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ABSTRACT

Categorical probabilistic prediction is widely used for terrestrial and space weather forecasting as well as

for other environmental forecasts. One example is a warning system for geomagnetic disturbances caused

by space weather, which are often classified on a 10-level scale. The simplest approach assumes that the

transition probabilities are stationary in time—the homogeneous Markov chain (HMC). We extend this

approach by developing a flexible nonhomogeneous Markov chain (NHMC) model using Bayesian non-

parametric estimation to describe the time-varying transition probabilities. The transition probabilities are

updated using a modified Bayes’s rule that gradually forgets transitions in the distant past, with a tunable

memory parameter. The approaches were tested by making daily geomagnetic state forecasts at lead times

of 1–4 days and were verified over the period 2000–19 using the rank probability score (RPS). Both HMC and

NHMCmodelswere found to be skillful at all lead timeswhen comparedwith climatological forecasts. TheNHMC

forecasts with an optimal memory parameter of ;100 days were found to be substantially more skillful than the

HMC forecasts, with an RPS skill for the NHMC of 10.5% and 5.6% for lead times of 1 and 4 days ahead,

respectively. The NHMC is thus a viable alternative approach for forecasting geomagnetic disturbances and could

provide a new benchmark for producing operational forecasts. The approach is generic and is applicable to other

forecasts that include discrete weather regimes or hydrological conditions (e.g., wet and dry days).

1. Introduction

In developing physical models for forecasting com-

plex systems, it is often useful to be able to benchmark

skill against that which can be obtained using empiri-

cally based statistical schemes. Furthermore, since the

future states are not perfectly known, it is important for

decision-making to communicate uncertainty in these

forecasts. One way to do this is to issue probabilities of

future states, for example, by running an ensemble of

forecasts using a numerical weather/climate model (e.g.,

Arribas et al. 2011; MacLachlan et al. 2015; Swinbank

et al. 2016), or alternatively by fitting an appropriate

statistical model to past data [e.g., for solar flare forecasts

(Bloomfield et al. 2012); for forecasts of relativistic elec-

trons at geostationary orbits (Baker et al. 1990; Boynton

et al. 2016)].

Motivated by these needs for space weather, this

study presents a novel statistical approach for issuing

probabilistic forecasts of categorical events and will

demonstrate it by application to the problem of daily

forecasting geomagnetic intensity classified into five

levels of intensity. The simplest statistical approach

would be to issue probabilities for each category that

do not change in time; for example, one could estimate

such probabilities by simply using the climatological

long-run frequencies of occurrence of past events.

However, this neglects dependency between states in

successive days—tomorrow’s state is generally expected

to have some dependence on the states that have just

occurred. One widely used approach for capturing such
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conditional dependence is to use a stochastic model

known as a Markov chain. A kth-order Markov chain

assumes that the probability of the next state is a deter-

ministic function of what states have occurred in the past

k days (e.g., Wilks 2006). So, for example, a first-order

Markov chain for a process with five states issues a dif-

ferent set of five probabilities for tomorrow depending

upon which one of the five states occurred today (the

probabilities can be conveniently represented in a 5 3 5

transition probability matrix). Markov chains have been

widely used in meteorology—for example, Markov chain

modeling of wet- and dry-day rainfall sequences (e.g., the

early studies of Gabriel andNeumann 1962; Caskey 1963;

Gates and Tong 1976).

In most Markov chain applications, it is assumed for

simplicity that the transition probabilities are homoge-

neous (i.e., do not change) in time—these are referred

to as homogeneous Markov chain (HMC) models.

However, such a stationarity assumption is not justifi-

able for the majority of meteorological phenomena

that are known to behave quite differently at different

times (e.g., in different seasons) and in different phases

of modes/cycles, etc. A few studies have attempted to

address this by fitting nonhomogeneous Markov chain

(NHMC) models. For example, Woolhiser and Pegram

(1979) accounted for seasonal variations in the daily

transition probabilities of a two-state first-order pre-

cipitation forecast by expressing the time dependence

throughout the year as a Fourier series. In contrast,

Rajagopalan et al. (1996) used a nonparametric kernel

smoothing approach to estimate unknown changes in

daily transition probabilities. Paulo and Pereira (2007)

used both an HMC and an NHMC (with different

transitionmatrix for eachmonth) to forecast changes in

the severity of droughts in Southern Portugal. Our

study goes further by proposing a simple yet more

rigorous nonparametric NHMC that is based on an

autoregressive modification to Bayesian updating.

The remainder of this article is structured as follows.

Section 2 provides more detail about how geomagnetic

storm forecasts are produced, and the limitations of the

climatology of observations used to construct the sta-

tistical models. Section 3 proposes a sequential updating

scheme for calculating a one-step NHMC. Section 4

assesses its forecast skill relative to both a one-step ho-

mogeneous Markov chain and climatology.

2. Application: Probabilistic forecasts of geomagnetic
disturbance categories

The Met Office Space Weather Operations Centre

(MOSWOC) provides a range of operational space

weather forecasts including arrival times of coronal

mass ejections (CMEs), and probabilistic forecasts

for relativistic electron fluences (time-integrated flux),

proton and X-ray fluxes, and geomagnetic disturbance

indices. Geomagnetic atmospheric disturbances can

have severe impacts on critical technical infrastructure

[including positioning with the global positioning sys-

tem positioning, navigation and timing, satellite elec-

tronics, radio communications, and the electricity grid],

and are quantified using a range of indices/scales. Many

operational space weather centers use the planetary

K-scale (Kp), which is derived from the maximum

fluctuations of magnetic field horizontal components

observed by amagnetometer during a 3-h interval (e.g.,

Bartels et al. 1939). The planetary 3-h-range indexKp is

the mean standardized K-index from 13 geomagnetic

observatories between 448 and 608 northern or south-

ern geomagnetic latitude. The scale is ‘‘quasi loga-

rithmic’’ and ranges from 0 to 9, with 0 being no

disturbance and values greater than 5 indicating the

occurrence of a geomagnetic storm. For this reason,

MOSWOC characterizes geomagnetic storms using the

National Oceanic and Atmospheric Administration

(NOAA) G-scale (i.e., G 5 Kp 2 4) in which G 1, G 2,

G 3, G 4, and G 5 are used to signify Kp 5 5, Kp 5 6,

Kp 5 7, Kp 5 8, and Kp 5 9, respectively (http://

www.swpc.noaa.gov/noaa-scales-explanation). To re-

duce the number of states, MOSWOC combines G 1

and G 2 events into a G 1/2 category. In this work, we

also include the conjugate probability to the G 1/2

category, which is the probability that the disturbance

does not exceed the G 1 threshold (i.e., ,G 1), effec-

tively making a five-category forecast. Figure 1 shows

the time series of daily maximum geomagnetic distur-

bance from January 1998 to March 2019, as measured

on the G-scale, with the corresponding histogram

showing the climatological frequency of each category

on a logarithmic scale. It is evident that the vast ma-

jority of days are in the low activity state (,G 1), and

that the more excited states are increasingly rare, with

only a few G 5 events recorded since 1998.

Geomagnetic disturbances are the result of the phys-

ical interaction between the extreme driving of solar

plasma (i.e., the solar wind), arising chiefly from CMEs,

and Earth’s magnetic field. It is possible to predict the

passage of CMEs (and other changes in the solar wind)

from Sun to Earth. However, because of our limited

understanding of the interaction between the solar wind

and Earth’s geomagnetic field, there are currently no

physics-based numerical models that can be used to

accurately predict the occurrence of significant geo-

magnetic disturbances. It is therefore necessary for

prediction of these disturbances to make use of empir-

ical statistical approaches based on past data. Inspection
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of the geomagnetic disturbance data suggests that the

values on a given day are conditional on the previous

day. For example, fluctuations in the geomagnetic field

resulting from the arrival of an Earth-directed CME can

take at least a day to relax. This behavior suggests it may

be possible to produce skillful statistical forecasts based

on current conditions and an understanding of the

likelihood of the system transitioning between different

states. For this reason, statistical forecasting of geo-

magnetic disturbances suggests a Markov modeling ap-

proach. Currently, methods for producing statistical

geomagnetic storm forecasts include Auto-Regressive

Moving Average (ARMA) models (e.g., Thomson et al.

2001) and neural networks (NN) (e.g., Thomson et al.

1995; Thomson 1996; Boberg et al. 2000).

As described above, MOSWOC issues forecasts for

the probability of exceeding each of the following four

G-scale thresholds: G 1/2, G 3, G 4, and G 5. These

categorical forecasts are produced every day for the next

4 days and are based on solar wind prediction models,

existing ARMA or NN forecasts (mentioned above),

but also rely heavily on the forecasters’ experience

and knowledge. Sharpe and Murray (2017) explored

MOSWOC forecast performance during 2015–16. The

MOSWOC forecasts for 1, 3 and 4 days ahead usually

performed better than a benchmark forecast based

on a rolling climatology from the previous 180 days,

and 2-day-ahead forecasts usually performed slightly

worse than the benchmark. However, the difference

between the MOSWOC and benchmark forecasts, or

between the Day 1–4 MOSWOC forecasts, was usu-

ally not statistically significant. Future work will explore

the verification of MOSWOC geomagnetic disturbance

forecast relative to a range of benchmarks, building on

the work of Sharpe and Murray (2017).

High intensity disturbances are generally more fre-

quent during the solar maximum than near the solar

minimum, although the times of peak occurrence are not

perfectly aligned with the solar cycle (see Fig. 2). The

main physical reason for this relationship is that CMEs

are stronglymodulated by the;11-yr solar cycle. Phases

of the solar cycle are identifiable by numbers of sunspots

on the surface of the Sun, with the solar maximum corre-

sponding to larger numbers and vice versa. Direct obser-

vations of sunspots since the 1700s and indirect estimates

based on dendroclimatology indicate substantial solar

variability from intercycle (i.e., 11-yr) time scales to mil-

lennia and beyond (e.g., Owens et al. 2017). Recent ob-

servations indicate that adjacent solar cycles can be

sufficiently different from each other that averaging

over only a few cycles can producemisleading results when

applied to any individual cycle. Accordingly, modeling the

solar cycle parametrically using a particular mathematical

function is not guaranteed to produce optimal results. It is,

therefore, necessary to take account of this nonstationarity

in amore adaptive nonparametric way. For clarity, we note

that Fig. 2 demonstrates the existence of natural variability

in the occurrence of geomagnetic disturbances and its as-

sociationwith sunspot numbers—we do not use sunspots to

predict geomagnetic disturbances.

3. Markov Chain modeling

This section describes the key concepts and notation

in first-order Markov chain modeling and then intro-

duces our new nonhomogeneous approach.

a. First-order Markov Chain models

Consider a system that at any time t can be in any of

J . 1 possible states {1, 2, . . . , J} denoted by variable

FIG. 1. (left) Time series of maximum geomagnetic disturbance each day from January 1998

to March 2019, as measured on the G-scale. (right) Histogram showing the corresponding total

counts (on a logarithmic scale) in each category.
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X(t). Following Sung (2014), let the J 3 J random

matrix N(t) denote the number of transitions between

states of this single chain at time t 2 1 and t, [i.e.,

Nij(t) 5 1 when X(t 2 1) 5 i and X(t) 5 j, and 0 oth-

erwise]. The expectation of random matrix N(t) gives

the J 3 J transition probability matrix P(t) that con-

tains conditional probabilities Pij(t) 5 Pr[X(t) 5
jjX(t 2 1) 5 i]. A first-order Markov chain model

assumes that the conditional probability of X(t) 5 j

given any past sequence is only determined by the

previous state; that is, Pr[X(t)5 jjX(t2 1),X(t2 2), . . .]5
PX(t21)j(t). HomogeneousMarkov chain models assume

that P(t) 5 P is constant in time, whereas nonhomo-

geneous chain models allow P(t) to vary in time. The

mth-step-ahead probability forecast of the states of

X(t1m2 1) made at time t2 1 is given by theX(t2 1)

th row of Pm(t) (the mth power of the transition matrix

at time t).

b. Frequentist estimation of transition probabilities

The simplest approach for estimating P for homoge-

neous chains is to approximate the expectation of the

transition counts by the long-term sample mean of all

previously observed transitions:

P̂(t)5
1

t2 1
�
t21

t051

N(t0) . (1)

Figure 3 shows these relative frequencies of transitions

between all possible pairs of the five states on the daily

G-scale observations from 1998 to 2019. These estimates

of daily transition probabilities demonstrate that all

states are accessible, and that all transitions have been

observed since 1998. However, the daily probability of

the system transitioning out of the inactive (,G 1) state

is small, being ;0.1, with decreasing probabilities of

transitioning to more excited states (i.e., larger upward

transitions have a correspondingly lower probability).

Furthermore, the probability of the system staying in the

same state tomorrow as today also decreases rapidly in

the more active states (e.g., 0.071 for G 5 vs 0.38 for G

1/2). For the active states, the daily probability of tran-

sitioning to a less excited state exceeds the probability of

transitioning to a more excited state.

This frequentist approach has the disadvantage that it

can produce zero probabilities (i.e., impossible transi-

tions) for states where no transitions have yet been ob-

served (e.g., between rare states). It also ignores any

prior beliefs one may have about the transition matrix

before observing the data. For example, one may be-

lieve that transitions to more extreme states should be

less likely than transitions to less extreme states. To in-

corporate such beliefs, one can use a Bayesian estima-

tion approach.

c. Bayesian updating for a homogeneous processes

By use of Bayes’s theorem, observed values ~ni of the

transition vector ~Ni can be used to sequentially update

uncertain beliefs about probabilities ~Pi. Suppose, with-

out loss of generality, that the system is in state i at time

t 2 1 [i.e. X(t 2 1) 5 i]. The number of transitions to

other states in the next time step is then given by random

J-vector ~Ni(t)5 (Ni1, Ni2, :::, NiJ), which may be con-

sidered to be a single random draw from the multino-

mial distribution ~Ni(t);Multi[~Pi(t)] having probability

mass function Pr(~Ni 5 n)5Pn1
i1P

n2
i2 . . .P

nJ
iJ (a generaliza-

tion of the Bernoulli distribution to J . 2 categories).

If one then assumes that the prior probabilities have

a Dirichlet distribution (Kotz et al. 2000), the poste-

rior distribution – the product of the prior and the

likelihood–is also Dirichlet distributed:

FIG. 2. Comparison of (top) the monthly number of geomagnetic

disturbances (of all magnitudes), and (bottom) themean number of

sunspots each month from January 1998 to May 2018 (https://

solarscience.msfc.nasa.gov/SunspotCycle.shtml).
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f (~P
i
)}P

ai121

i1 P
ai221

i2 . . . P
aiJ21

iJ prior

Pr(~N
i
5 n

i
j~P

i
)5P

ni1
i1 P

ni2
i2 . . . P

niJ
iJ likelihood

/

f (~P
i
j~N

i
5 n)}P

ai1211ni1
i1 P

ai2211ni2
i2 . . .P

aij211niJ
iJ posterior .

In other words, the Dirichlet distribution is the conju-

gate prior for the multinomial distribution (Sung 2014).

This Bayesian updating can be written very simply as

a(t 1 1)5 a(t)1 n(t), where the J3 Jmatrix a consists

of Dirichlet coefficient elements {aij}. It represents a

random walk in Dirichlet coefficients with discrete

nonnegative steps determined by the transitions be-

tween successive days.

The distribution of the transition probability Pij from

state i to state j is the marginal distribution of the

Dirichlet distribution, which is known to be the beta

distribution [i.e., Pij ; beta(aij, si 2 aij), where si 5�jaij
is the sum over column elements for row i]. The expec-

tation of this distribution is E(Pij) 5 aij/si, which con-

verges to the long-term-relative frequency after many

transitions from state i. The variance given by

Var(P
ij
)5 a

ij
(s

i
2 a

ij
)/s2i (si 1 1)

converges to zero (i.e., perfectly precise estimates) after

many transitions since the denominator increases faster

than the numerator. Confidence intervals on transition

probabilities can be obtained by considering quantiles of

the beta distributions described above (e.g., as shown

later in Fig. 5).

d. Bayesian updating for nonhomogeneous processes

Bayesian updating is unsuitable for nonhomogeneous

processes since, as more observations are made, the

sums for each row of the a matrix increase indefinitely

and so become dominated by past transitions rather

than being able to adapt to recent changes in transition

probabilities. One pragmatic approach for avoiding

this problem is to include a ‘‘discounting’’ factor l,

which allows older data to be exponentially down-

weighted (Bertuccelli and How 2008). For example,

one could modify the updating equation to be the first-

order autoregressive process a(t 1 1) 5 la(t) 1 n(t)

where l 5 e21/t and t . 0 is an e-folding memory time

scale (in days). When there are no transitions from a

state, the row of a for that state relaxes to the null

vector. More generally, one could consider relaxing

back to any preferred reference beliefs a0 using

a(t1 1)2 a
0
5 l[a(t)2a

0
]1 n(t) . (2)

FIG. 3. Transition probability to and from each state from one day to the next, estimated from

daily observations (January 1998–March 2019). To help to illustrate the most dominant tran-

sitions, the line thickness is proportional to the probability.

TABLE 1. Transition probabilities estimated from the relative

frequencies of transitions between observed daily maximum geo-

magnetic disturbance data over the whole period 1998–2019.

Today

,G 1 G 1/2 G 3 G 4 G 5

Tomorrow ,G 1 0.905 0.605 0.403 0.192 0.214

G 1/2 0.087 0.356 0.455 0.462 0.429

G 3 0.006 0.028 0.104 0.115 0.071

G 4 0.002 0.006 0.013 0.192 0.214

G 5 0.001 0.004 0.026 0.038 0.071
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In what follows, we have chosen the reference to

be a multiple of the climatological probabilities p̂

for the states estimated by fitting a homogeneous

Markov chain to the entire dataset (1998–2019), that is,

a0 5 k(p̂, p̂, p̂, p̂, p̂)T. In the limit that the dimension-

less k / 0, the reference state also tends to zero,

while for large k (.1000) the daily updates to the

transition probability are fractionally very small.

Experimentation shows that k ; 10 allows the non-

homogeneous Markov chain to behave similarly to

the homogenous Markov chain if no transitions have

been observed for a long time, but with the freedom

to adapt to time-varying transition probabilities by

exponentially weighting past transitions.

4. Results

The method outlined above has been applied to

forecasting daily G-scale data observed over the period

1998–2019 [the data are freely available online from

the NOAA Space Weather Prediction Center (ftp://

ftp.swpc.noaa.gov/pub/indices/old_indices/)]. This period

experienced a wide range of geomagnetic states since it

contained a substantial fraction of the previous solar cycle

23 (1996–2008) and the current solar cycle 24 (from 2008 to

the present).

Table 1 shows the HMC transition probabilities esti-

mated over the entire period 1998–2019. Note that the

probability of a transition from a low to a high distur-

bance state is small (e.g., the daily probability of a

transition from ,G 1 to G 3 is ;0.006). Furthermore,

TABLE 2. Climatological probabilities for each G state estimated

from the relative frequencies of transitions over the whole period

1998–2019.

,G 1 G 1/2 G 3 G 4 G 5

0.858 0.127 0.0099 0.0033 0.0018

FIG. 4. Variation of RPS with t and k for lead times of 1–4 days, comparing NHMC with both HMC and cli-

matology during the validation period (2000–19). The lowest RPS for the NHMCoccurs for k; 10 at all lead times,

and for t; 100 days at a lead time of 1 day, with t; 70 days for a 2-day lead time, and t; 60 days for lead times of 3

and 4 days. For both larger and smaller values of t, the performance of the NHMC tends asymptotically toward

the HMC.
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the highest transition probabilities are those from a high

state to the lowest state; for example, the daily proba-

bility of a transition from G 5 to G 1/2 is ;0.43. Table 2

gives the climatological probabilities of the states esti-

mated by the relative frequencies of each category over

the whole period. The probabilities indicate that nearly

99% of the days were in the lowest two categories.

The parameters in the HMC and NHMCmodels were

sequentially updated each day. The HMC transition

probabilities were updated daily by taking the time mean

of all previous observed transitions since 1 January 1998.

TheNHMCmodelwas updated daily usingEq. (2) starting

from an initial state of a that had all elements set to 1 on

1 January 1998. The reference state was taken to be a

multiple of the climatological probabilities of the states

given in Table 2.Daily probability forecasts of states 1, 2, 3,

and 4 days ahead issued by the twomodels were evaluated

using the ranked probability score (RPS; Jolliffe and

Stephenson 2011) over a validation period from 1 January

2000 to 31 March 2019, which allowed for a short burn-in

training period from 1 January 1998 to 31 December 1999.

The best values of parameters t and k for the NHMC

model were obtained by finding those that gave smallest

RPS calculated over the validation period. The use of data

from the validation period to train the NHMC model po-

tentially leads to an overestimate in the evaluated perfor-

mance of thismodel.Although out-of-sample validation or

cross validation might appear to be fairer, it is nonetheless

problematic to implement because the NHMC model re-

lies upon capturing the serial dependency of past states in

order to estimate evolving transition probabilities. It

would, therefore, be of interest in future studies to try

to develop more objective out-of-sample procedures

for estimating these two parameters.

Figure 4 shows the RPS for forecasts at each lead time

as a function of t and k. For 1-day ahead forecasts, there

is a clear minimum in RPS at t ; 100 days and k ; 10,

and for larger t values the NHMC performance tends

toward more homogeneous behavior as to be expected.

More generally, the optimal value of t appears to be

positively correlated with k, and dependent on lead

time. For lead times of 2–4 days, small k results in

similar optimal values of t and a comparable RPS.

Experimentation shows that t 5 100 days and k 5 10

appear to be roughly optimal in allowing the NHMC

to behave similarly to the HMC if no transitions have

been observed for a long time, but with the freedom to

adapt to time-varying transition probabilities. The

following results were obtained with this choice of

parameter values.

The performance of the forecasts is summarized by

the RPS values and RPS skill scores (RPSS) given in

Table 3, which gives the RPS values over the validation

period of the HMC and NHMC models, and compares

them with RPS values of no-skill climatological fore-

casts (made by issuing constant probabilities for each

state) to obtain skill scores. The scores are naturally

small because ;86% of the days are spent in the lowest

state (,G 1). Nevertheless, Table 3 and Fig. 4 demon-

strate that the HMC is more skillful than climatology for

lead times of 1 day, with a corresponding RPS skill of

100 3 (1 2 0.0316/0.0353) 5 10.5%; the HMC perfor-

mance then rapidly converges to climatology at longer lead

times. The NHMCoutperforms the HMC at all lead times

and remains skillful at longer lead times, with an RPS skill

at day 4 of 100 3 (1 2 0.0334/0.0354) 5 5.6%.

We use the statistical test developed by Diebold and

Mariano (1995) to compare the predictive accuracies of

the three forecast models (i.e., NHMC, HMC and clima-

tology), following the procedure outlined byGilleland and

Roux (2015). TheDiebold andMariano test is appropriate

because it makes no assumptions about the distribution of

forecast errors, and incorporates temporal autocorrela-

tions, and can be applied even when the forecast models

are correlatedwith each other. In this case,we compare the

dailyRPS values across the validation period (2000–19) for

TABLE 3. Rank probability score and rank probability skill score for lead times of 1–4 days across the verification period (2000–19).

The predictions from the HMC and NHMC (t 5 100 days; k 5 10) models are compared with climatology.

Climatology HMC HMC RPSS NHMC RPS NHMC RPSS

Day 1 0.0353 0.0316 10.5% 0.0307 13.0%

Day 2 0.0353 0.0346 1.98% 0.0331 6.2%

Day 3 0.0353 0.0351 0.57% 0.0334 5.4%

Day 4 0.0354 0.0353 0.28% 0.0334 5.6%

TABLE 4. The p values for the Diebold and Mariano (1995) test

comparing daily RPS values for each pair of forecast models, at

lead times of 1–4 days across the verification period (2000–19). The

predictions from the HMC and NHMC use t 5 100 days and

k 5 10.

NHMC/HMC NHMC/Climatology HMC/Climatology

Day 1 4.12 3 1026 1.08 3 10211 1.25 3 10211

Day 2 1.19 3 1026 5.63 3 1027 2.00 3 1024

Day 3 1.43 3 1026 8.03 3 1027 2.76 3 1024

Day 4 1.43 3 1026 1.62 3 1026 1.38 3 1023
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pairs of forecast models, under the null hypothesis that the

model forecasts are equally accurate on average. The p

values given inTable 4 show that the null hypothesis can be

rejected at the 1% level for each comparison and lead

time. This supports the conclusion that the NHMC is, on

average, more skillful than the HMC, which is also more

skillful than the climatology.

Figure 5 shows the time evolution of the transition

probabilities estimated using the NHMCmodel over the

whole period. The gray shading shows the 95% confi-

dence interval calculated from the 2.5th and 97.5th

percentiles of the beta distribution for each transition

probability (i.e., the appropriate marginals of the

Dirichlet distribution). The panel matrix shows the

FIG. 5. Time evolution of all NHMC transition probabilities for 1998–2019, for t 5 100 days and k5 10. The solid black lines represent

the NHMC estimates of the transition probabilities, and the gray shading indicates the central 95% confidence interval constructed from

the 2.5th and 97.5th percentiles of the beta distribution for each transition probability. The panel matrix shows the probabilities of

transitions from rows to columns. The rows, from top to bottom, and columns, from left to right, both correspond to,G1, G 1/2, G 3, G 4,

and G 5. For example, the panel in the first row and second column shows the probability of a transition from state,G 1 to G 1/2 and the

panel in the third row and fourth column shows the probability of a transition from state G 3 to G 4.
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probabilities of transitions from rows to columns,

with the rows, from top to bottom, and the columns,

from left to right, both labeled as ,G 1, G 1/2, G 3, G 4,

and G 5. For example, the panel in the first row and

second column shows the probability of a transition

from state ,G 1 to G 1/2; the third row and fourth

column shows the probability of a transition from

state G 3 to G 4.

The discontinuities in the time series are the result

of updates to the probability following an event that

resulted in a geomagnetic disturbance. The rarity of

discontinuities for the higher states illustrates the

limited data on which to base the corresponding

transition probabilities, which is also evident in the wider

95% confidence intervals. The exponential decay for these

rare transitions following the discontinuity illustrates the

relaxation back to the reference state estimated using

the HMC. Furthermore, the temporal variations found in

the different transition probabilities do not follow a single

formnor do they closelymatch a known forcing such as the

solar sunspot cycle.

Figure 6 shows examples of the daily forecasts based

on climatology, HMC, and NHMC, with observed geo-

magnetic states given by NOAA-SWPC data. For clar-

ity, we have aggregated forecast probabilities for the G

3–G 5 states to show the daily probability of high-impact

geomagnetic disturbances. In the top panel, the clima-

tological forecast probability decays rapidly from the

uniform prior initial conditions to a more realistic long-

term climatological mean probability. The initial con-

ditions assume that each of the five categories are

equally likely, giving an unrealistically high daily prob-

ability of 60% for G 3–G 5 events. However, within 1–2

years, enough events have occurred for the climatology

forecast to be comparable to the sum of the G 3–G 5

probabilities in Table 2 (i.e., 1.5%).

The exponential decay described above is also evident

in the middle and bottom panels; however, both the

HMC and NHMC capture key natural variations of the

geomagnetic disturbance which cannot be reproduced

by the climatology forecast, such as the relatively active

phase during 2000–07. This is particularly clear in the

FIG. 6. Comparison of daily forecasts, shown in black, based on (top) climatology, (middle)

HMC, and (bottom) NHMC for t 5 100 days and k 5 10, with observed geomagnetic states

shown in gray. The G 3–G 5 states have been aggregated to demonstrate the comparison more

clearly.
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short-term persistence which occurs during the days

after a disturbance.

There are also important differences between the be-

havior of the HMC and the best-performing NHMC. In

particular, the HMC forecast probabilities evolve rapidly

from their initial uniform configuration toward the ho-

mogeneous values given in Table 1. The mathematical

construction of the HMC means that each subsequent

update to the Dirichlet parameters results in fractionally

smaller changes to the transition probabilities. As such, by

the end of the validation period, updates to the Dirichlet

parameters become negligible and the transition matrix

becomes practically constant. In contrast, since theNHMC

is formulated to down-weight older information, it con-

tinues to closely follow natural variations in the geo-

magnetic disturbances throughout the validation period.

TheNHMC is also seen to exponentially relax toward the

predefined reference state during less active periods.

Therefore, unlike the HMC, the NHMC forecast accu-

racy will not degrade over time.

5. Conclusions

This study has proposed and demonstrated a simple

yet flexible nonhomogeneous Markov Chain approach

for creating probabilistic forecasts of categorical events,

which provides an alternative data-driven benchmark

for physics-based models. The approach captures per-

sistence in the series of events by assuming that the

probabilities of the next state depend on the current

state. Furthermore, transition probabilities are allowed

to vary slowly over time in order to account for possible

modulation by unknown drivers.

The approach has been demonstrated here by appli-

cation to geomagnetic storm forecasts. Rank probability

scores show that the nonhomogeneous forecasts out-

perform those made with a homogeneous Markov chain

for all lead times from 1 to 4 days. There is substantially

improved skill when using a memory time scale of

around 100 days compared to either shorter or longer

memory time scales. There is also clear evidence of

temporal evolution in the transition probabilities that is

not directly related to the solar cycle. This probabilistic

categorical approach is novel compared tomore stationary

approaches, such as ARMA models (e.g., Thomson et al.

2001) and neural networks (e.g., Thomson et al. 1995;

Thomson 1996; Boberg et al. 2000). For operational fore-

casting, it would be of interest to combine this statistical

approachwithmore physical information about the speeds

and arrival times CMEs, which are known to trigger the

onset of transitions to higher G-states.

The approach is also relevant to other applications in

meteorology and other fields, for example, in forecasting

discrete weather regime states, or wet and dry days of

relevance for hydrology. It would also be of interest to

extend the model to allow the memory time scale to be

longer for states that occur less frequently where there is

less recent transition information. At a more fundamental

level, it would be of interest to better understand how the

autoregressive updating of theDirichlet parameters can be

interpreted consistently using Bayes’s theorem.
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