can be substituted by recorded
ground motions at different locations. There may be limited
physical validity for this assumption in reality and, at best,
adopting it faute de mieux engenders exaggerated epistemic
uncertainty in the site-specific case via regression scatter es-
timates. In practice, the consequences of adopting this work-
ing hypothesis are biased seismic hazard assessments (Atkin-
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son, 2006). New formulations of ground motion models have
started to address some of these issues (e.g. Stafford, 2014)
but require additional functional relationships and parame-
ters that remain subject to epistemic uncertainties.

6 Tsunamis

6.1 Tsunamis and key epistemic uncertainties

Massive tsunamis triggered by large earthquakes pose major
threats to modern society, generating fatalities, disrupting so-
cioeconomic activities, and causing grave economic impact
across the world. Forecasting tsunamigenic earthquakes is
challenging for the same reasons discussed above for predic-
tion of mega-thrust earthquakes. Major sources of epistemic
uncertainties are related to earthquake rupture processes (e.g.
source areas and size, asperity, and kinematic and dynamic
rupture process) and inundation or run-up process (e.g. topo-
graphical effects, land surface friction, and flow dynamics in
urban areas).

6.2 Uncertainty quantification in tsunami hazard
estimation

As noted in the last section, estimating potential earthquake
size is one of the most critical factors in predicting the impact
of great tsunamis. Inappropriate application of seismological
theories could result in gross underestimation of earthquake
magnitude of mega-thrust subduction earthquakes (Kagan
and Jackson, 2013). A large earthquake may also trigger a
submarine landslide, which acts as secondary sources for
tsunami generation (Tappin et al., 2014). To gain further in-
sights into the earthquake rupture process, source inversions
can be carried out to characterize the space–time evolution of
tsunami-causing ruptures by matching key features of simu-
lated data with observations. Although sophisticated math-
ematical frameworks for source inversion have been devel-
oped and implemented, derived earthquake rupture models
vary significantly, depending on the methods and data used
for inversion (Mai and Beroza, 2002; Lavallee et al., 2006).

Topographical features of near- and on-shore areas have
major effects on tsunami waves and inundation or run-up.
The spatial resolution and accuracy of bathymetry and digital
elevation models (DEM) are important for representing local
terrain features realistically. Typically, the frictional proper-
ties of terrain features are modelled by Manning’s roughness
coefficients. Different data resolutions will require different
effective roughness coefficients, thus affecting tsunami inun-
dation extents. The impacts of uncertainty in the DEM and
roughness coefficients will depend on tsunami hazard param-
eters (Kaiser et al., 2011). For instance, the inundation depths
are less sensitive to the data resolutions and characteristics,
whereas the flow velocity and momentum, which are also im-
portant in evaluating the tsunami-induced forces on buildings
(Koshimura et al., 2009), are more sensitive. This issue be-

comes even more critical when tsunami inundation in dense
urban areas is investigated, where buildings may be repre-
sented as (impermeable) elevation data. The simulated flow
velocities in urban streets can be very high.

It is rare that uncertainties of the DEM data and roughness
coefficients are taken into account in conducting tsunami
simulations but adopting the same modelling philosophy as
the PSHA of the last section, probabilistic tsunami hazard
analysis (PTHA) has been developed and applied to some
major tsunami-prone regions (e.g. Annaka et al., 2007; Thio
et al., 2007; Horspool et al., 2014). The main focus and ad-
vantage of PTHA are to integrate potential tsunami hazards
from various sources (both near-field and far-field) in a prob-
abilistic framework. Epistemic uncertainties are represented
in PTHA through a logic-tree approach by assigning weights
to alternatives for different model components, noting that
the criticisms of PSHA (e.g. Mulargia et al., 2017) are also
applicable to PTHA. The final output is a tsunami hazard
curve and probabilistic tsunami inundation maps of inunda-
tion depth and other relevant parameters. A major difference
between PTHA and PSHA is that differential equations of
tsunami wave propagation and run-up (typically shallow wa-
ter equations) are evaluated directly, whereas in PSHA, seis-
mic wave propagation (as well as earthquake rupture and site
response) is approximated using empirical ground motion
models. The direct simulation of tsunami waves reduces the
uncertainties associated with tsunami hazard assessment and
provides additional information on the tsunami wave time-
history and arrival time.

However, PTHA can be computationally demanding. To
achieve computational efficiency, PTHA is often formulated
based on linear superposition of tsunami waves (i.e. Green’s
functions) for simplified earthquake sources and is carried
out only for near-shore locations (e.g. at 30 m depth). The
inundation and run-up processes are often modelled by ap-
plying amplification factors (e.g. Løvholt et al., 2014). To
improve the tsunami hazard prediction and quantify the ef-
fects of epistemic uncertainties, it is desirable to integrate
the stochastic source modelling approach (which carries
out fully nonlinear inundation simulation of tsunami waves;
Goda et al., 2014) into the PTHA methodology. De Risi
and Goda (2016) have developed probabilistic earthquake–
tsunami multi-hazard analysis based on the stochastic source
modelling approach. Such an extended PTHA can reflect the
variability of source characteristics for specific scenarios as
well as numerous tsunami sources in developing tsunami
hazard curves and maps.
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7 Volcanic eruptions and ash clouds

7.1 Volcanic eruptions, ash clouds, and key epistemic
uncertainties

The 2010 eruption of Eyjafjallajökull in Iceland provided
a dramatic demonstration of the potential for volcanic ash
clouds to become a natural hazard. Due to the synoptic
weather at the time of the eruption, the ash cloud caused
enormous disruption to air travel across Europe and the At-
lantic with some 10 million air travellers being affected. The
total global cost in GDP over the entire eruption was esti-
mated at USD 5 billion (Mazzocchi et al., 2010). As then
there has been considerable effort expended in the monitor-
ing and prediction of volcanic ash clouds. Ash clouds can
also be a problem in many other parts of the world, for exam-
ple as a result of the continuing eruption of Mount Sinabung
in Indonesia and the recent 2015 eruption of the Calbuco
volcano in Chile. Globally, a network of nine Volcanic Ash
Advisory Centres (VAACs) provides warning services based
on monitoring and modelling. Major epistemic uncertainties
include the magnitude of the source term or mass emission
rate, near field processes affecting ash size distribution and
deposition, and the interaction of the eruption and synoptic
weather patterns in affecting the far-field ash dispersion.

7.2 Uncertainty quantification in volcanic and ash
cloud hazard estimation

Infrared satellite observations are perhaps the most important
tools for monitoring ash but are not without their problems.
Ash detection is complicated by a number of factors. The
brightness temperature difference (BTD; the difference be-
tween brightness temperatures at two infrared channels) used
as the basis for infrared ash detection can be affected by false
positives and false negatives due to atmospheric conditions
(Simpson et al., 2000; Mackie and Watson, 2015), land sur-
face type and temperature, presence of other aerosols (Prata,
1989; Prata et al., 2001; Pavolonis et al., 2006; Lee et al.,
2014) and water or ice (Rose et al., 1995), in addition to par-
ticle size (e.g. Millington et al., 2012) and ash cloud opacity
(Rose et al., 2001) (see Fig. 3).

Many assumptions are made about the physical properties
of ash in order to make estimates of other physical properties
such as ash column loading, ash cloud height and effective
radius. For example, in the Met Office 1D-Variational (1D-
Var) volcanic ash retrieval scheme (Francis et al., 2012) it is
assumed that ash particles are spherical to simplify the ab-
sorption and scattering calculations, the particle size distri-
bution (PSD) is assumed to be log-normal in shape, and the
geometric standard deviation of the distribution is selected
from a number of possible values. However, this value can
have a significant effect on retrieved ash column loading, e.g.
Western et al. (2015). Ash composition, and hence, refrac-
tive index data must also be assumed, adding considerable

Figure 3. Meteosat Second Generation Spinning Enhanced Visi-
ble and InfraRed Imager (SEVIRI) brightness temperature differ-
ence image (brightness temperature at the 10.8 µm channel minus
the brightness temperature at the 12 µm channel) indicating the ex-
tent of the Eyjafjallajökull ash cloud at 03:00 UTC 8 May 2010. The
negative values of BTD (indicating ash) are shown in blue and the
scale in kelvin is given on the legend. The positive BTD is plotted in
grey. A likely false negative ash signal can be seen south of Iceland
where the ash plume appears to be obscured, possibly by meteo-
rological cloud, due to the high ash concentration causing opaque-
ness, a large fraction of large particles or the presence of water in
the plume. A negative BTD signal can be seen over North Africa
and southeastern Spain, possibly due to a night-time clear arid land
surface. Raw data supplied by EUMETSAT.

uncertainty (Mackie et al., 2014). There are limited ash re-
fractive index data available, and this choice can also have a
significant effect on derived ash properties (e.g. Francis et al.,
2012). The PSD geometric standard deviation and refractive
index data set are varied within the 1D-Var algorithm and the
solution with the lowest cost is generally used; the solution
cost of the 1D-Var scheme can be used as an uncertainty mea-
sure, with high costs indicating high uncertainty (Stevenson
et al., 2015).

Within volcanic ash retrieval schemes, other sources of
uncertainty are introduced, for example in the simulation
of satellite imagery using a radiative transfer model, in the
meteorological data used within the model, interpolation of
that data and so on. Only some of these uncertainties are
very generally accounted for the in 1D-Var algorithm. Other
types of observations (e.g. hyperspectral satellite observa-
tions, satellite, aircraft or ground-based lidar) can add useful
information on ash layer depth, particle size distribution and
the height of the ash cloud. Combining these observations

www.nat-hazards-earth-syst-sci.net/18/2741/2018/ Nat. Hazards Earth Syst. Sci., 18, 2741–2768, 2018



2754 K. J. Beven et al.: Part 1: A review of different natural hazard areas

with infrared satellite observations can help reduce epistemic
uncertainty in the derived observational data. However, they
can often be of much lower temporal or spatial resolution and
carry their own assumptions and uncertainties.

However, modelling of the hazard using volcanic ash dis-
persion models is a problem of forecasting. At the UK Met
Office the Numerical Atmospheric-dispersion Modelling En-
vironment (NAME) model (Jones et al., 2007) is used in
both simulation and forecasting of ash to inform the London
VAAC, which covers eruptions in Iceland and the impacts on
northwestern Europe. As with all models, NAME is a simpli-
fied representation of the problem, and does not include some
of the complex physical processes that control the behaviour
of an ash field close to the source of the eruption, notably fall
out of very large grains and particle aggregation. Near-field
processes are still the subject of current research (e.g. Tad-
deucci et al., 2011). Currently, the effects of gravity currents
(Bursik et al., 1992a; Sparks, 1986) are also not included
in most atmospheric dispersion models. These near-source
processes are likely to dominate ash dispersion and transport
close to the source, and for large eruptions they could domi-
nate for hundreds of kilometres (Bursik et al., 1992a, 1992b;
Sparks et al., 1997), but far from the source are unlikely to
affect downwind ash clouds for weak eruptions (Costa et al.,
2013; Devenish et al., 2012b).

In NAME an effective source term is used as a bound-
ary condition for forecasting the far-field transport and de-
position of ash. This includes assumptions about the PSD
of the ash. Plume behaviour can vary significantly over time
and information derived from deposited ash, often after an
event, does not necessarily give a good indication of the PSD
within the distal ash cloud (Bonadonna and Houghton, 2005).
Operationally, a default source term PSD has been used by
the London VAAC, based on empirical measurements from
Hobbs et al. (1991), which aims to represent the fine ash
that survives near-source fall-out (Webster et al., 2012). This
component may be of the order of 0.05–10 % of the total
erupted mass (Mastin et al., 2009) and consequently consti-
tutes a significant source of uncertainty. Mass emission rate
(MER) and particle density are also required and are also
very difficult to determine experimentally. MER is often rep-
resented as a simple empirical power law as a function of
plume height with fixed parameters (e.g. Mastin et al., 2009),
while in a study of the Eyjafjallajökull eruption, Webster et
al. (2012) used a fixed ash density value of 2300 kg m−3. It is
thought that the empirical function for MER may be biased
towards observed data from larger eruptions (Woodhouse et
al., 2013). Plume height measurements used to determine
MER (e.g. radar) are subject to uncertainties (Arason et al.,
2011; Folch et al., 2012), and plumes from weak eruptions
such as Eyjafjallajökull can become distorted by local winds,
increasing plume height measurement uncertainty and thus
affecting the MER calculation (Webster et al., 2012). Mete-
orological data can also introduce uncertainty to dispersion
forecasts, and can lead to cumulative transport errors (Dacre

et al., 2016). All of these factors represent primary epistemic
uncertainties in the application of such models. Even a cur-
sory treatment of those uncertainties results in a significant
predictive uncertainty (Devenish et al., 2012a). The treatment
of uncertainties in complex models such as NAME can be
difficult due to computational constraints. Emulation is one
strategy to overcome this limitation as demonstrated in the
study by Harvey et al. (2018) using the NAME model. Their
emulator allowed for the estimation of prediction uncertain-
ties and for identifying key uncertain parameters.

One way of constraining such uncertainty during simula-
tion (rather than forecasting) is to use inversion modelling to
learn more about model eruption source parameters (ESPs)
(and possibly dispersion processes such as sedimentation,
wet and dry deposition and atmospheric turbulence param-
eters), based on the available observations and prior infor-
mation (e.g. Kristiansen et al., 2012; Moxnes et al., 2014;
Pelley et al., 2015; Stohl et al., 2011). In this way, Kris-
tiansen et al. (2012) estimated optimal volcanic ash source
terms for the Eyjafjallajökull eruption using an inversion al-
gorithm with satellite-retrieved ash column loadings, a num-
ber of emission scenarios and two atmospheric dispersion
models. The inversion-estimated source terms were applied
within the models a posteriori to perform long-range fore-
casts and results were validated using lidar and in situ PSD
measurements from research flights. Uncertainties in the a
priori emission estimates, model and observations were taken
into account within the inversion algorithm, allowing the re-
sult to deviate from the a priori emission assumptions and the
observations according to the errors.

Wilkins et al. (2014, 2016) used data insertion to initialize
NAME using measurement-derived data. Instead of releas-
ing ash with a defined release rate from the volcano vent, it
was released several times from “snapshots” of downwind
ash clouds defined using retrieved data from infrared satel-
lite imagery, in situ and other remotely sensed data. While
this method does not explicitly deal with uncertainties in the
model or observations, it could potentially be used to bypass
basic epistemic uncertainties in the ESPs, for instance where
the location of the volcano is unknown. However, the method
does require estimations of ash layer thickness, vertical dis-
tribution and PSD. An inversion modelling based Bayesian
method was adopted by Denlinger et al. (2012) to propagate
uncertainty in ESPs within an atmospheric dispersion model
and estimate forecast uncertainty. A genetic algorithm varia-
tional method was applied by Schmehl et al. (2011) to eluci-
date wind direction, wind speed and mass emission rate to be
used for forward assimilation in a dispersion model. By sam-
pling the source term parameter ranges iteratively, the results
could be used to constrain uncertainty in ESPs and/or mete-
orological fields.
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7.3 Uncertainty quantification in real-time volcanic
and ash cloud hazard warning systems

When such models are used for forecasting it is possi-
ble to compensate for epistemic uncertainties, at least in
part, by the real-time assimilation of information about the
ash cloud derived from remote sensing and other direct
sources such as experimental flights. Data assimilation will
then implicitly compensate for some of the epistemic un-
certainty associated with the model. However, the propaga-
tion of complex uncertainties in computationally expensive
atmospheric-dispersion models is a time consuming and dif-
ficult problem to quantify. The characterization of volcanic
ash forecast uncertainties in an operational timescale thus re-
mains a challenging task.

8 Pyroclastic density currents

8.1 Pyroclastic density currents and key epistemic
uncertainties

Rapidly moving flows of hot, fragmented gas-rich magmatic
products in pyroclastic density currents (PDC; also known
as nuées ardentes or pyroclastic flows and surges) are the
biggest threat to human life during explosive volcanic erup-
tions. The 79 CE eruption of Vesuvius and the remains found
at Herculaneum and Pompeii represent a classic historic ex-
ample of the disastrous impacts of PDCs, and any repeat
example of this volcano in the future, even on a smaller,
less intense scale, could have massive consequences for the
heavily populated surrounding area. Hazard and risk assess-
ments for this situation, undertaken in the last twenty years
for the National Emergency Plan (DPC, 1995, 2001), were
mostly based on the characterization of a single “maximum
expected event” (MEE). Such an event largely corresponds in
the expected intensity of effects to the hazardous phenomena
that occurred during the last sub-Plinian eruption of Vesu-
vius, in 1631CE. However, that definition was not based on
a fully quantitative analysis of the whole system and poten-
tial ranges of eruptive activity, and no probabilistic estimates
were provided for the occurrence of the hazard events being
considered. Significant knowledge gaps still exist regarding
the factors that control their initial formation, their movement
across terrain and the ways they injure and kill people, and
damage structures.

8.2 Uncertainty quantification in pyroclastic density
currents hazard estimation

In an extensive study of the Vesuvius region, Neri et
al. (2008) discuss how a structured expert elicitation proce-
dure was implemented to complement more traditional data
analysis and interpretative approaches, and to add a formal-
ized approach to the generic incorporation of epistemic un-
certainty in the assessment by way of the Event Tree formu-

lation. A Vesuvius “Event Tree” was created to summarize
the relative likelihoods of the genesis and style of eruption,
development and nature of volcanic hazards, and the proba-
bilities of occurrence of different volcanic risks in the next
eruption crisis. To achieve a complete parameterization for
this approach, hazard and risk models were needed. These
were quantified with uncertainty distributions for pyroclas-
tic flow run-out distances, peak pressures, and temperatures
rather than use of “best-estimates”.

In Neri et al. (2008), the focus lay on addressing the is-
sues of epistemic uncertainty in relation to the physical char-
acterization of PDC potential during a sub-Plinian column
collapse eruption, and how the topography of the volcano
influences hazard and risk mapping results. A transient 3-
D parallel code PDAC was used to simulate the dynamics
of the collapse of the volcanic column and the propagation
of the associated PDCs (Esposti Ongaro et al., 2007; Neri et
al., 2003). However, the full ranges of plausible volcanic and
other physical input parameter variations are not amenable
to comprehensive exploration in a restricted number of sce-
nario runs, which are limited by computing power and cost.
Under these circumstances, the few PDAC runs that were
possible were used as indicative reference simulations, with
expert elicitations used to derive rational, quantitative state-
ments about the most appropriate values to use for variables
of interest and, more importantly, to give expression to the
scientific uncertainty that attaches to the outcomes of such
model runs. For instance, distributional expressions for un-
certainties on pyroclastic flow run-out distances, peak pres-
sures, and temperatures were obtained by elicitation, after de-
tailed consideration of the few simulation model results that
were achievable, and of field evidences, old and new.

This information was subsequently used to subdivide the
Vesuvius area into different sectors (Fig. 4). Sector A in-
cludes the area “not protected” by Mt Somma, and Sector
B, the area which is “protected” – representing a first-order
source of epistemic uncertainty in respect of the extent to
which the presence of the Mt Somma topography could de-
termine which areas could be invaded by flows or modify
properties of the flows that might affect the two sectors.
While overall predictive uncertainties were quite large, the
elicited probabilities of invasion of the different sub-sectors
of Sector A are each very similar, and apparently only weakly
affected by the preferential propagation directions shown by
some of the 3-D simulations (Esposti Ongaro et al., 2008)
or by reconstructions of past sub-Plinian events (Rosi et al.,
1993; Cioni et al., 2008).

The large epistemic uncertainties regarding the directional
controls on PDC probabilities and likely run-outs influence
the expected values of the main physical variables that can
be associated with a PDC scenario, e.g. peak dynamic pres-
sure and peak flow temperature. The fact that the Vesuvius
study also resulted in large credible intervals associated with
these parameter estimates, as well as with the PDC run-outs,
clearly reflects expert perceptions of the significant degree
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Figure 4. (a) Broad segmentation of area around Vesuvius recog-
nizing the first-order effect of Mt Somma topography in determin-
ing areas that might be invaded by pyroclastic density current flows
(PDC) as the result of a sub-Plinian I eruption. The bracketed val-
ues in each sector show elicited modal probabilities that a PDC will
affect that sector (expressed in percentage terms) together with the
corresponding credible intervals, in quantile form [5th, 50th, 95th
percentiles]. (b) Elicited estimates of maximum run-out distances
(in km) for PDCs occurring during a sub-Plinian I eruption, by sec-
tor. Inner arcs (blue) are 95 % confidence levels for exceeding dis-
tance shown (e.g. 2.5 km for Sector A1), central arcs (green) are
expected (50th percentile) values, and outer arcs (orange) are the
run-out distances assessed has having only a 5 % chance of being
exceeded. (from Neri et al., 2008, with permission).

to which epistemic uncertainties must affect current attempts
to forecast the complex hazard processes being considered.
One conclusion is that more field and more numerical work
is needed in order to further constrain the areas likely to be
affected by future PDCs at Vesuvius.

9 Windstorms

9.1 Windstorms and key epistemic uncertainties

Weather hazards are a major source of societal risk caus-
ing death, destruction to infrastructure, and disruption to
transport and business. Global insured losses due to wind-
storms, currently estimated to cost USD 2.7 billion annu-
ally (Podlaha et al., 2017), are expected to rise dramatically
due to climate-change-related trends in weather extremes,
increasing exposure in developing countries, and increas-
ing world population. Extratropical cyclones (also known
as windstorms) are major contributors to this impact, e.g.
insured losses in Europe of USD 9 billion for windstorm
Daria (25 January 1990). Furthermore, windstorms often ar-
rive in close succession, which enhances the risk of large
aggregate losses, e.g. the winter 2013/14 cluster of Euro-
pean windstorms Christian, Xavier, Dirk, and Tini caused
insured losses of USD 1.38, 0.96, 0.47 and 0.36 billion to-
talling USD 3.3 billion (source: https://www.perils.org/, last
access: October 2018). Epistemic uncertainties in the esti-
mation of windstorm risk stem largely from the (poorly sup-
ported) choices that have to be made during hazard and im-
pact estimation.

9.2 Uncertainty quantification in windstorm hazard
estimation

Windstorm loss distributions are inferred from historical
weather measurement data (mainly available since 1950) and
also increasingly from storm data simulated ab initio from
numerical weather and climate prediction models (Schwierz
et al., 2010; Pinto et al., 2010; Della-Marta et al., 2010;
Renggli et al., 2011; Karremann et al., 2014). The loss
distributions are estimated by Monte Carlo simulation us-
ing ad hoc combinations of various statistical, dynamical
and engineering type models: statistical models for estimat-
ing trends and correcting inhomogeneities in the historical
data (Barredo, 2010), either low-order parametric stochas-
tic models (the traditional basis of many catastrophe mod-
els), or more recently, numerical weather and climate mod-
els for simulating large sets of artificial hazard events, statis-
tical models for adjusting biases in numerical model output,
and stochastic models for simulating losses from the artifi-
cial windstorm events (e.g. compound Poisson event loss ta-
ble models).

As many choices are required to develop these models,
there are many sources of epistemic uncertainty. The follow-
ing is a list of just a few of the major uncertainties in each
type of model.

– Stochastic hazard and loss models often use highly ide-
alized non-physical description of complex storm pro-
cesses (e.g. polynomial representation of storm tracks).
There is the possibility of over-fitting to the data avail-
able from relatively short historical periods. There
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are often overly restrictive assumptions in simulat-
ing losses, e.g. homogeneity in time, independence of
events, independence of frequency and severity.

– Statistical models require distributional assumptions,
e.g. extreme value models (Brodin and Rootzén, 2009;
Della-Marta et al., 2009), assumptions about model-
dependence of simulated storms (Sansom et al., 2013),
and assumptions about dependency in space–time and
between events (Bonazzi et al., 2012; Economou et
al., 2014).

– Numerical weather and climate models show biases in
storm properties that have resisted model improvements
over the past 40 years, e.g. zonal storm tracks over West-
ern Europe (Zappa et al., 2013), poor representation of
small horizontal scale processes even at very high reso-
lution, e.g. wind gusts (Ólafsson and Ágústsson, 2007),
missing processes, e.g. sting jets caused by mesoscale
features such as stratospheric intrusions (Catto et al.,
2010) and non-adiabatic forcing of storms by anoma-
lous oceanic conditions (Ludwig et al., 2014).

– Finally, there is also a major overarching source of epis-
temic uncertainty in how these different model compo-
nents should be coupled together. At present there is
no accepted theory for how one should and should not
do this.

Clustering of windstorms provides a good example of an
epistemic uncertainty that has recently received much at-
tention and thereby led to model developments. Analysis of
historical reanalysis data revealed that windstorm modula-
tion by large-scale climate modes leads to more clustering
over Europe than one can expect by chance, i.e. from a ho-
mogeneous Poisson process (Mailier et al., 2006). Further-
more, clustering was also found to increase for more extreme
wind speeds (Vitolo et al., 2009), in contradiction to the as-
sumption often made by actuaries suitable for identically
distributed variables. This research raised much awareness
about clustering in the natural catastrophe insurance industry
that has led to major developments in windstorm catastrophe
models (Khare et al., 2015). The findings are also stimulat-
ing new research into mechanisms for clustering of extreme
storms (e.g. Rossby wave breaking; Pinto et al., 2014).

10 Co-emergent and cascading hazards

The earlier discussion has mostly been concerned with the
characteristics of individual hazards but it is clear that an as-
sessment of risk often needs to allow for the joint occurrences
of cascading multiple hazards, either for hazards of different
types affecting a single location, or the joint occurrence of
a hazard at multiple locations simultaneously (e.g. Lamb et
al., 2010; Gill and Malamud, 2014; Keef et al., 2013; De Risi

and Goda, 2016; Goda et al., 2017). Both will affect the as-
sessment of the joint risk. In some cases the joint risk may
be causative, including the dependence of numerous after-
shocks triggered by a main shock (Yeo and Cornell, 2009);
tsunamis initiated by ocean floor earthquakes and landslides
(Tappin et al., 2014; Goda et al., 2016); the landslide and
avalanches that result directly from earthquakes; and the po-
tential for landslide as well as flood impacts on dam safety
(an epistemic uncertainty that is usually neglected but which
has caused past dam overtopping). In other cases, indepen-
dent occurrences might contribute to an increased risk, such
as the joint occurrences of fluvial floods, high tides, and at-
mospheric surge on the risk of estuarine and coastal flooding.
Assessing the joint frequency of such events has been re-
ceiving increasing attention (e.g. Svensson and Jones, 2004).
In particular, the covariation of different causes of the haz-
ard, and joint occurrences across multiple locations has been
investigated using flexible functional relationships based on
overlap likelihood relationships (Gill and Malamud, 2014)
and copulas (e.g. Keef et al., 2013). An interesting applica-
tion of the latter was used to produce the probabilistic flood
map of Fig. 2 in Sect. 2.2, which is affected by the joint oc-
currences of high flows both in the mainstream river and two
major tributaries entering from the south (Neal et al., 2013).

11 Uncertainty quantification related to the
consequences of natural hazards

Alongside uncertainties related to the characterization and
propagation of the hazard itself (e.g. the footprint and
magnitude of an earthquake), risk assessments also entail
epistemic uncertainties arising from the uncertain conse-
quences and damage of the hazard (i.e. the loss part of the
risk assessment). Key components of such assessments are
(Tesfamariam and Goda, 2013) exposure (e.g. spatial loca-
tions of populations and assets), vulnerability (e.g. charac-
teristics of buildings and infrastructure), and loss (e.g. char-
acteristics of assets and loss generation mechanisms). All
these involve significant uncertainties. In the risk equation
(i.e. convolution of hazard, exposure, vulnerability, and loss),
these uncertainties are propagated and integrated. Uncer-
tainties in exposure and loss are attributed to a lack of in-
formation, incomplete knowledge, as well as simplification
adopted in the models, and thus are largely epistemic.

The consequences of hazards are often difficult to quantify
and there is still little research available linking the charac-
teristics of the hazard (e.g. drought duration and severity) to
the related consequences (e.g. Jenkins, 2013). For past events
there might be some epistemic uncertainty about the damages
associated with the event, but there is often considerable un-
certainty about what is actually at risk, i.e. the exposure (e.g.
Chatterton et al., 2014). Damages that are claimed against in-
surance are generally well known (but subject to commercial
confidentiality restrictions and not readily available in other
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than very general summary form), but not all damages are
insured and not all are easily expressed in monetary terms
(such as damage to habitats, cultural heritage, and loss of
life). Indirect damages to businesses and individuals (e.g.
as a result of infrastructure failures, health and psychologi-
cal impacts) can also be difficult to assess. More geograph-
ically explicit damage relationships are needed for hazards
such as droughts (Bachmair et al., 2015; Blauhut et al., 2015)
or tsunamis (Goda and Song, 2016), which cover potentially
large and heterogeneous areas. Potential sources of damage
are even more difficult to estimate for future events, as a re-
sult of epistemic uncertainties (e.g. about policy changes in
flood risk management, planning decisions for flood plain de-
velopments, changes in availability of insurance cover). Dif-
ferent chosen loss models might result in quite different es-
timates of the consequences of an event (e.g. Jongman et al.,
2012; Chandler et al., 2014), to the extent that estimates of
risk might generate significant controversy as a result of the
epistemic uncertainties inherent in the assessment processes
(e.g. Penning-Rowsell, 2015).

Epistemic uncertainties in the risk assessment of natu-
ral hazard consequences also arise from the interactions
of the hazard with human actions. Consider the example
of droughts. Because of their temporal and spatial extent,
droughts are more prone to mitigation or exacerbation by
socio-economic drivers than some other natural hazards.
Those responding to or managing water resources during
drought will make use of nearby water resources or stored
water, thus actively intervening to influence the development
and consequences of the event (Van Loon et al., 2016a).
For instance, epistemic uncertainties arise from incomplete
knowledge of how demand responds during times of drought
to both environmental conditions (weather) and management
actions (i.e. water use restrictions, price increases) (Ken-
ney et al., 2008). Although hot and dry weather may in-
crease demand in the short-term, it is not clear which climatic
variables are best suited to explain water consumption pat-
terns (Kenney et al., 2008). Over larger spatial and temporal
scales, changes in water demand are difficult to project and
add a level of epistemic uncertainty to any water resources
planning decision. Water managers often rely on extrapo-
lation processes (Jorgensen et al., 2009; House-Peters and
Chang, 2011), yet this process has not been entirely success-
ful, with the UK’s largest reservoir at Kielder built to meet
projections which did not foresee the decline in heavy indus-
try in the North of England (Walker, 2012), a clear case of
the impact of epistemic uncertainty about future boundary
conditions but which, opportunely, has served to mitigate the
effects of drought in the area. This type of uncertainty, com-
bined with data gaps, makes the modelling tools available
largely inadequate to predict drought impacts. Severe limita-
tions exist in predicting the impacts of feedbacks and modifi-
cations to drought events due to human actions, calling for a
new framework for drought risk assessment that includes the

human role in mitigating (or enhancing) the consequences of
drought (Van Loon et al., 2016b).

12 Generalizations across hazard areas

In reviewing the way in which epistemic uncertainties are
handled in each of these natural hazard areas, certain com-
monalities are apparent. Most notable is the tendency for
treating all sources of uncertainty as aleatory variables, for
both the hazard and the consequences or impacts that make
up the risk equation. In most hazard areas, probabilistic
methods are replacing older deterministic probable maxi-
mum event methods. The probabilistic approach is attractive
in that the power of statistical theory, including the use of
judgement-based probabilities in a Bayesian framework, can
be utilized. However, when used to represent epistemic un-
certainties such an approach will be subject to the following
limitations:

– not allowing for the incompleteness of probability as-
sessments (including the probabilities associated with
the branches of logic trees);

– the potential of over-fitting to limited historical records
in estimating the frequencies of extreme events of un-
known (and potentially non-stationary) distributional
form; and

– the limitations of expert elicitation of prior probability
and scenario information.

This suggests that an extension to a more explicit recognition
of epistemic uncertainties might be necessary in future but
might require the development of new methodologies that go
beyond classic risk-based decision making, which is based
on assuming that all sources of uncertainty can be treated in
terms of aleatory variability. This will particularly be the case
for what Day and Fearnley (2015) define as permanent miti-
gation strategies. Both responsive and anticipatory mitigation
would benefit from the availability of more and better obser-
vations, though as noted in a number of the sections above,
such observations may also be associated with epistemic un-
certainties.

13 Conclusions

This paper has reviewed examples of how uncertainties in
general, and epistemic uncertainties in particular have been
handled in assessments of risk associated with different nat-
ural hazards. In most cases, epistemic uncertainties are not
considered explicitly, but are still treated as if they can be
considered as aleatory variables of specified distributional
form. This can often lead to an underestimation of the uncer-
tainty in the risk assessment and might lead to a lack of ro-
bustness of decision and to future surprise. It is therefore both
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possible and desirable to extend the analysis to explicitly in-
clude different scenarios of epistemic uncertainty. The analy-
sis of different natural hazard areas presented above makes it
clear that there are different degrees of appreciation for and
approaches to dealing with epistemic uncertainty. We hope
that making this comparison will enable researchers in dif-
ferent areas to learn about structured approaches that are be-
ing used elsewhere, particularly in dealing with uncertainties
that are less amenable to being treated probabilistically.

Where observational data are available that can be used to
constrain the prediction uncertainties in an application, then
care should be taken in the form of model evaluation. Treat-
ing a residual series as a simple aleatory variable can be used
to define a formal statistical likelihood function, but if the un-
certainties are dominated by epistemic sources the result may
be overconfidence in model selection and over-constraint of
the predictive uncertainty. In the particular case of real-time
forecasting, data assimilation can be used to adaptively com-
pensate for unknown uncertainties in improving forecasts
and constraining forecast uncertainties over the lead times of
interest, at least where the data and models can be processed
within the timescale of the system response or at a temporal
resolution useful to decision makers.

The variety of assumptions and approaches being used in
different hazard application areas reinforce the discussion
that follows in Beven et al. (2018) about the importance of
a framework for structured analysis and communication of
the assumptions and the meaning of an uncertainty analysis,
particular to the decision makers and other users. There is no
single way of assessing the impacts of epistemic uncertain-
ties on risk (for good epistemic reasons), but in encouraging
good practice we can at least demand clarity in the assump-
tions that are made, with the possibility that this then might
lead to some consideration and maybe even testing of alterna-
tive assumptions and a consequent reduction in the potential
for future surprise.
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