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1 INTRODUCTION

Computational models of the Earth’s climate system are based on mathematical abstrac-
tions and numerical approximations. Not all physical processes of the real world are included
in climate models. The chaotic nature of atmospheric dynamics leads to the forecast’s sensi-
tivity to the imprecisely known initial state of the system. Therefore, numerical model fore-
casts are imperfect representations of the real world. Discrepancies between the model
forecast and the real world can be loosely classified into random and systematic. Random
forecast errors are unpredictable, whereas systematic errors are (at least to some extent)
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predictable. The most illustrative example of a systematic forecast error is the mean bias of
the forecast (i.e., a constant offset between the time mean of the forecast and the time mean
of the real-world predictand). If it is known from past experience that, say, a temperature
forecast consistently differs from the real-world temperature by +2 K, it is rational to adjust
future forecast downward by 2 K to correct for the bias and thereby improve the forecast. Bias
correction is a simple example of forecast recalibration.

There are two distinct uses of the term “calibration” in the literature, both of which are
related to, but different from, the technical term “recalibration.” Forecast calibration can refer
to the act of calibrating a forecast by tuning parameters of the numerical model. Forecast
calibration can also be used to characterize a forecast as being reliably calibrated. We will
not be concerned with parameter tuning in this chapter, and use the term “calibration” only
in the second sense, to refer to the degree of “reliability” of a forecast model. We will focus on
forecast recalibration, which is the process of making a forecast model better calibrated by
statistical postprocessing of its output.

It is often the case that there is not only a single forecast model, but also multiple fore-
cast models for the same event. One way of viewing this collection of forecasts is that they
are competitors, the best of which should be picked to issue the forecast, thereby
discarding the information contained in the output of the other, “suboptimal” models.
However, the decision for picking the best model is often ambiguous: Forecast models
must be compared by calculating performance measures, such as the correlation between
past forecasts and their verifying observations, or proper scoring rules. But these measures
are uncertain due to sampling variability, so the forecast model that achieves the best per-
formance measure over a few past cases is not necessarily the best model for future fore-
casts. Furthermore, there are many different measures of forecast performance, and the
ordering of forecasts can depend on the measure used to evaluate them. This ambiguity
gives rise to the idea of viewing the various forecasts as complementary sources of infor-
mation that collectively contain more information about the real world than any one
of them individually. When this view is adopted, the challenge changes from picking
the best model to combining the various model predictions into a single forecast of the
real world.

Fig. 1 provides an illustrative example of seasonal, multimodel ensemble forecast data.
The dataset consists of seasonal forecasts of average surface temperatures over the Niño-
3.4 region, which is an important indicator for the state of the El Niño-Southern Oscillation
(ENSO), and for the occurrence of El Niño and La Niña events. ENSO is a dominant mode
of climate predictability on seasonal timescales, and so the correlation coefficients between
ensemble mean forecasts and verifying observations vary between 0.81 (CFSv2) and 0.91
(SYST4). Such high predictive skill is rather atypical for seasonal climate predictions. Fur-
thermore, due to the high predictability of ENSO, the ensemble has a rather high signal-to-
noise ratio (SNR); that is, the spread of the ensemble is small compared to the variance of
the ensemble mean. However, other criteria such as sample size, ensemble size per model,
between-model variability, systematic bias, and number of models, this hindcast dataset is
representative for forecasts on seasonal timescales. Therefore, the hindcast dataset will be
used throughout this chapter to demonstrate various concepts related to forecast
recalibration and combination.
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Forecasts can be poorly calibrated in a variety of ways. Commonly observed types of fore-
cast uncalibratedness include:

• Constant bias of the mean: A difference between forecast mean and observation mean.
• Dispersion error: The spread of an ensemble of forecasts does not correctly represent the

uncertainty in the observations.
• Lack of variability: The year-to-year variability of the forecast is not representative of the

variability in the observations.
• Lack of association: The correlation between forecasts and observations is low or zero.
• Error in trends: Slow average increases or decreases in the observations are not reproduced

by the forecasts.
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FIG. 1 Hindcast data of a seasonal multimodel ensemble forecasting system: average December temperature in
the Niño-3.4 region 1982–2010, with forecasts initialized in August (lead time 5 months). Light blue lines represent
the ensemble members, dark blue lines represent the ensemble mean forecasts, and orange lines represent the verifying
observations (same in each panel).
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These violations of forecast calibration occur in atmosphere/ocean forecast products on
all timescales, from short-term weather prediction to long-term climate projections.
Reasons for lack of forecast calibration include initialization errors, structural model errors,
model simplifications, numerical truncation errors, missing processes, and simply bugs in
the code.

Statistical forecast recalibration is usually necessary for forecast products on all timescales.
There are a number of challenges related to forecast recalibration and multimodel combina-
tion that are specific to seasonal to sub-seasonal (S2S) climate predictions. The training data to
fit statistical recalibration models is often limited, and highly nonstationary. Formulations of
the operational forecast model are revised periodically, which can change the statistical be-
havior of the data and require readjustment of recalibration and combination parameters. The
internal variability of the forecasts is high due to the chaotic nature of the atmosphere, which
decreases the SNR of the forecast. The correlation between forecast and observations is often
low. Finally, multimodel hindcast experiments are not designed with model combinations in
mind and are therefore often nonhomogeneous. Strategies to generate hindcast datasets can
be loosely characterized as either “on the fly” or “fixed,” depending on how changes to the
forecast model are accounted for. In the S2S hindcast database (Vitart et al., 2017), for exam-
ple, most forecasts that are initialized on different days have different hindcast periods and
forecast out to different lead times.

By using statistical models to correct forecast errors of dynamical models, forecast calibra-
tion bridges the gap between empirical (statistical) and numerical forecasting. To issue reli-
able forecasts, we need robust statistical methods to issue probabilistic predictions, which
take into account the correlation and error structure of multimodel ensemble forecasts.

2 STATISTICAL METHODS FOR FORECAST RECALIBRATION

Forecast calibration is an important diagnostic to differentiate good forecasts from bad
forecasts. To characterize forecast calibration, Gneiting et al. (2007) introduced various modes
of calibration (namely, probabilistic calibration, exceedance calibration, and marginal calibra-
tion). All modes of calibration characterize, in different ways, the agreement between the
issued forecast distribution and the hypothetical distribution from which the real-world
observation is drawn. Forecast recalibration is thus closely related to forecast verification,
which is discussed in detail in Chapter 16 of this book.

In a similar spirit, Jolliffe and Stephenson (2012) define forecast calibration in terms of
the equality between the forecast and the conditional mean of the observation, given the
following forecast:

EYðYjX¼ xÞ¼ x: (1)

That is, if we collected all instances on which a particular value X ¼ xwas forecast, the mean
over all verifying observations should be equal to x if the forecast is calibrated. Calibration is
thus a joint property of forecasts and observations that can be assessed by comparing several
pairs of forecasts and observations. If a forecast is found to be uncalibrated, statistical
recalibration methods can be used to correct for the lack of forecast calibration.
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Eq. (1) suggests that to recalibrate a poorly calibrated forecast, we could replace the current
forecast value x by the conditional mean of the observation, given that forecast value. The
exact value of the conditional expectation is not known in general, and it has to be estimated
from past forecast and observation data. More generally, one could estimate the conditional
distribution of the observation, given the forecast. The conditionalmean or distribution can be
estimated by collecting all past forecasts that have a given value (or are sufficiently close to a
given value) and averaging all past observations corresponding to these forecasts. This non-
parametric way of recalibrating forecasts is appealing, as it can potentially account for com-
plicated nonlinear relationships between forecasts and observations. However, it requires
enough past forecasts that are close to the current forecast value in order to estimate the con-
ditional mean robustly. In data-poor settings, where only a few pairs of past forecasts and
observations are available, nonparametric estimation methods will suffer from large estima-
tor variance. In these situations it is often useful (or even necessary) to assume a parametric
relationship between forecasts and observations (i.e., to describe the conditional mean of the
observation given the forecast by a function of the forecast that is parameterized by a small
number of coefficients). Next we discuss two of themost commonly used parametricmethods
for forecast recalibration—namely, model output statistics (MOS) and nonhomogeneous
Gaussian regression (NGR).

3 REGRESSION METHODS

3.1 Model Output Statistics

The most commonly used parametric methods for forecast recalibration are based on
regression techniques. In the meteorological literature, using linear regression to recalibrate
a forecast is also referred to as model output statistics (MOS; Glahn and Lowry, 1972;
Glahn et al., 2009). In linear regression, the observation yt at time t is modeled as a linear func-
tion of forecasted value (or forecasted values if several forecasts are available) x1, t, …, xp, t,
plus an independent, normally distributed error term:

yt ¼ β0 + β1x1, t +⋯+ βpxp,t + σEt, (2)

where β0,…, βp and σ are unknown parameters and Et $N ð0,1Þ. Eq. (2) can also be written in
vector form as

yt ¼ x0tβ+ σEt, (3)

using the column vectors xt ¼ (1, x1, t, …, xp, t)0 and β ¼ (β0, …, βp)0. A common case is p ¼ 1,
where there is a single forecast, such as the ensemble mean taken from a single model, using
the same variable and location as the predictand y. It is possible that multiple predictors are
used (i.e., p > 1). These can be output from several forecast models, different variables than
the predictand, different ensemble members started from perturbed initial conditions, or var-
iables at different locations that are deemed informative about the predictand. The regression
parameters β and σ can be estimated from previously observed pairs of forecasts and verify-
ing observations.
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It is useful to collect the verifying observations y1,…, yN into a column vector y and the row
vectors x10, …, xN0 into the rows of the design matrix X. Then we can write

y¼Xβ+ σe, (4)

where e is assumed to have a multivariate normal distribution with diagonal covariance
matrix var(e) ¼ 1.

Under the assumption that the error term Et has a standard Gaussian distribution, and Et
and Et0 are uncorrelated for t 6¼ t0, the log-likelihood function of the linear regression model is
proportional to

‘ðβ,σ2;yÞ ∝ %N

2
logðσ2Þ%ðy%XβÞ

0
ðy%XβÞ

2σ2
: (5)

The maximum likelihood estimators of β and σ2 are obtained by setting the partial deriv-
atives of ‘ to zero:

β̂ ¼ðX 0
XÞ%1X

0
y, (6)

σ̂2 ¼ðy%Xβ̂Þ
0
ðy%Xβ̂Þ

N
: (7)

The commonly used unbiased estimator of σ2, denoted σ̂2
u, is given by subtracting the total

number of estimated parameters from N in the denominator of Eq. (7), that is,

σ̂2
u ¼

ðy%Xβ̂Þ
0
ðy%Xβ̂Þ

N%p%1
: (8)

After fitting the regression parameters by maximum likelihood, a future observation
y*, given a new forecast x*, is predicted by plugging x* into Eq. (3), using the maximum like-
lihood estimators for the regression parameters. By transforming the forecast x* by the regres-
sion relationship (3), some violations of calibration in the raw forecast x* are corrected,
namely constant bias, linear scaling, and ensemble dispersion errors.

It can be shown that the forecast distribution for the new observation y* based on the new
forecast vector x* is a Student t-distribution:

y
∗ jx∗

, β̂, σ̂2 $ tN%p%1 ðx∗Þ
0
β̂, σ̂2

u 1 + ðx∗Þ
0
ðX 0

XÞ%1ðx∗Þ
! "h i

: (9)

So the forecast mean is at ðx∗Þ
0
β̂, and a 95% prediction interval for y* is given by

ðx∗Þ
0
β̂& t0:975,N%p%1σ̂u

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + ðx∗Þ0ðX 0

XÞ%1x∗
q

, (10)

where tα, n denotes the α-quantile of the Student t-distribution with n degrees of freedom. It is
tempting to simply forecast a normal distribution with mean ðx∗Þ

0
β̂ and variance σ2u. But it has

been shown that MOS forecasts issued using the predictive t-distributions are better
calibrated than forecasts issued as normal distributions because the t-distribution accounts
for the estimation uncertainty of the regression parameters (Siegert et al., 2016a).
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As an example, consider the MF3 Niño-3.4 ensemble mean seasonal forecasts at 5 months
lead time, illustrated by a scatterplot in Fig. 2. The points do not lie along the diagonal, which
indicates that mean and/or scale of the forecasts do not match the mean and scale of the
observations. The forecasts are not well calibrated, and statistical recalibration is therefore
necessary. The scatterplot further suggests that linear rescaling of the forecasts might be a
good recalibration strategy, which makes MOS a suitable candidate. The maximum likeli-
hood estimator of the coefficient vector β is β̂¼ð%15:70,1:57Þ

0
and the (unbiased) maximum

likelihood estimator of σ2 is σ̂2
u ¼ 0:39. For a new forecast value of 27.0°C that lies close to the

mean of all previously observed forecast values, the recalibrated prediction equals 26.69°C,
and a 95% prediction interval is given by (25.32°C, 27.91°C); that is, the width is 2.59. Like-
wise, for a new forecast value of 30.0°C, which is large compared to all previously observed
forecasts, the prediction is 31.32°C and the 95% prediction interval is given by (29.67°C,
32.96°C) (i.e., thewidth is 3.30), which is considerablywider than for the intermediate forecast
value. Informally, the widening of the prediction interval is caused by the extrapolation
beyond previously observed forecast values, which increases uncertainty. Mathematically,
the term (x*)0(X0X)%1x* in Eq. (9) is responsible for widening of the prediction intervals.

Fig. 3 shows raw forecasts and MOS-recalibrated forecasts of the MF3 model, and their
verifying observations. The effect of MOS is to bring the forecast means closer (in a mean-
squared-error sense) to the verifying observations, and to increase the forecast variance
compared to the ensemble spread. The result is better coverage of the observations by the
prediction intervals, and therefore more reliable probability forecasts.
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FIG. 2 Recalibration by linear regression applied to MF3 forecasts. The dashed line indicates the regression line,
and the blue ribbon indicates the 95% prediction interval.
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3.2 Nonhomogeneous Gaussian Regression

MOS can be extended to allow use of the ensemble spread information. A good ensemble
forecasting system should be able to accurately represent the forecast uncertainty that results
from imprecisely known initial conditions and model errors. Therefore, narrow ensembles,
corresponding to high confidence in the forecast, should on average incur smaller forecast
errors than very wide ensembles, which indicate low confidence in the forecast. Due tomodel
errors and natural variability, the correspondence between ensemble spread and forecast er-
ror (the spread-skill relationship) cannot be expected to be perfect, but it is reasonable to as-
sume that a linear relationship exists. A regression framework to recalibrate both ensemble
mean and ensemble spread is nonhomogeneous Gaussian regression (NGR; Gneiting et al.,
2005). NGR assumes that the observation has a normal distributionwhosemean and variance
depend linearly on ensemble mean and ensemble variance. In particular, let mt denote the
ensemble mean forecast at time t, and s2t the ensemble sample variance at time t.
The conditional distribution of the observations, given the ensemble forecast, is

N ða+ bmt,c+ d2s2t Þ: (11)

The recalibration parameters (a, b, c, d) are unknown and have to be estimated from historical
forecast and observation data. Unlike linear regression (MOS), the maximum likelihood pa-
rameters cannot be determined analytically and therefore have to be estimated by numerical
optimization. Given a series of ensemble mean forecasts m1, …, mN, ensemble variances
s21,…,s2N, and verifying observations y1, …, yN, the log-likelihood function of the NGR model
is proportional to

‘ða,b,c,d;fmt,s2t ,ytg
N
t¼1Þ∝

%1

2

XN

t¼1

logðc+ d2s2t Þ+
ðyt% a%bmtÞ2

c+ d2s2t

" #

:
(12)

FIG. 3 Illustration of the effect of recalibration by linear regression. Squares and thin lines indicate ensemble mean
forecasts (generated by the MF3 model) & two ensemble standard deviations. Filled circles and thick lines indicate
recalibrated ensemblemeans and 95% prediction intervals.Open circles represent observations. The recalibrated fore-
casts are on average closer to the observations, and the prediction intervals overlap the observations more often than
the uncalibrated ensemble spread.
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To give a specific example, consider the Niño-34 temperature seasonal forecasts issued by
the National Aeronautics and Space Administration (NASA) model at 5 months lead time.
Scatterplots of verifying observations over ensemble means and squared forecast errors over
ensemble variances are shown in Fig. 4. There is a strong linear relationship between ensem-
blemeans and observations (correlation 0.88). There is also aweak positive linear relationship
between ensemble variances and squared forecast errors (correlation 0.19). The correlation
between variance and error is not statistically significant, but it might still be beneficial for
forecast recalibration.

To fit the NGR, we optimize the NGR log-likelihood (Eq. 12) using the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) algorithm, as implemented in the function stats::optim of the R
statistical programming environment (R Core Team, 2017). The estimated values are given in
Table 1. The parameter estimates suggest that the forecasts are not well calibrated, and there is
scope for improvement by statistical recalibration of mean, scaling, and variance. However,
the parameter d is very small, indicating very little relationship between ensemble spread and
forecast variance.

It is worth noting that NGR was first proposed, and is mostly applied, in the context of
numerical weather prediction (NWP). In NWP, atmospheric prediction is treated as an initial

FIG. 4 Scatterplots of observation over ensemble mean and squared forecast error over ensemble variance for the
Niño-3.4 ensemble forecasts issued by the NASA model. Least-squares linear fits have been added as guides.

TABLE 1 NGR Estimates

Parameter a b c jdj

Estimate 4.06 0.89 0.34 2.5 ' 10%5
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value problem, so that varying levels of sensitivity to initial conditions can lead to a spread-
skill relationship in ensemble forecasts. Seasonal climate forecasting, rather, is a boundary
value problem, where long-term predictability is a result of slowly varying drivers of the
climate system. A strong spread-skill relationship is therefore unlikely, so it is no surprise
that NGR is not beneficial as a recalibration method for the seasonal forecasts shown here.
For prediction on sub-seasonal timescales, lying between weather and seasonal climate fore-
casting; however, a systematic spread-skill relationship might be conceivable.

3.3 Comparing Recalibration Models

Forecast recalibration is a statistical modeling exercise. At any point in time, several
recalibrationmodels might be available, and the task of the forecaster is to choose one of them
to make a prediction. The task of choosing the “best” among a number of candidate statistical
models is called model selection. Here, we give an example to illustrate how to choose be-
tweenMOS andNGR to recalibrate the NASAmodel. A good introduction tomodel selection
and statistical modeling in general can be found in Hastie et al. (2009).

A commonly used model selection criterion is the Bayesian Information Criterion (BIC;
Schwarz, 1978), defined as

BIC¼%2‘̂ + k logðnÞ, (13)

where ‘̂ is the log-likelihood function evaluated at the mode (i.e., using the optimized
parameter values); k is the number of parameters of the model; and n is the sample size.
The model with lowest BIC is to be preferred. A low BIC is achieved by high values of ‘̂
and low values of k. Thus, BIC reward models that fit the data well, while at the same time
having a small number of free parameters. The BIC is closely related to the Akaike Informa-
tion Criterion (AIC), which is calculated by replacing logðnÞ by 2 in Eq. (13).

We have seen in Table 1 that the optimal value for the parameter d is very small in the
NASA ensemble, which suggests that taking the ensemble spread into account in the variance
of the forecast distribution might be unnecessary. When d is zero, NGR is equivalent to MOS.
The differences between the optimized log-likelihoods of NGR and MOS for this ensemble is
on the order of 10%10 (i.e., the recalibration by NGR and MOS yields almost identical
recalibrated forecasts). But since NGR has four free parameters, where MOS has only three,
we get BIC¼ 64.5 for NGR and BIC¼ 61.1 for MOS, which suggest that MOS is the preferable
recalibration model in this case. In other words, the hypothesized spread-skill relationship in
the NASA ensemble cannot be considered useful for forecast recalibration.

Another widely usedmethod formodel comparison is cross-validation. In cross-validation
the ability of a statistical recalibration model is assessed by evaluating its predictions on
unknown data that were not part of the training dataset.

3.4 Further Remarks on Recalibration

Because forecast recalibration is a statistical modeling problem, all issues that apply to sta-
tistical modeling are relevant to forecast recalibration as well. We have discussed the impor-
tant areas of parameter estimation and model selection in some detail. Here, we discuss a
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number of further problem areas that should be considered and refer the reader to the
relevant literature.

If parameters are estimated from a finite number of training data, their estimation uncer-
tainty must be taken into account. Siegert et al. (2016a) have shown that failing to account for
parametric uncertainty can lead to degradation of the quality of the recalibrated forecasts.
Accounting for estimation uncertainty in the recalibration parameters has the effect of inflat-
ing the tails of the forecast distribution, which leads to better calibrated andmore skillful fore-
casts. It is often the case that prior information is available on recalibration parameters, in
which case a Bayesian estimation framework is suitable. Siegert et al. (2016b) have shown that
prior information on the correlation coefficient of the ensemble mean can improve the per-
formance of recalibrated forecasts compared to standardmethods. Furthermore, the Bayesian
approach of Siegert et al. (2016b) allows one to address the problems of forecast verification
and forecast recalibration in the same coherent statistical framework.

Delle Monache et al. (2011) and Obled et al. (2002) have used statistical analog techniques
to improve forecast recalibration. The underlying idea is to construct the training dataset for
parameter estimation by considering only past forecasts that are similar to the present one.
A related technique is to use a sliding training window (e.g., Sweeney et al., 2011) to use only
the most recent forecast and observation data to construct the training dataset for parameter
estimation. A sliding window approach allows the recalibration strategy to adapt to changes
in the forecasting system or the climate system.

Forecast data produced by climate models is usually high-dimensional, consisting of mul-
tiple climatological variables on a spatial grid and at many points in time for various ensem-
ble members initialized at different times and initial conditions. Various techniques exist for
multivariate recalibration, and especially the field of spatial recalibration has undergone
rapid development in recent years.

Two important nonparametric methods for spatial recalibration are the Schaake shuffle
(Clark et al., 2004) and ensemble copula coupling (Schefzik et al., 2013). Thesemethods are based
on the idea of reordering ensemble forecasts locally so as to better replicate the spatial corre-
lation structure of the predictand (see also Schefzik, 2017; Vrac and Friederichs, 2015;
Scheuerer et al., 2017). Parametric approaches for multivariate forecast recalibration have
been proposed based on Gaussian random fields (Feldmann et al., 2015) and parametric cop-
ulas (M€oller et al., 2012; Hemri et al., 2015). It can be noted that multivariate methods such as
principal component regression (PCR) and canonical correlation analysis (CCA) have been
used to recalibrate seasonal climate forecasts (e.g., Barnston and Tippett, 2017). However,
recalibration based on explicit spatiotemporal statistical models is largely unexplored in
the field of S2S predictions.

4 FORECAST COMBINATION

The development and maintenance of a climate forecasting system require considerable
effort. It is therefore sensible to establish climate modeling centers, where scientists, devel-
opers, and administrators provide the necessary expertise and infrastructure. As a conse-
quence, several climate modeling centers exist around the world, each one running its
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own forecast system. The multiplicity of modeling centers provides opportunities to share
expertise and to compare various modeling strategies. But because each center provides
its own climate forecasting products, using slightly various climate models, the user faces
a conundrum of choice, having to make an informed decision as to which climate model
to use. Better yet, the user might want to benefit from the “wisdom of crowds” and let the
multiplicity of climate model forecasts act as a sort of committee that jointly provides a final,
combined forecast product.

Various methods have been proposed to optimally combine forecasts from different nu-
merical models. A key reference on forecast combinations in seasonal climate forecasting
is DelSole (2007), who presents a unified Bayesian framework that accommodates a number
of multimodel combination strategies. Sansom et al. (2013) discuss weighting strategies for
multimodel ensembles in a climate change context. Further combination strategies are
discussed in Stephenson et al. (2005), Doblas-Reyes et al. (2005), and Rajagopalan et al.
(2002). The rest of this section follows the methodologies outlined in DelSole (2007), with par-
ticular focus on the hierarchical regression method of Lindley and Smith (1972).

4.1 Hierarchical Linear Regression

Assume, as before, that at times t¼ 1,…,N, we have climate forecasts that were produced
by p numerical models, f1, t, …, fp, t. Each fi, t is assumed to be scalar, so it could be a spatial,
temporal, and ensemble average produced from the output of a single climate model. We as-
sume in this section that the vectors of forecasts f1,…, fp have been individually standardized
to have zero mean and unit variance over time; DelSole (2007) reports that standardization of
individual forecasts improved the quality of the combined forecast product. One possible
method, motivated by the regression framework discussed in the previous section, is to com-
bine the individual forecasts into a single forecast by a linear combination, and to assume the
residual to be independently normally distributed:

yt ¼
Xp

m¼1

βmfm,t + σEt, (14)

which can be collected into the matrix equation

y ¼Xβ+ σe, (15)

where X is the N ' p matrix of forecasts, β is the vector of combination weights, and e has a
multivariate normal distribution with zero mean and identity covariance matrix. One then
can estimate the vector β of forecast combination weights, as well as the residual variance σ2.

There are two possible extremes that we could adopt when estimating the combination
weights. On the one hand, we could assume that the combination weights can be completely
different and are fully independent, such that we would not be surprised to learn that the
weight of one model is orders of magnitude larger, and with a possibly different sign, than
the combination weight of another model. On the other hand, we might judge that there
should be no difference at all between the combination weights for different models because
the individual models are judged to be exchangeable, and we do not expect any performance
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differences among them that would warrant upweighting one model forecast in favor of
another one.

The framework of DelSole (2007) points out a middle way between those two extremes,
using the results of Lindley and Smith (1972) on hierarchical regression. The framework
essentially allows the shrinking of the combination weights βm toward a common, but un-
known, value β0, thus reducing the variability of the combination weights. The underlying
idea is that we are usually prepared to assign different weights to different model forecasts,
but the weights are not expected to be very different from one another because we would
generally not expect large differences between the quality of different forecasts. Wewill come
back to the judgment of similar quality and its implications for forecast combination later in
this chapter.

The notion of “different, but similar” combination weights can be modeled within a Bayes-
ian statistical framework as follows. The result of a Bayesian computation is a posterior prob-
ability distribution of unknownmodel parameters, given observed data (i.e., p(β, σ2jy)), in the
present context. The posterior distribution is computed by the Bayes’ rule:

pðβ,σ2jyÞ∝pðyjβ,σ2Þpðβ,σ2Þ, (16)

where the likelihood p(yjβ, σ2) derives from the linear model specification (Eq. 15) and the
prior distribution p(β, σ2) encodes prior knowledge about the model parameters. In the pre-
sent context, we will be interested only in the maximum a posteriori (MAP) estimators of
the model parameters (i.e., the values that maximize p(β, σ2jy)), and so the proportionality
constant in Eq. (16) is unimportant.

The hierarchical regression framework developed by Lindley and Smith (1972) allows us
to encode the notion that the combination weights βm are different but similar in the prior
distribution p(β, σ2). The elements of β are assumed to be independently normally distributed
around a common (unknown) mean β0 and variance σβ

2:

βi $Nðβ0,σ2βÞ: (17)

The normal distribution allows for the βm to be different, but a small variance σβ
2 will constrain

them to be close to one another.We have tomake further assumptions about β0 and σβ
2 to close

the calculations. Either the values of β0 and σβ
2 must be specified, or if this is not possible,

vague assumptions must be encoded as probability distributions over β0 and σβ
2. The follow-

ing choices seem justified in the specific context of climate forecast combination and also will
lead to a convenient and tractable method of estimating the MAP values of the combination
weights. Users will probably not have strong prior beliefs about β0, and therefore a very wide
(uninformative) prior distribution for the central value β0 is appropriate. A convenient choice
of the prior for β0 is therefore a normal distribution with zero mean and diverging variance.
On the other hand, a user who wants to encode the idea of “not too different” combination
weights will usually have an idea about what “too different” means quantitatively.
For example, if we think that combination weights for our forecasts are unlikely to differ from
their common value bymore than 0.2, this can be encoded by specifying the variance σβ

2¼ 0.12.
Finally, to complete the prior specifications, we choose an uninformative prior distribution
for the residual variance σ2—namely, an inverse χ2 distribution with degrees of freedom ν
¼ 0, such that pðσ2Þ∝1=σ2.
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Lindley and Smith (1972) show that under these prior assumptions, the MAP estimators of
the combination parameters β and σ2 can be obtained by solving the following system of
equations:

β̂ ¼ X
0
X +

s2

σ2β
ð1p%p%1JpÞ

" #%1

X
0
y, (18)

s2 ¼ðy%Xβ̂Þ
0
ðy%Xβ̂Þ

n+ 2
, (19)

where 1p is the p ' p identity matrix, and Jp is a p ' p matrix with each element equal to 1.
The equations cannot be solved analytically, but an approximate solution can easily be found
iteratively by solving the two equations in turn, each time substituting the solution of one
equation into the other. We found that this algorithm leads to convergence within a few
(<10) iterations, with little dependence on the choice of initial values.

Note that the two extreme cases mentioned here (equal weighting and fully flexible
unequal weighting) correspond to particular choices of the prior variance parameter σβ

2: By
setting σ2β !∞, the additional term in the brackets in Eq. (18) vanishes and the estimate of
β reduces to the least-squares estimator (X0X)%1X0y. Imposing no constraints on the elements
of β by setting σ2β !∞ thus amounts to ordinary multiple linear regression (MLR). On the
other hand, by setting σβ

2 ¼ 0 (i.e., assuming that all combination weights are equal to β0),
the MAP estimate converges to the same estimate of β that would be obtained if we fitted
a simple linear regression (SLR) to the multimodel ensemble mean; see Appendix of DelSole
(2007) for a proof.

Fig. 5 shows the results of estimated combination weights for the six seasonal Niño-3.4
temperature forecasts shown in Fig. 1. The ensemble mean forecasts of all models were stan-
dardized before estimating the combination weights. Three distinct values of σβ

2 were chosen:

• σ2β !∞, corresponding to unconstrained MLR
• σβ

2 ¼ 0.12, corresponding to HLR
• σβ

2 ¼ 0, corresponding to SLR on the multimodel ensemble mean

Combinationwith equal weights yields βi¼ β¼ 0.16. UsingMLRwith no constraints on the
variability of the parameters, the combination weights vary wildly, between % 0.16 and 0.66.

FIG. 5 Niño-3.4 combination weights assigned
to numerical models by different methods: SLR ¼
simple linear regression (σβ

2 ¼ 0); MLR¼multiple lin-
ear regression (σ2β !∞); HLR¼ hierarchical linear re-
gression (σβ

2 ¼ 0.12).
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This variability is somewhat damped using the hierarchical regression estimators with
σβ
2¼ 0.12,which restricts the combinationweights to amuchmore reasonable rangeof 0.09–0.24.
A relevant question to ask is which of the three combination method performs best. If we

addressed this question simply by looking at the sum of squared residuals after fitting the
regression models, we would find that σ2β !∞ performs best. But this is, at least partly,
due to the great flexibility of the unconstrained MLR model, which allows parameters to
adapt to random variations in the data by setting one regression coefficient to a very large
positive value and another coefficient to a very low negative value. But the sum of squared
residuals is a measure of in-sample goodness of fit, which is not really relevant in practice. In
practice, we would like to estimate how well the methods perform out of sample, on as-yet-
unseen data that was not part of the training dataset.

To estimate out-of-sample performance, we conduct a leave-one-out cross-validation. We
leave out 1 year of the N years in the hindcast archive and fit the combination weights using
the N % 1 remaining pairs of forecasts and observations. We then use the fitted combination
weights on the left-out forecasts to predict the left-out observation. This process is repeated
N times, each time leaving out a different year, which results in N out-of-sample predictions
whose squared prediction errors can be used to assess out-of-sample performance. The
equally weighted forecast combination (σβ

2¼ 0) obtains a leave-one-outmean-squared predic-
tion error of 0.281. The forecast combination obtained by unconstrained multiple regression
(σ2β !∞) has a much larger mean-squared prediction error of 0.330. The constrained unequal
weighting approach with σβ

2 ¼ 0.12 achieves a leave-one-out mean squared error of 0.277,
which is a large improvement over multiple regression and a minor improvement over
simple regression on the multimodel mean.

The choice of the prior parameter σβ
2 can be guided by different principles. DelSole (2007)

suggests using a nested cross-validation approach to estimate the optimal value σβ
2. Lindley

and Smith (1972) show how β and σ2 can be estimated when an informative prior distribution
(in the form of a scaled inverse-χ2 distribution) is specified for σβ

2, rather than setting a fixed
value as we did earlier in this chapter. It also should be noted that the choice of the prior var-
iance of the βm should depend on the number of models. We might be more willing to accept
larger differences between the weights of 2 models than between the weights of 10 models.
It is also possible to specify a different prior distribution than a normal distribution for β.
In particular, a Laplace prior distribution, which leads to the so-called Lasso regression
(Tibshirani, 1996), might be beneficial. The Laplace distribution has more probability mass
close to the mode and more probability mass in the tails than the normal distribution. There-
fore, it would set some of theweights to exactly equal values, while giving significantly higher
or lower weight to only a fewmodels. However, no closed-form solutions are available for the
Lasso estimates of β, and thus computationally more expensive numerical optimization
methods would be required.

4.2 Why Is It So Hard to Beat the Recalibrated Multimodel Mean?

It is interesting to note the tiny difference between the leave-one-out prediction errors of
constrained unequal weighting (0.277) and equal weighting (0.281). The improvement
from unequal weighting compared to equal weighting is so tiny that it could well be simply
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due to chance, and even if it were a genuine improvement, its practical utility would be
limited at best. Based on this data, we have no reason to believe that unequal weighting
offers any considerable improvement over equal weighting. As a matter of fact, there are a
number of reasonswhywe should not expect a large improvement of unequal weighting over
equal weighting in the first place. All climate models in the multimodel ensemble have
roughly the same complexity—they all run on supercomputers and are maintained and de-
veloped by government agencies. Obviously, all models contain the same basic physics—
namely, a discretized and simplified version of the Navier-Stokes equations, thermodynamic
closure relations, and parameterizations of unresolved processes. The models were not
developed independently, but rather rely on the same body of knowledge about the prac-
ticalities of numerical climate modeling. Furthermore, from a statistical point of view,
the small sample size of N ¼ 31 years naturally limits the precision with which
the combination weights can be estimated. The ensuing estimation variance of the com-
bination weights will degrade the quality of out-of-sample predictions. Some authors
(e.g., Weigel et al., 2010) have explicitly warned against using unequal weighting at
all and recommend treating the different models as exchangeable, even though small dif-
ferences are conceivable in principle. It should be noted, however, that there are cases
where a single model is superior to all other models, and therefore, forecast combination
with less skillful models is always detrimental (e.g., Vitart, 2017). We have shown that
unconstrained MLR with a small training dataset can indeed degrade the performance
of the combined forecast compared to equal weighting. But a suitable shrinkage strategy
that limits the variability of the combination weights can reduce this problem and has the
potential to gain slight improvements over equal weighting. However, for the reasons
stated in this chapter, we should not expect the improvement to be large, even if we knew
the “true” optimal combination weights.

5 CONCLUDING REMARKS

Forecasts of physical-dynamical models can suffer from various forecast biases that can
be corrected by statistical methodology. Furthermore, the availability of several forecast
models for the same predictand calls for statistical methods to optimally combine multiple
forecasts into a single forecast. In this chapter, we have outlined various regression ap-
proaches and discussed relevant statistical concepts such as model selection, in-sample
versus out-of-sample performance, and the incorporation of prior knowledge. The
methods discussed are based on developments from short-term weather forecasting to
longer-term seasonal climate forecasting, and thus they are fully applicable at the
sub-seasonal scale.
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