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As the coronavirus pandemic continues to unfold at a stag-
gering pace,  CO2 emissions are in for a sharp, if temporary, 
decline estimated at 7% of the 2019 annual emissions (Le 
Quéré et al. 2020; Carbon Brief 2020; Forster et al. 2020). 
Even if this reduction is substantial, it will not suffice to 
reach the 1.5 °C global temperature target of the 2015 Paris 
Conference of Parties Agreement (COP, Brown et al. 2019), 
as a reduction by 7.6% would be needed every year from 
today to reach net-zero emissions by 2050 (Sachs et al. 
2016). Therefore, once the pandemic and ensuing eco-
nomic lethargy are over, societies will need to make a crucial 
choice on how to reach the climate goals defined at the COP. 
Global emissions could resume if nations decided to lean 
heavily on fossil energy sources to rebuild their economies 
(Henry et al. 2020; Ou et al. 2020). Under different leader-
ship, strong governmental support for clean energy could tilt 
major economies towards a greener, more climate-friendly 
direction (Barbier 2020; Carbon Brief 2020; Rosenbloom 
and Markard 2020; Andrijevic et al. 2020).

Back in 1992, the Intergovernmental Panel on Climate 
Change (IPCC) forecast carbon dioxide  (CO2) concentra-
tions under their ‘IS92a best guess’ scenario (Nakicenovic 
et al. 2003). These predictions have proved remarkably 
accurate; an analysis of the mean  CO2 concentrations over 
the past thirty years from the two models available at that 
time (for details see IPCC 2020) indicates that they are 
never in error by more than 1.5 ppmv when compared to 
 CO2 observations (NOAA 2020).  CO2 concentrations are 
currently increasing at a rate of around 0.5% per annum; if 
this continues (as they have for the last 50 years; Showstack 
2013), atmospheric concentrations will rise from around 411 
ppmv at current levels (their highest for the last 3 million 
years) to 611 ppmv by 2100 (i.e. 411 ppmv × 0.5% annual 
increase × 80 years). The IS92a scenario, that has proved so 
accurate over the last thirty years, suggests an even more 
pessimistic 713 ppmv (Houghton et al. 1995; IPCC 2020). 
Given the remarkable validation and future projections of 
 CO2 concentrations, humanity cannot say that they have not 
been warned of the impact that their activities are having. 
The scientific consensus is that, given current mitigation 
efforts, the Paris Agreement target of limiting Global Mean 
Surface Temperature (GMST) warming to 1.5 °C (or even 
2 °C; Masson-Delmotte et al. 2018) above pre-industrial 
values will be missed. Even if global warming continues 
to increase at the current rate of around 0.2 °C per dec-
ade, which is below the climate projection levels, the 1.5 °C 
threshold will be exceeded by 2040–50 (Masson-Delmotte 
et al. 2018). The above facts unfortunately lead to the con-
clusion that some governments—rather than reducing emis-
sions drastically—may soon start to consider implementing 
the unpalatable option of solar radiation management geoen-
gineering (Parson 2017; Schubert 2019). Although it may be 
a foul-tasting medicine, it is considered to provide consider-
able relief from the ever-increasing catalogue of damaging 
extreme events (Jones et al. 2018; Irvine et al. 2019; Irvine 
and Keith 2020).

Clear evidence exists that human-induced GMST 
increases have already caused an increase in the frequency 
and intensity of heavy precipitation events at many locations 
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across the globe, as well as a substantial increase of drought 
and flood risks in many arid and semi-arid regions (Myhre 
et al. 2019; Atif et al 2020; Tabari 2020; Yiwei et al. 2020). 
Assessments of projected future climate changes show 
that any further warming will increase the probability for 
unprecedented extreme weather and climate events (Masson-
Delmotte et al. 2018; Myhre et al. 2019). While limiting 
global warming to 1.5 °C may seem only marginally differ-
ent to limiting it to 2 °C, there are substantially larger prob-
abilities of extreme events occurring under 2 °C scenarios 
(Kharin et al. 2018). Indeed, limiting warming to 1.5 °C 
above pre-industrial levels would (a) result in around half 
a billion fewer people being frequently exposed to extreme 
heatwaves, (b) reduce the risk of a further increase in fre-
quency and intensity of heavy precipitation events, and (c) 
substantially reduce the probability of extreme drought and 
water scarcity (Masson-Delmotte et al. 2018). The number 
of category 4 and 5 tropical cyclones is also expected to 
increase in a warmer climate (Jones et al. 2017, 2018; Knut-
son et al. 2020). With global warming of 2 °C, risks across 
the energy, food, and water sectors will increase compared 
to the 1.5 °C target, overlapping spatially and temporally, 
and thereby exacerbate climate-induced hazards, exposures, 
and vulnerabilities. As a result, substantially larger propor-
tions of people would become exposed and susceptible to 
poverty with further warming, especially in Africa and Asia 
(Masson-Delmotte et al. 2018). In addition, the IPCC also 
notes that rising GHG emissions will raise global sea level 
by more than a metre by 2100. Even under more favourable 
scenarios, cities, such as Los Angeles and Miami, might 
face a “100-year” coastal flood every year by 2050 (Masson-
Delmotte et al. 2018). Should humanity fail to prevent the 
loss of major Antarctic and Greenland ice masses, future 
generations would see far worse. Furthermore, a majority of 
current climate models seem to underestimate the “extreme-
ness” of impacts, namely in the agricultural sector, terrestrial 
ecosystems, or heat-related human mortality (Schewe et al. 
2019). Given that without draconian mitigation strategies, 
in the authors’ opinions, both the 1.5 °C and 2 °C targets 
defined in the Paris Agreement are likely be missed, society 
will be exposed to increasing losses and disasters from more 
frequent and intense catastrophic weather extreme events, 
for example, events similar or even more powerful than the 
2019 Hurricane Dorian and Typhoon Hagibis (Tay et al. 
2020).

If greenhouse gas emissions are not reduced fast enough 
to avoid overshooting the Paris targets, then it seems not 
unlikely that future governments may well consider deploy-
ing “geoengineering” (also referred to as “climate inter-
vention or “climate repair”); with the aim to decelerate the 
rate of global warming and to buy more time for mitiga-
tion and adaptation, thereby reducing risk from climate-
related losses. One of the most promising approaches is 

Solar Radiation Management (SRM), which aims to reduce 
the amount of solar radiation reaching the Earth’s surface 
(The Royal Society 2009; Lawrence et al. 2018). Owing to 
considerations of effectiveness, cost, technical feasibility 
and timeliness (e.g. The Royal Society 2009), the two most 
widely discussed forms of SRM are the deliberate injection 
of aerosol particles or their precursors into the stratosphere 
(i.e. stratospheric aerosol injection, e.g. Robock et al. 2009; 
Kravitz et al. 2011) and the deliberate injection of aerosol 
particles into low-lying stratocumulus clouds, with the aim 
to increase their reflectivity (so-called marine cloud bright-
ening, e.g. Jones et al. 2011; Latham et al. 2012; Stjern 
et al. 2018). Both processes are known to cool the planet 
and occur naturally via volcanic emissions of sulphate-aer-
osol-forming sulphur dioxide  (SO2) that are either explosive 
(emissions into the stratosphere, e.g. Soden et al. 2002) or 
passive (emissions into the lower troposphere, e.g. Malavelle 
et al. 2017).

For the last decade, models used in assessing global 
warming have also been making increasingly sophisticated 
assessments of the likely impacts of SRM. Early experi-
ments involved relatively simple idealized reductions in the 
solar output (i.e. simply turned down the sun) to offset the 
entire future global warming from increases in greenhouse 
gases (Kravitz et al. 2011, 2013), with assessments of reduc-
tions of climate extremes in multi-model ensembles (Irvine 
et al. 2019). While useful, these multi-model assessments 
are ultimately limited by their idealized treatment of SRM.

Only the most foolhardy would suggest utilizing offset-
ting an ever-increasing warming via injection of an ever-
increasing veil of stratospheric sulphate aerosol. This 
approach is fallacious for two well-established reasons. First, 
sophisticated stratospheric aerosol modelling has revealed 
less and less cooling per unit of  SO2 injection, therefore 
diminishing returns that underline the need for comprehen-
sive decarbonization during any stratospheric aerosol injec-
tion deployment period (Niemeier and Timmreck 2015). 
Second, such a strategy will neglect the rapid return to the 
non-geoengineered climate should SRM be halted for any 
reason (Jones et al. 2013). Compressing the climate change 
that the Earth would experience under global warming into 
less than a decade would likely devastate many ecosystems 
(Trisos et al. 2018).

In addition to these two major roadblocks for offsetting 
a large amount of global warming by SRM, detailed mod-
elling studies have elucidated how NOT to deploy geoen-
gineering. It has been shown that any stratospheric aerosol 
injection strategy that targets one hemisphere in isolation 
will lead to changes in the cross-equatorial energy and 
moisture flows that could have potentially devastating 
consequences on tropical rainfall patterns and associated 
droughts, floods and hurricane frequency and intensity 
(Haywood et al. 2013; Jones et al. 2017). Efficient marine 
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cloud brightening relies on increasing the cloud albedo 
through a combination of increasing their reflectivity (the 
first indirect effect) and increasing cloud fraction (sec-
ond indirect effect) (Stjern et al. 2018). However, new 
observational evidence suggests that the second indirect 
effect would be strongly buffered in the climate system and 
that it would do little to contribute to increased reflection 
(Malavelle et al. 2017; Toll et al. 2019). Model results sug-
gest that any marine cloud brightening strategy that targets 
a particular cloud deck can not only alter the meridional 
cross-equatorial energy and moisture flows but can induce 
changes in mean-zonal Walker-circulation flows as well, 
with potential devastating consequences for continental-
scale rainfall (Jones et al. 2009). Based on the above, one 
has to conclude that deliberate marine cloud brightening 
has many drawbacks compared to deliberate stratospheric 
aerosol injection. Marine cloud brightening may be inef-
fective at reducing global mean temperatures, and even 
if it should be effective, it will tend to preferentially cool 
ocean areas rather than land areas, and any geographically 
inhomogeneous forcing may force undesirable dynami-
cal changes in circulation and precipitation patterns (e.g. 
Jones et al. 2009, 2011).

Learning from past climate model simulations of how 
not to perform SRM, approaches have matured from ideal-
ized experiments to include assessments where the global 
warming from the various Representative Concentration 
Pathway (RCP) scenarios are limited to the specific cli-
mate targets of the Paris Agreement via stratospheric aero-
sol injections (Tilmes et al. 2016; Jones et al. 2018; Irvine 
et al. 2019; Irvine and Keith 2020). These single-model 
studies suggest that under virtually all Representative 
Concentration Pathway (RCP) scenarios, risks identified 
in key weather and climate extremes (e.g., water stress, 

heatwaves, or the number and intensity of large Atlantic 
hurricanes) are ameliorated significantly.

Net zero carbon emissions clearly have to remain the goal 
to be achieved by humanity, as it remains the only way to 
mitigate climate change safely and sustainably in the long 
run and to reduce the plethora of risks which scale non-
linearly with each degree of mean global warming (Fig. 1). 
However, given that the current mitigation activities are 
wholly incompatible with both of the Paris Agreement tar-
gets, governments will sooner or later have to acknowledge 
the need for back-up plans. In preparation for such an even-
tuality, it is entirely appropriate to develop model-based 
research into the physical science of SRM, to fill remain-
ing gaps in scientific knowledge. The first step would be 
to accept failure at reigning in  CO2 emissions despite dec-
ades of increasingly alarming evidence of global warming 
and its associated impacts. New Geo-Engineering Model 
Inter-comparison Project (GeoMIP) simulations with more 
sophisticated stratospheric sulphur cycle modelling coupled 
to more policy-relevant deployment scenarios are already 
underway (Jones et al. 2020; Kravitz et al. 2020). These 
model simulations are not only able to assess the amount 
of  SO2 needed to achieve meaningful reductions in global 
mean surface temperatures, but also to assess the detailed 
regional and temporal response of the climate system at 
unprecedented detail. Many other aspects would need to be 
addressed from a scientific standpoint to increase confidence 
about possible and hitherto ignored side effects of SRM. 
These should include the search for potential alternatives 
to currently proposed marine cloud brightening and strato-
spheric aerosol injection strategies, state-of-the-art multi-
model assessments of stratospheric aerosol injection scenar-
ios in different seasons, different latitudes and altitudes, and 
at different emission rates. In addition, and despite obvious 

Fig. 1  Global warming 
expected for no mitigation, 
current mitigation scenarios, 
mitigation including aggres-
sive measures to achieve next 
zero carbon emissions and a 
mitigation, and the use of SRM 
to ‘peak shave’ global mean 
temperatures to maintain global 
mean temperatures at 1.5 °C 
as per the Paris COP target ( 
adapted from Jones et al. 2018). 
The analysis of risk in this 
case is based on the frequency 
of extreme precipitation per 
degree of mean global warming 
(Myhre et al. 2019)
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differences, comparisons of model outputs with observations 
from volcanic eruptions as natural analogues (Robock et al. 
2010, 2013; Stoffel et al. 2015) would be a vital component, 
namely regarding the injection and evolution of  SO2 into 
the stratosphere by explosive eruptions as an analogue for 
stratospheric aerosol injection or the natural release of  SO2 
during volcanic degassing events as an analogue for marine 
cloud brightening. Such natural events provide the necessary 
observational data for validating the fidelity of our models.

Even if models should reach sufficient quality, one would 
still need to determine the monetary costs of long-term 
efforts associated with the different SRM methods. From 
a purely socio-economic perspective, the development, 
deployment and operational costs obviously need better 
quantification, but the socio-economic costs that could be 
avoided by reducing the risk of damaging extreme floods, 
droughts, heatwaves or tropical storms also need evaluating. 
While an assessment of physical damage of such disasters 
can be assessed to reasonable accuracy with data from insur-
ance industry, any assessment of the actions of humanity in 
response to an increase in extremes will be far less tangible 
and more difficult to assess. In the case that no political 
action is taken to limit global mean surface temperature 
warming to the targets defined in the Paris Agreement, the 
temperature and water availability of the Mediterranean 
may resemble that of the Sahara Desert by the end of the 
twenty-first century (Jones et al. 2018). Furthermore, under 
the RCP8.5/SSP5-8.5 scenario and using the same metric, 
much of Africa, Australia, Amazonia and South East Asia 
will experience climates that are outside the envelope of 
what currently exists on Earth, they have simply not been 
experienced in human history (Jones et al. 2018; Almazroui 
et al. 2020a, b). Under such circumstances, mass migration 
would seem inevitable with subsequent socio-economic 
impacts that are difficult to predict.

If there is even the slightest chance that governments will 
attempt to deploy SRM in future decades to limit global 
warming and its consequences, then there is a pressing need 
now to do more research in this area to develop a deeper 
understanding. In other words, if antipyretic medication 
might need to be administered, then there needs to be more 
detailed knowledge of its benefits and contraindications. In 
parallel, and as national lockdowns and confinements will 
come to an end after the COVID-19 pandemics, govern-
ments should take immediate measures and a modest frac-
tion of the current global stimulus funds (Andrijevic et al. 
2020) to speed up clean energy transitions, boost energy 
resilience and to put the world on track to achieve the Paris 
Agreement goals, so that humanity would come out of this 
crisis in a much better position than they were before.
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