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This study considers the application of the Ignorance Score (IS, also known as the
Logarithmic Score) for ensemble verification. In particular, we consider the case
where an ensemble forecast is transformed to a normal forecast distribution, and this
distribution is evaluated by the IS. It is shown that the IS systematically depends
on the ensemble size, such that larger ensembles yield better expected scores. An
ensemble-adjusted IS is proposed, which extrapolates the score of an m-member
ensemble to the score that the ensemble would achieve if it had fewer or more than m
members. Using the ensemble adjustment, a fair version of the IS is derived, which is
optimized if ensembles are statistically consistent with the observations. The benefit
of the ensemble adjustment is illustrated by comparing ISs of ensembles of different
sizes in a seasonal climate forecasting context and a medium-range weather forecast-
ing context. An ensemble-adjusted score can be used for a fair comparison between
ensembles of different sizes, and to accurately estimate the expected score of a large
operational ensemble by running a much smaller hindcast ensemble.
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1 INTRODUCTION

Weather and climate services routinely issue their forecasts
as ensemble forecasts, i.e. collections of forecasts that refer
to the same target, but which differ in their initial conditions,
boundary conditions, or model formulation (Sivillo et al.,
1997). Ensembles can serve as the basis to derive different
forecast products, such as point forecasts using the ensem-
ble mean, or probability forecasts using the ensemble mean
and standard deviation to forecast a normal distribution (Zhu,
2005). These different forecast products derived from ensem-
bles require different methods of forecast verification (Jolliffe
and Stephenson, 2012, chapter 8). In this paper we study
the application of probabilistic scoring rules to ensemble
forecasts (Winkler et al., 1996; Gneiting and Raftery, 2007).

The Ignorance Score (IS; Roulston and Smith, 2002), also
called the Logarithmic Score (Good, 1952; Gneiting and
Raftery, 2007), is a strictly proper verification score for proba-
bility forecasts. If the forecast is issued as a probability density
function p(z), and the forecast target materializes as the value
x, then the IS is given by the negative logarithm of the forecast

density evaluated at x:

(p; x) = − log p(x). (1)

The Ignorance difference between two forecasts Δ =
− log q(x) + log p(x) implies that the forecast p assigns eΔ

times as much density as the forecast q to the observation
x. In the negative-log representation of Equation 1, the IS
acts as a penalty which a forecaster will try to minimize.
Lower scores therefore indicate “better” forecasts. The unit
in which Ignorance is measured depends on the base of the
logarithm used to calculate the score: nats for the natural
logarithm, bits for base 2 and bans for base 10 (MacKay,
2003, section 18.3). The IS has been used as a verification
measure for probabilistic forecasts of weather and climate
(Barnston et al., 2010; Krakauer et al., 2013; Smith et al.,
2015; Rodrigues et al., 2014), and for parameter estimation
in dynamical systems (Du and Smith, 2012). The IS has
an information-theoretic interpretation (Roulston and Smith,
2002; Peirolo, 2011), and an interpretation in terms of betting
returns (Hagedorn and Smith, 2009). Benedetti (2010) shows
that “the logarithmic score is the only [verification score] to
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respect three basic desiderata [additivity, locality, strict pro-
priety] whose violation can hardly be accepted”, and argues
that the IS is therefore the “univocal measure of forecast good-
ness”. Due to the locality property, the IS is insensitive to the
distance of the verifying observation from the bulk of the fore-
cast distribution. A scoring rule which exhibits sensitivity to
distance, such as the Continuous Ranked Probability Score
(CRPS; Matheson and Winkler, 1976) might be preferred in
certain settings. Furthermore, the IS is relatively insensitive to
over-dispersed forecast distributions compared to other scores
(Christensen et al., 2014).

If the forecast density is issued as a normal distribution with
mean 𝜇 and variance 𝜎2, then the Ignorance is given by


(
𝜇, 𝜎2; x

)
= 1

2
log 2𝜋 + 1

2
log 𝜎2 + 1

2

(x − 𝜇

𝜎

)2
, (2)

which follows from the distribution law of the normal distri-
bution (Gneiting et al., 2005). The IS depends on the spread
𝜎 of the forecast distribution and on the squared normal-
ized prediction error [(x − 𝜇)∕𝜎]2 of the forecast mean. The
score Equation 2 is from the class of proper scoring rules that
depend only on the first two moments of the forecast distri-
bution (Dawid and Sebastiani, 1999; Gneiting and Raftery,
2007). Equation 2 thus also applies to non-normal forecast
distributions with finite first and second moments 𝜇 and 𝜎2.

Probability forecasts are often generated by running an
ensemble of m simulations of a deterministic model to
approximate a forecast distribution (Gneiting and Raftery,
2005). There are different possibilities to transform a finite
ensemble into a continuous forecast distribution (e.g. Déqué
et al., 1994; Gneiting et al., 2005; Bröcker and Smith, 2008).
One simple possibility is to transform the ensemble forecast
with members {y1,… , ym} into a normal forecast distribu-
tion, whose mean and variance are given by the unbiased
estimators of the ensemble mean

𝜇m = 1
m

m∑
i=1

yi (3)

and the ensemble variance

𝜎2
m = 1

m − 1

m∑
i=1

(yi − 𝜇m)2, (4)

respectively. Mean and variance can be calculated either from
the raw ensemble generated by the numerical model directly,
or after post-processing the ensemble to correct for systematic
forecast errors (such as mean bias or error in the trend). Trans-
formation to a normal distribution only takes into account the
first and second moment of the ensemble; any higher-order
forecast information (such as skewness or multi-modality) is
ignored.

Suppose a forecaster chooses to transform an m-member
ensemble forecast to a normal forecast distribution with mean
𝜇m and variance 𝜎2

m. If the forecast target materializes as the
value x, the IS of this forecast is

(𝜇m, 𝜎
2
m; x) = 1

2
log 2𝜋 + 1

2
log 𝜎2

m + (x − 𝜇m)2

2𝜎2
m

. (5)

The score Equation 5 can be interpreted as an evaluation of
the forecast distribution  (𝜇m, 𝜎

2
m), or as an evaluation of the

underlying m-member ensemble based on its first two sample
moments. Note that, since the ensemble members {y1,… , ym}
are assumed to be random variables, the sample mean 𝜇m,
the sample variance 𝜎2

m, and the IS given by Equation 5 are
random variables too.

In section 2 we will show that, even though the estimators
𝜇m and 𝜎2

m are unbiased, i.e. E(𝜇m) = 𝜇 and E(𝜎2
m) = 𝜎2, the

expected value of (𝜇m, 𝜎
2
m; x) is not equal to (𝜇, 𝜎2; x). That

is, the IS estimated for a finite ensemble by Equation 5 is, on
average, different from the IS that the corresponding normal
distribution  (𝜇, 𝜎2) would achieve for the same verifying
observation x. Furthermore, the average difference between
(𝜇m, 𝜎

2
m; x) and (𝜇, 𝜎2; x) depends on the ensemble size.

These features are problematic, since they make it difficult
to compare the quality of ensembles with different ensemble
sizes, and they imply that the IS favours ensembles that are
not statistically consistent with the observations.

The following example illustrates the finite ensemble
behaviour of the IS. Suppose verifying observations x have
a standard normal distribution  (0, 1). If the standard nor-
mal distribution is used as a forecast distribution for x, the
expected IS equals

E [(0, 1; x)] = 1
2
(log 2𝜋 + 1) ≈ 1.42. (6)

Now suppose m ensemble members are drawn indepen-
dently from the standard normal distribution. A normal fore-
cast distribution  (𝜇m, 𝜎

2
m) is derived from the ensemble,

with mean and variance estimated by Equations 3 and 4,
and we calculate the expected IS of this forecast. Note that
ensemble members and observations are both random quan-
tities in this setting. The expected IS is thus calculated by
taking expectation first over the ensemble members at a given
value of x, and then taking expection over the observations
x. Alternatively, the expected score can be approximated by
averaging over many randomly drawn realizations of forecasts
and observations.

In Figure 1 the finite ensemble effect of the Ignorance is
illustrated for this forecast setting. The expected IS is shown
as a function of the ensemble size m, and compared to the
expected IS achieved by the standard normal distribution (the
“true” forecast distribution that generated the ensemble mem-
bers). We have approximated the expectation by simulating
105 ensemble–observation pairs for a few values of m. We
have also calculated the expectation analytically, using the
results presented in section 2. Figure 1 shows that the expected
IS of the forecast distribution  (𝜇m, 𝜎

2
m) differs systemati-

cally from the expected IS of the distribution  (0, 1) from
which the ensemble members were drawn. The difference in
the expected score is especially large for small ensembles.
For five-member ensembles, the scores differ by more than
0.5 nats, that is, the standard normal distribution assigns on
average exp(0.5) ≈ 1.65 times as much probability to the
verifying observation than the normal distribution estimated
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FIGURE 1 Observations are assumed to have a standard normal

distribution. The dashed line depicts the expected value of the Ignorance

Score (IS) if the standard normal distribution is used as a forecast. The

circles depict the average of the IS over 105 samples for ensemble sizes

m = 4, 5, 10, 20,… , 50, calculated by Equation 5, where ensembles are

drawn from the standard normal distribution. The solid line depicts the

mathematical expectation of the IS as a function of the ensemble size m

from a five-member ensemble whose members have distribu-
tion  (0, 1).

The finite ensemble effect of the IS, its adjustment, and its
practical implications for ensemble verification are the main
subjects of this paper. The impact of ensemble size on forecast
performance was studied for example by Buizza and Palmer
(1998), who found that increasing the ensemble size improves
various verification measures. The effect of ensemble size
on probabilistic verification measures, as well as adjustments
for the finite ensemble effect were studied in more detail,
for example, by Ferro (2007) for the Brier Score, by Ferro
et al. (2008) for the discrete and continuous ranked probability
score, by Müller et al. (2005) for the ranked probability skill
score, and by Richardson (2001) for the reliability diagram,
the Brier (Skill) score and potential economic value. Further
discussions of finite-sample effects on verification scores for
ensemble forecasts can be found in Fricker et al. (2013) and
Ferro (2014).

In section 2, the ensemble-adjusted IS for normal distribu-
tions is derived. The score accounts for the finite-ensemble
effect by adjusting the IS of an m-member ensemble to the
score that would be achieved if the ensemble had fewer or
more members. In section 3 the fair IS is derived, which esti-
mates the IS of a hypothetical infinitely large ensemble. The
score is fair, because it favours ensembles that are statistically
consistent with the observations, which is not the case for
the unadjusted score. In section 4.1, the ensemble-adjusted IS
is applied to seasonal ensemble hindcasts of European sum-
mer temperatures. It is shown that a 41-member ensemble
yields a better unadjusted IS than a 10-member ensemble, and
that the score of the 10-member ensemble can be adjusted
to correctly estimate the expected score of the 41-member
ensemble. Section 4.2 strengthens this finding by application
to a much larger dataset of medium-range weather forecasts,
which is also used to discuss the effect of non-normality on
the accuracy of the score adjustment. Section 5 concludes

with a discussion of further possible applications of the
ensemble-adjusted IS.

2 THE ENSEMBLE-ADJUSTED
IGNORANCE SCORE

In order to account for the finite ensemble effect of the IS, we
have to make statistical assumptions about the ensemble. In
previous work on ensemble verification (e.g. Anderson, 1996,
Hamill, 2001, Siegert et al., 2012, Ferro, 2014), it has been
argued that ensemble members should be interpreted as inde-
pendent draws from a hypothetical “underlying distribution”.
This interpretation assumes that there is a (possibly infinitely
large) population of possible ensemble members, and the real-
ized ensemble is an independent random sample drawn from
this population. This picture of ensemble forecasts captures
the inherent, unpredictable variability of the ensemble due
to the chaoticity of the simulated system. Furthermore, the
concept of statistical exchangeability is captured, meaning
that the ensemble members are statistically indistinguish-
able from each other. The hypothetical underlying distribu-
tion that generated an ensemble is generally distinct from
any forecast distribution that was derived from the realized
ensemble.

In this study, it will be assumed that the ensemble mem-
bers are independent identically distributed (i.i.d.) samples
from a normal distribution  (𝜇, 𝜎2) with unknown mean
and variance parameters. Normality of the ensemble seems
like an overly strong assumption. We might expect ensembles
generated by complex system simulations, to have skewed
distributions, or heavier tails than a normal distribution, or
be multi-modal. But the normality assumption is already
inherent when a normal distribution is fitted to the ensem-
ble to issue the probabilistic forecast  (𝜇m, 𝜎

2
m). If there

were strong evidence against normality of the ensemble, a
normal forecast distribution should not be issued, and the
IS would not be calculated according to Equation 2. The
results presented in this study are therefore restricted to cases
where the ensemble can be reasonably assumed to be nor-
mally distributed, such that the normal forecast distribution
is a reasonable choice. In highly nonlinear forecast situa-
tions, an initial normal distribution is quickly distorted into
a non-normal distribution, and so the theory developed here
does not strictly apply. In section 4.2 we therefore study
deviations from normality in a realistic forecast setting, as
well as the effects of such deviations on the proposed score
adjustment. The assumption that ensemble members are i.i.d.
draws from a distribution is justified if the ensemble has been
initialized from randomly drawn samples from some error
distribution. But the independence assumption might be vio-
lated in ensembles that have been post-processed to correct
systematic model biases. While subtracting a constant from
each ensemble member leaves the independence assumption
intact, a general affine transformation (Bröcker and Smith,
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2008) is likely to introduce dependencies between ensemble
members.

For the rest of the paper we will refer to (𝜇, 𝜎2; x) as
the population Ignorance Score. The population IS the score
that the underlying distribution  (𝜇, 𝜎2), or equivalently, a
normal distribution  (𝜇m, 𝜎

2
m) estimated from an infinitely

large ensemble would achieve. We will further refer to the
score (𝜇m, 𝜎

2
m; x), which evaluates the normal distribution

derived from a finite m-member ensemble, as the unad-
justed Ignorance Score. The finite-ensemble effect on the
unadjusted IS will be calculated explicitly in this section,
and the ensemble-adjusted Ignorance Score m→M is derived.
The ensemble-adjusted IS allows us to use an m-member
ensemble to estimate the expected score that an M-member
ensemble drawn from the same underlying distribution
would achieve.

We first recall standard results from parameter estimation in
normal distributions. Under the assumption that the ensemble
members {y1,… , ym} are i.i.d. draws from a normal distri-
bution  (𝜇, 𝜎2), the sampling distributions of 𝜇m and 𝜎2

m, as
calculated by Equations 3 and 4, are given by

𝜇m ∼ 
(
𝜇,

𝜎2

m

)
(7)

and m − 1
𝜎2

𝜎2
m ∼ 𝜒2

m−1, (8)

where 𝜒2
m−1 denotes the 𝜒2-distribution with m − 1 degrees

of freedom. Furthermore, 𝜇m and 𝜎2
m are statistically indepen-

dent. For proofs refer to Mood (1950, section 4.3)
To calculate the finite-ensemble effect of the unadjusted IS,

we calculate the expectations of log 𝜎2
m and (𝜇m−x)2∕𝜎2

m using
the sampling distributions of 𝜇m and 𝜎2

m. In Appendices A.1
and A.2 it is shown that the expectations are

E
[
log 𝜎2

m
]
= log 𝜎2+ Ψ

(m − 1
2

)
− log

(m − 1
2

)
, (9)

and

E

[
(𝜇m−x)2

𝜎2
m

]
= m − 1

m − 3

(𝜇−x
𝜎

)2
+ m − 1

m(m − 3)
, (10)

where Ψ(x) is the digamma function1. Note that Equation 10
only holds for m ≥ 4; otherwise the expectation is undefined
due to the diverging second-moment of the t-distribution
(cf. Appendix A.2). If we assume that ensemble members
are statistically equivalent to i.i.d. draws from a normal
distribution, Equation 10 implies that the unadjusted IS eval-
uated for ensembles with less than four members has infinite
expectation.

Using Equations 9 and 10, the expectations of log 𝜎2
M and

(𝜇M − x)2(𝜎2
M)

−1 can respectively be written in terms of the
expectations of log 𝜎2

m and (𝜇m − x)2(𝜎2
m)−1, i.e. where 𝜇m and

𝜎2
m were calculated from a different ensemble size m ≠ M.

1Numerical approximations of the digamma function are widely imple-
mented in scientific software, for example digamma(x) in R, and
special.psi(x) in SciPy.

With these results, the ensemble-adjusted IS can be derived,
given by

m→M(𝜇m, 𝜎
2
m; x) = 1

2
log 2𝜋 + 1

2
log 𝜎2

m

+ 1
2

(M−1
M−3

)(m−3
m−1

) (𝜇m−x)2

𝜎2
m

+ (m−M)(M−1)
2Mm(M−3)

+ 1
2

[
Ψ
(M−1

2

)
−Ψ

(m−1
2

)
+ log

(m−1
M−1

)]
. (11)

The ensemble-adjusted IS depends on the mean and vari-
ance estimated from an m-member ensemble. But the score is
adjusted to have expectation equal to the expected IS achieved
by the normal distribution  (𝜇M , 𝜎

2
M) whose mean and vari-

ance were estimated from an M-member ensemble, i.e.

E

[
m→M(𝜇m, 𝜎

2
m; x)

]
= E

[
(𝜇M , 𝜎

2
M; x)

]
. (12)

Equation 12 can be verified using Equations 9 and 10. The
ensemble-adjusted IS is an unbiased estimator of the score
that the ensemble would achieve if it had fewer or more than m
members. Note that for M = m, the unadjusted IS (𝜇m, 𝜎

2
m; x)

is recovered.

3 THE FAIR IGNORANCE SCORE

Fricker et al. (2013) and Ferro (2014) have introduced the
concept of fair verification scores for ensemble forecasts. A
fair verification score is optimized if the members of the eval-
uated ensemble behave like draws from the same distribution
as the verifying observation. In other words, fair scores are
optimized if the ensemble members are statistically consistent
with the observations. It should be emphasized that “fairness”
is a property of verification scores for ensemble forecasts, not
probability forecasts (although the two are closely related).

By taking the limit M → ∞ in Equation 11 (and using
limx→∞[Ψ(x) − log(x)] = 0), the fair Ignorance Score is
derived, given by

m→∞(𝜇m, 𝜎
2
m; x) =1

2
log 2𝜋 + 1

2
log 𝜎2

m + 1
2

(m−3
m−1

)(𝜇m−x)2

𝜎2
m

− 1
2

[
Ψ
(m−1

2

)
−log

(m−1
2

)
+ 1

m

]
. (13)

The fair IS is an unbiased estimator of the population IS, i.e.

E[m→∞(𝜇m, 𝜎
2
m; x)] = (𝜇, 𝜎2; x), (14)

which can be verified using Equations 9 and 10. The IS
(𝜇, 𝜎2; x) is a strictly proper verification score for prob-
ability forecasts; it therefore holds that the expectation
E
[
(𝜇, 𝜎2; x)

]
is minimized if and only if x ∼  (𝜇, 𝜎2),

that is, if the forecast distribution is equal to the distribution
of the observation (Gneiting and Raftery, 2007). Recall that
𝜇 and 𝜎2 are the parameters of the hypothetical normal dis-
tribution from which the ensemble members y1, ..., ym were
independently drawn. It thus follows that the expected fair IS
E
[
m→∞(𝜇m, 𝜎

2
m; x)

]
is optimized if and only if the ensemble

members and the observation behave like draws from the
same (normal) distribution.
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FIGURE 2 Verifications x are drawn i.i.d. from  (0, 1), and m-member

ensembles are drawn i.i.d. from  (0, 𝜎2). The dashed grey line corresponds

to the expected IS for m → ∞, the black dashed lines correspond to the

expected value of the unadjusted ISs of m-member ensembles (from top to

bottom: m = 5, 10, 20, 50), and the black full line shows the expected fair IS

(independent of m). Square markers indicate the minima along their

respective curves

Figure 2 illustrates differences between the expected val-
ues of the unadjusted and the fair IS when ensembles and
observations are not drawn from the same distributions. The
observation is assumed to have a standard normal distribution
 (0, 1), and the m-member ensemble is assumed to be drawn
from the ensemble distribution  (0, 𝜎2), i.e. the ensembles
are not statistically consistent with the observations, except
when 𝜎2 = 1. The expectations of the unadjusted IS (for dif-
ferent ensemble sizes) of the population IS and of the fair
IS are shown as functions of the standard deviation 𝜎 of
the ensemble distribution. The expectations were calculated
analytically using Equations 9 and 10, but they can also be
approximated by averaging scores calculated for large num-
bers of simulated forecasts and observations. The systematic
effect due to the finiteness of the ensemble shows as a vertical
offset of the curves. The expected value of the unadjusted IS
is larger when the ensemble size is smaller. At any given value
of 𝜎, the expectation of the unadjusted IS can be improved by
generating a larger ensemble. Conversely, the expected fair IS
is independent of the ensemble size, and equals the expected
population IS for all values of m and 𝜎.

Figure 2 further shows that the unadjusted IS is not a fair
verification score. The unadjusted IS obtains its optimum at
a value of 𝜎 which differs from the standard deviation of the
distribution  (0, 1) of the observation. The unadjusted IS
thus rewards ensembles that violate statistical consistency,
i.e. whose members do not behave like draws from the same
distribution as the observation (Anderson, 1996). The ensem-
ble that optimizes the unadjusted IS is overdispersive, i.e. the
ensemble spread overestimates the variability of the obser-
vation. Such an ensemble would not pass the rank histogram
test for statistical consistency proposed by Anderson (1996);
the rank histogram would appear ∩-shaped. On the other
hand, the ensemble that optimizes the fair IS will have a flat
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FIGURE 3 Time series of System4 ensemble forecasts (small grey

markers) and observations (large black markers) for summer (JJA) surface

temperatures averaged over Europe

rank histogram, because the ensemble members are sampled
from the same distribution as the observation.

4 APPLICATIONS

4.1 Seasonal predictions of European mean
temperature

We illustrate the ensemble-adjusted IS by application to a
dataset of retrospective seasonal climate forecasts. We con-
sider ensemble predictions of the summer (JJA) mean air
surface temperature over land over the area 30◦N–75◦N,
12.5◦W–42.5◦E (roughly Europe), initialized on 01 May of
the same year. The forecasts were generated by ECMWF’s
seasonal forecast system “System4” (Molteni et al., 2011)
with start dates from 1981 to 2010 (n = 30), and m = 51
ensemble members. Verifying observations are taken from
the WFDEI gridded dataset (Weedon et al., 2011; Dee et al.,
2011). All data were downloaded through the ECOMS user
data gateway (ECOMS, 2014). The ensemble and observa-
tion data are plotted over time in Figure 3. Visual inspection
shows that a normal approximation of the ensemble forecasts
is reasonable. The normal assumption is further justified
by the approximately uniform distribution of the p-values
of Shapiro–Wilk normality tests applied to the individual
ensembles (not shown). The System4 ensemble has a slight
cold bias of ≈ −0.3 K. The observations show a linear trend
of ≈ 0.05 K/year which is underestimated by the trend of the
ensemble mean (≈ 0.03 K/year). After removing individual
linear trends from observations and ensemble means, the
Pearson correlation coefficient between ensemble means and
observations is 0.46.

Consider the following scenario where an ensemble-
adjusted verification score is useful. A climate centre intro-
duces a new forecast system that can routinely produce opera-
tional ensemble forecasts with 41 members. In order to inform
forecast users about the quality of the forecast system, a
dataset of retrospective forecasts is produced. But computa-
tional resources are limited, so that the hindcast dataset can be
produced with only 10 ensemble members. The IS averaged
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TABLE 1 Evaluation of a ten-member ensemble and a 41-member
ensemble generated by System4, using the ensemble-adjusted Ignorance
Score (mean scores ± standard error of the mean)

m 
Sys4
m→10 

Sys4
m→41 

Sys4
m→∞

10 0.91 (±0.22) 0.74 (±0.18) 0.71 (±0.17)

41 0.94 (±0.18) 0.76 (±0.15) 0.72 (±0.14)

over the hindcasts is to be used to evaluate the performance of
the ensemble forecasting system. Due to the finite ensemble
effect, the average IS achieved by the 10-member ensembles
will likely be higher (i.e. worse) than the average score that
a 41-member hindcast ensemble could achieve. To provide a
more realistic assessment of the expected skill of the opera-
tional 41-member forecast ensemble, it is thus important to
account for the difference in ensemble size between the hind-
cast and the forecast. Otherwise hindcast skill will be a too
pessimistic estimate of forecast skill.

The scenario outlined above is mimicked by splitting the
available 51-member System4 ensemble into two disjoint
subensembles of size 10 and size 41. (The first 10 mem-
bers in the downloaded database are used for the smaller
subensemble, and the remaining members for the larger.) The
10-member ensemble acts as the hindcast dataset that was
actually generated. The 41-member ensemble acts as the hind-
cast dataset that should have been generated to make hindcast
skill and forecast skill comparable, but could not be realized
due to computational limitations. We use these subensembles
to address the following questions:

• Is the average (unadjusted) IS calculated for the
10-member hindcast ensemble representative of the score
of a 41-member ensemble?

• If not, can the ensemble-adjusted IS be applied to the
10-member ensemble to estimate the score that would be
achieved by a 41-member ensemble?

• What are possible pitfalls if the finite ensemble effect is not
taken into account?

Table 1 compares ISs Sys4
m→M for the two hindcast ensem-

bles with m = {10, 41}, adjusted to ensemble sizes M =
{10, 41,∞}. We find that if no ensemble-adjustment is
applied, i.e. if m = M, the larger ensemble with m = 41
members achieves a lower average score than the ensemble
with m = 10 members. The average difference between the
ISs of the large and small ensemble is 0.15 (±0.13) nats, indi-
cating that the normal forecast derived from the 41-member
ensemble assigns on average 1.16 times more probability to
the observation than the normal forecast derived from the
10-member ensemble. Comparing the scores after applying
an ensemble adjustment, i.e. comparing Sys4

10→41 and Sys4
41→41,

the difference is much smaller at −0.02(±0.1) nats, which
indicates that the ensembles would be equally skilful if they
had the same number of 41 members. The same conclusion
is drawn when comparing Sys4

10→10 with Sys4
41→10, and also when

TABLE 2 Evaluation of the 30-member climatological reference
ensemble forecast using the ensemble-adjusted Ignorance Score (mean
scores ± standard error of the mean)


clim
30→10 

clim
30→30 

clim
30→41 

clim
30→∞

0.97 (±0.13) 0.87 (±0.11) 0.86 (±0.11) 0.83 (±0.10)

comparing the fair ISs of the ensembles. The two ensembles
appear equally skilful after adjusting their scores for the dif-
ferent ensemble size. Since the two ensembles were generated
by the same forecasting system, this finding is intuitively
reasonable.

A forecast user might be interested in how the System4
ensemble compares to the score of a simple benchmark fore-
cast such as climatology. In an ensemble forecasting context,
a climatological forecast can be generated by treating the
available 30 observations as a constant 30-member ensemble
forecast which is issued every year. In Table 2, the 30-member
climatological ensemble forecast is evaluated using the IS
adjusted for different ensemble sizes M. We find that fore-
casts derived from the 10-member System4 ensemble obtain
a slightly higher (worse) IS than the forecast derived from the
climatological ensemble (i.e. Sys4

10→10 > clim
30→30). Conversely,

forecasts derived from the 41-member ensemble obtain a
lower (better) IS than climatology (i.e. Sys4

41→41 < clim
30→30).

The difference between the 41-member System4 ensemble
and climatology is correctly estimated when the IS of the
10-member ensemble is adjusted to 41 members (Sys4

10→41 <

clim
30→30). If we compare the unadjusted average scores of

the 10-member System4 ensemble and climatology, we con-
clude that System4 is less skilful than climatology. But this
is due to the small hindcast size. By adjusting the score
of the 10-member hindcast to the size of the actual fore-
cast ensemble, we correctly conclude that the 41-member
System4 ensemble is preferable to climatology. The same
conclusion is drawn when the fair ISs are compared, suggest-
ing that the hypothetical underlying distribution of System4
assigns on average more probability to the observation than
the climatological distribution.

4.2 Application to medium-range forecasts

Section 4.1 illustrated the potential practical benefits of using
an ensemble-adjusted verification score. But the standard
errors are too large to draw definite conclusions about the
validity of the adjustment in practice, and about the possible
effect of non-normality of the ensembles. The unadjusted and
fair ISs have therefore been applied to evaluate a much larger
dataset of ensemble forecasts from a numerical experiment
with ECMWF’s IFS model using 200 members (Leutbecher,
2018). The experiment uses the forecast model version that
was operational at ECMWF from March to November 2016.
The representation of uncertainties in this research ensem-
ble is the same as that of the operational ensemble at the
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FIGURE 4 (a, b) Unadjusted and (c, d) fair Ignorance Scores for (a, c) T850 and (b, d) U200, plotted over lead time for different ensemble sizes

time. Initial uncertainties are represented with singular vector
perturbations and with perturbations from an ensemble of
4D-Var analyses (Leutbecher and Palmer, 2008; Buizza et al.,
2008). Model uncertainties are represented through stochas-
tic perturbations of the model tendencies using two schemes:
Stochastically Perturbed Parametrization Tendencies (SPPT)
and Stochastic Kinetic Energy Backscatter (SKEB). Further
details on the configurations of these schemes are described
by Leutbecher et al. (2017). Apart from the plus–minus
symmetry of the initial perturbations and the ocean initial
conditions, the members of this ensemble can be consid-
ered independent realizations from the same distribution. This
research ensemble uses a horizontal resolution of 29 km and
contains 200 members while the operational ensemble has 50
members but a higher resolution of 18 km. The experiment
was run for the boreal summer season of June–August 2016
with one forecast issued at 0000 UTC daily.

ISs have been computed for various ensemble sizes from
4 to 200 members. Results are presented for 4, 8, 20 and
100 members for 200 hPa zonal wind (U200) and 850 hPa
temperature (T850) in the Northern Hemisphere extratrop-
ics (20◦N–90◦N). To compute the scores, the forecast fields
of upper-air variables have been spectrally truncated to a
horizontal wavenumber of 120 prior to transforming the
spectral fields to a regular 1.5◦ latitude–longitude grid.
Cosine-latitude weights were used in the spatial averaging
of the scores. The ensemble forecasts were verified with
operational analysis fields which were transformed to the
same regular grid after truncation to wavenumber 120. For
each variable and forecast lead time, the total number of
forecast–observation pairs is 1.0 × 106 (the effective sample
size is smaller due to spatial correlations). For ensemble sizes
up to 20 members, only the odd members were selected from

the 200-member experiment, in order to obtain ensemble
members with i.i.d. atmospheric initial conditions.

Figures 4a,b show unadjusted ISs plotted against lead time
for different ensemble sizes, averaged over all grid points and
forecast start dates. As expected, smaller ensembles achieve
higher ISs than larger ensembles generated by the same fore-
casting system. The score difference is stable over lead time.
Figure 4c,d show the same forecast verification using average
fair ISs. For both forecast variables, the difference between
scores for different ensemble sizes reduces considerably due
to the correction for the systematic effect of ensemble size.
It can be noted that similar results were obtained for 850 hPa
zonal wind, 500 hPa geopotential, and also for the Tropics
and Southern Hemisphere extratropics (not shown).

A key assumption in the derivation of the adjusted IS
was that the forecast ensembles are draws from a normal
distribution, which is not necessarily the case in forecasts pro-
duced by a numerical model of atmospheric dynamics. For
non-Gaussian ensembles we should not expect the adjustment
to be exact. The good agreement between fair scores for dif-
ferent ensemble sizes might be explained by the ensemble
forecasts being practically indistinguishable from normal ran-
dom variables. But applying a Shapiro–Wilk Normality test
to the 200 member ensembles revealed that 38% of U200
ensemble forecasts have a p-value less than 0.05 (64% for
T850), which suggests a considerable number of significantly
non-Gaussian ensembles. We therefore hypothesize that the
ensemble adjustment must also be valid for ensembles that are
“not too far away” from normality.

To test this hypothesis, we further calculated skewness and
kurtosis of the 200-member ensemble forecasts. For each
ensemble, we also calculated the difference between the fair
score of the 200-member ensemble and the fair score of the
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differences, note that the overall average difference between the unadjusted scores (𝜇4, 𝜎
2
4 ; x) − (𝜇200, 𝜎

2
200; x) is 1.75 nats for T850 and 1.25 nats for U200.

The sampling distribution of kurtosis is such that 90% of all kurtosis values are in [−0.60, 1.54] for U200 and in [−0.81, 2.96] for T850 (respectively

[−0.56, 0.72] and [−1.01, 1.02] for skewness). Deviations from zero kurtosis tend to coincide with deviations from zero skewness; the correlation between

absolute skewness and absolute kurtosis is 0.62 for U200 forecasts and 0.70 for T850 forecasts.

subsampled four-member ensemble,

4→∞(𝜇4, 𝜎
2
4 ; x) − 200→∞(𝜇200, 𝜎

2
200; x).

For perfectly Gaussian ensembles, the average difference
between the fair ISs at different ensemble sizes should be zero,
but for ensembles that deviate from normality the average dif-
ference can be non-zero. In Figure 5 we show the average
score difference for the forecast variables U200 and T850,
stratified by

skewness

(
m−1

m∑
i=1

(yi − 𝜇m)3(𝜎2
m)−3∕2

)

and excess kurtosis

(
m−1

m∑
i=1

(yi − 𝜇m)4(𝜎2
m)−2 − 3

)
.

95% confidence intervals were estimated from the bootstrap
distribution using block-bootstrapping from the 92 start dates
without resampling any data in space to preserve spatial cor-
relation. This approach will likely underestimate the spatial
degrees of freedom in the data and therefore produce under-
confident (too wide) uncertainty intervals. For ensembles
with skewness and excess kurtosis close to zero, the average
score difference is indeed very close to zero, and increases
as skewness and excess kurtosis deviate from zero in either
direction. The average mismatch is non-negative for all devi-
ations from normality, i.e. under the fair IS, a non-Gaussian
200-member ensemble scores better, on average, than an
equivalent four-member ensemble. This implies that the
good match between the average fair ISs of 200-member
and four-member ensembles cannot be explained by a can-
cellation of biases of different signs for, say, positively
and negatively skewed ensembles. Furthermore, the score

adjustment “fails in the right direction”; a 200-member
ensemble obtains a better score than a four-member ensemble
from the same distribution, which is what we would expect
from the unadjusted score.

5 SUMMARY AND OUTLOOK

We have studied the application of the well-known IS for
ensemble verification. We focused on forecasts issued as nor-
mal distributions whose parameters are estimated from the
ensemble. It was shown that the IS is sensitive to the number
of ensemble members. Forecasts derived from larger ensem-
bles obtain better scores. In section 2 a new estimator of the
IS was derived which includes an adjustment for the finite
ensemble size. The ensemble-adjusted IS allows us to esti-
mate the IS that an m-member ensemble would achieve if
it had fewer or more than m members. In section 3, the
special case M → ∞ was argued to yield a fair verifi-
cation score, which is optimized if ensemble members and
observations behave like draws from the same distribution.
The benefit of the ensemble-adjustment of the IS was illus-
trated in section 4.1 by application to seasonal climate fore-
casts. If the ensemble size of the hindcast is smaller than
the ensemble size of the forecast, hindcast skill underesti-
mates forecast skill. By using the ensemble-adjusted IS, the
score of a 41-member hindcast could be correctly estimated
from a 10-member hindcast ensemble. For the medium-range
forecasts analysed in section 4.2, the adjustment of the IS
reduces the average score differences from nearly 2 nats to
less than 0.1 nats when comparing a four-member ensemble
with a 200-member ensemble. The analysis of section 4.2
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further showed that the score and its adjustment are robust to
(moderate) deviations from normality.

The ensemble-adjusted score has further applications. The
difference between the unadjusted IS m→m and the fair IS
m→∞ can be interpreted as an information deficit due to
the finiteness of the ensemble, which can be estimated with-
out knowing the underlying distribution. Quantifying this
information deficit is relevant in information-theoretic pre-
dictability frameworks, such as DelSole and Tippett (2007).
The hypothetical “underlying distribution” of the ensemble
is not available for forecasting, but estimating its forecast
skill by the fair IS is of interest to forecast model developers,
who might be interested in the performance of the forecast-
ing system independent of ensemble size. If a forecast centre
releases a new cycle of their model, with updates to the model
physics and ensemble size, the finite-ensemble correction
can be used to differentiate how much of the improvement
is due to better physics, and how much is due to increased
ensemble size. Moreover, it was shown that the unadjusted IS
favours unreliable forecast models, i.e. models that produce
ensemble members with different statistical properties than
the observations. The fair IS is optimized if ensemble mem-
bers have the same statistical properties as the observations.
The fair IS might therefore be a more suitable objective func-
tion for tuning parameters of the numerical forecast model,
and for estimating parameters in complex systems (e.g. Du
and Smith (2012)).
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APPENDIX

PROOFS

A.1 E
[
log 𝜎2

m
]

The derivation follows from the properties of distributions in
the exponential family and their sufficient statistics (Lehmann
and Casella, 1998, section 1.5). If X ∼ 𝜒2

m−1, we can define
𝜏 ∶= (m−1)∕2−1 and write the probability density function
of X as

pX(x) = exp
{
𝜏 log x − x

2
− (𝜏+1) log 2 − logΓ(𝜏+1)

}
.

(A1)
Differentiating the integral ∫ dx pX(x) with respect to 𝜏

yields

E[log X] = log 2 + Ψ
(m − 1

2

)
, (A2)

where Ψ(x) = d∕dx logΓ(x) is the digamma function. Apply-
ing Equation A2 to 𝜎2

m, whose distribution is given by
Equation 8, we get

E
[
log 𝜎2

m
]
=E

[
log

m − 1

𝜎2
m

𝜎2

]
+ log

𝜎2

m − 1
(A3)

= log 𝜎2 + Ψ
(m − 1

2

)
− log

(m − 1
2

)
. (A4)

A.2 E

[
(𝜇m−x)2

𝜎2
m

]
Let the independent random variables Z and V have distri-
butions Z ∼  (0, 1) and V ∼ 𝜒2

m−1. Then the non-central
t-distribution tm−1,x, with m − 1 degrees of freedom and
non-centrality parameter x, is defined through

Z + x√
V∕(m − 1)

∼ tm−1,x . (A5)

Using the sampling distributions of 𝜇m and 𝜎2
m, and their

independence, we get the following relation:

√
m
𝜇m − x
𝜎m

=

𝜇m − 𝜇

𝜎∕
√

m
+

√
m
𝜎

(𝜇 − x)

√
m − 1
𝜎2

𝜎2
m

/√
m − 1

(A6)

∼ t
m−1,

√
m
𝜎
(𝜇−x)

. (A7)

https://doi.org/10.1155/2013/480210
https://doi.org/10.1016/j.jcp.2007.02.014
https://doi.org/10.1016/j.jcp.2007.02.014
https://doi.org/10.1002/qj.3094
https://doi.org/10.1287/mnsc.22.10.1087
https://doi.org/10.1287/mnsc.22.10.1087
https://doi.org/10.1175/JCLI3361.1
https://doi.org/10.1175/JCLI3361.1
https://doi.org/10.1002/met.188
https://doi.org/10.1002/qj.49712757715
https://doi.org/10.1002/qj.49712757715
https://doi.org/10.1002/2013jd021316
https://doi.org/10.1175/1520-0493(2002)130<1653:EPFUIT>2.0.CO;2
https://doi.org/10.1175/1520-0493(2002)130<1653:EPFUIT>2.0.CO;2
https://doi.org/10.1175/mwr-d-11-00302.1
https://doi.org/10.1175/mwr-d-11-00302.1
https://doi.org/10.1175/1520-0434(1997)012<0809:AEFP>2.0.CO;2
https://doi.org/10.1175/1520-0434(1997)012<0809:AEFP>2.0.CO;2
https://doi.org/10.1002/qj.2403
https://doi.org/10.1175/2011JHM1369.1
https://doi.org/10.1080/01621459.1969.10501037
https://doi.org/10.1007/BF02918678
https://doi.org/10.1007/BF02918678


SIEGERT ET AL. 139

The raw moments of a random variable T ∼ t𝜈,z are given
by Hogben et al. (1961):

E
[
Tk]= (

𝜈

2

)k
2
Γ
(

𝜈−k
2

)
Γ
(

𝜈

2

) exp

(
− z2

2

)
𝜕k

𝜕zk exp

(
z2

2

)
. (A8)

By calculating the second raw moment of
√

m(𝜇m − x)∕𝜎m
and dividing by m, we get

E

[
(𝜇m − x)2

𝜎2
m

]
= m − 1

m − 3

(𝜇 − x
𝜎

)2
+ m − 1

m(m − 3)
. (A9)


