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ABSTRACT
Numerical climate models are used to project future climate change due to both anthropogenic and natural
causes. Differences between projections from different climate models are a major source of uncertainty
about future climate. Emergent relationships shared by multiple climate models have the potential to
constrain our uncertainty when combined with historical observations. We combine projections from 13
climate models with observational data to quantify the impact of emergent relationships on projections of
future warming in the Arctic at the end of the 21st century. We propose a hierarchical Bayesian framework
based on a coexchangeable representation of the relationship between climate models and the Earth
system. We show how emergent constraints fit into the coexchangeable representation, and extend it to
account for internal variability simulated by the models and natural variability in the Earth system. Our
analysis shows that projected warming in some regions of the Arctic may be more than 2 ◦C lower and
our uncertainty reduced by up to 30% when constrained by historical observations. A detailed theoretical
comparison with existing multi-model projection frameworks is also provided. In particular, we show
that projections may be biased if we do not account for internal variability in climate model predictions.
Supplementary materials for this article, including a standardized description of the materials available for
reproducing the work, are available as an online supplement.
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1. Introduction

Scientific inquiry into complex systems such as the climate
naturally leads to multiple models of a system. The situation
in climate science is unusual since different climate models are
not treated as incompatible or competing. Instead, each model
is treated as a plausible representation of the climate system
(Parker 2006). This has led to the use of multi-model ensembles
to quantify the uncertainty in projections of future climate
introduced by choices in model design, usually referred to sim-
ply as model uncertainty (Tebaldi and Knutti 2007). Statistical
methods are required to interpret projections from multi-model
ensembles and to make credible probabilistic inferences about
future climate change.

In addition to model uncertainty, projections of future cli-
mate are subject to a number of other sources of uncertainty.
Model inadequacy refers to differences between the models and
the Earth system, for example, missing processes (Craig et al.
2001; Stainforth et al. 2007). We intuitively think of climate as
the distribution of weather (Stainforth et al. 2007; Stephenson
et al. 2012). Natural variability refers to the range of possible
conditions we might experience and is sometimes referred to
as sampling uncertainty, since we only observe a single actual-
ization of the Earth system (Chandler 2013). Climate models
attempt to simulate natural variability by performing multiple
simulations from slightly different initial conditions. This is
known as internal variability or initial condition uncertainty.
Climate projections are also subject to forcing uncertainty and
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parameter uncertainty. Forcing uncertainty arises due to uncer-
tainty about future emissions of greenhouse gases, both anthro-
pogenic and natural. Parameter uncertainty refers to uncer-
tainty about choice of the internal parameters in climate models
(Collins 2007). Forcing uncertainty is usually circumvented by
making projections rather than predictions of future climate,
that is, predictions conditioned on an assumed future emissions
scenario (e.g., Moss et al. 2010). The computational cost of
running sufficiently large perturbed-parameter experiments to
span the full range of parameter uncertainty for a single climate
model can be prohibitive. Therefore, multi-model ensembles
usually consist of a set of “best estimates,” that is, a single version
of each model with the internal parameters fixed (Knutti et al.
2010).

In this article, we develop a hierarchical Bayesian frame-
work for combining projections from multiple models, applied
to projecting climate change in the Arctic at the end of
the 21st century. The proposed framework separates model
uncertainty and model inadequacy, and accounts for inter-
nal variability and natural variability in future projections. In
addition, we are able to constrain projections of future cli-
mate using historical observations (where suitable constraints
have been identified) while accounting for uncertainty in the
observations.

To make projections of future climate from multi-model
ensembles, it is necessary to make assumptions about the rela-
tionship between climate models and the Earth system. One
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widely used assumption is that skill in reproducing past climate
implies skill in projecting future climate. Climate scientists have
long recognized that no single model will perform best for all
variables or in all regions (Lambert and Boer 2001; Jun, Knutti,
and Nychka 2008). Various approaches have been proposed for
weighting projections from multiple climate models based on
their ability to reproduce past climate, these include heuris-
tics (Sanderson, Knutti, and Caldwell 2015a, 2015b, Knutti
et al. 2017), multiple regression (Greene, Goddard, and Lall
2006; Bishop and Abramowitz 2013), pattern scaling (Shiogama
et al. 2011; Watterson and Whetton 2011), and Bayesian model
averaging (Min and Hense 2006; Bhat et al. 2011). However,
Weigel et al. (2010) demonstrated that weights that do not
accurately reflect the projection skill of the models can lead
to less reliable projections than weighting all models equally.
Long-term climate projection involves extrapolation to states
that have not been observed in recent Earth history. Therefore,
the ability to reproduce observed data does not guarantee skill
for projecting future events (Oreskes, Shrader-Frechette, and
Belitz 1994). However, we should certainly be cautious when
interpreting projections from models that are not able to ade-
quately reproduce observed data, although how such perfor-
mance should be quantified remains an open question (Knutti
et al. 2010).

Weighting all models equally implies that each climate model
performs equally well for simulating future climate change. This
has led to the alternative assumption that any bias between
the models and the Earth system remains approximately con-
stant over time (Buser et al. 2009). Under this assumption, two
main interpretations of multi-model experiments have emerged
(Stephenson et al. 2012). The “truth plus error” approach treats
the output of each model as the “true” state of the Earth system
plus some error that is unique to each model (Cubasch et al.
2001; Tebaldi et al. 2005; Furrer et al. 2007; Smith et al. 2009;
Tebaldi and Sansó 2009). The “exchangeable” approach treats
the Earth system as though it were just another climate model,
that is, our inferences about the future climate of the Earth
system should be the same as for a climate model with an
identical historical climate (Räisänen and Palmer 2001; Annan
and Hargreaves 2010, 2011). Neither interpretation is entirely
satisfactory. The truth-plus-error interpretation implies that
we can improve the precision (but not necessarily the accu-
racy) of our projections of future climate simply by adding
more models to our ensemble (Annan and Hargreaves 2010).
The exchangeable interpretation ignores the inherent differ-
ences between computer models and the physical systems they
seek to represent (Craig et al. 2001; Kennedy and O’Hagan
2001).

Both the truth-plus error and exchangeable approaches
acknowledge differences between models, and between individ-
ual models and the Earth system. What is missing are differences
from the Earth system that are common to all models. All
climate models are based on a shared but limited knowledge
of the Earth system and face similar technological constraints
(e.g., similar numerical methods, available CPU time, memory,
etc.), so common limitations will inevitably occur (Stainforth
et al. 2007). To address this issue, Chandler (2013) and Rougier,
Goldstein, and House (2013) independently introduced the idea
of representing common model errors as a discrepancy between

the expected state of the Earth system and a “consensus” or
“representative” model. This has the effect of separating model
uncertainty (differences between models) from model inad-
equacy (common differences between models and the Earth
system).

Historical observations have been used in a variety of ways
to constrain projections from individual models (Collins et al.
2012). However, if systematic relationships existed between the
historical states and climate responses simulated by multiple
models, then it might be possible to constrain projections of
future climate in a multi-model ensemble without assigning
weights to individual models. One of the earliest examples of
such a relationship was noted by Allen and Ingram (2002)
who referred to it as an “emergent constraint,” since it emerged
from analysis of a collection of model simulations rather than
by direct calculation based on theory. There is now a grow-
ing body of evidence that such relationships may exist at the
local or process level, and even at the global level (Hall et al.
2019). In general, we prefer the term “emergent relationship.”
We reserve the term “emergent constraint” for when physical
insight indicates that the relationship should also hold in the
Earth system. Figure 1 shows an example of a well understood
emergent constraint on surface temperature in the Arctic due
to albedo feedbacks caused by variations in sea-ice coverage
simulated by the models (Bracegirdle and Stephenson 2012).
Other examples of emergent relationships have been found in
the cryosphere, atmospheric chemistry, the carbon cycle and
various other areas of the Earth system (Brient 2020). The
constraint on Equilibrium Climate Sensitivity proposed by Cox,
Huntingford, and Williamson (2018) is a rare example that
was derived from theory, then found to be present in a col-
lection of model simulations. Simple linear regression is often

Figure 1. Near-surface warming in the Canadian Arctic Archipelago. Thirty-year
mean temperature change between 1975–2005 and 2069–2099 as simulated by
an ensemble of 13 climate models under the RCP4.5 mid-range mitigation scenario,
for a 2.5◦ × 2.5◦ grid box centered on Melville Island (76◦N,111◦W). Crosses mark
the mean climate and climate response simulated by each model. Whiskers indicate
the range of 30-year mean outcomes from the initial condition runs of each model.
The dashed line indicates the mean climate and climate response of the ensemble.
The solid line is a simple linear regression estimate of the emergent relationship
between the climate response and the historical climate. The dotted line indicates
the observed historical climate and projected climate response given the estimated
emergent relationship.



JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 3

used to estimate emergent relationships. However, projection
either implicitly treats the Earth system as exchangeable with
the models (e.g., Bracegirdle and Stephenson 2012, 2013), or
simply excludes all models that fall outside the plausible range
of the observations (e.g., Hall and Qu 2006; Qu and Hall
2014).

Multi-model ensembles are sometimes known as “ensembles
of opportunity” since models are not systematically selected to
span model uncertainty, and cannot be considered a random
sample from some larger population (Stephenson et al. 2012).
In particular, several research centers maintain more than one
model, and models from different centers often share common
components (Knutti, Masson, and Gettelman 2013). Similar
models are likely to give similar outputs, leading to clustering
that could result in biased inferences if not properly accounted
for. This is especially important when analyzing emergent con-
straints since a large cluster of outlying models could strongly
influence any regression relationship. Therefore, care is required
to ensure that our assumptions in representing model uncer-
tainty and inadequacy are satisfied.

Model uncertainty/inadequacy tends to dominate other
sources of uncertainty in long-term climate projections
(Hawkins and Sutton 2009; Yip, Ferro, and Stephenson 2011).
However, there is now a significant body of work highlighting
the importance of internal variability and natural variability
(Deser et al. 2012; Thompson et al. 2015; McKinnon and
Deser 2018). Several studies have shown that the contribution
of internal variability is nonnegligible compared to model
uncertainty for some variables at the global scale, and
particularly at the regional scale (Hawkins and Sutton 2009,
2011; Northrop and Chandler 2014). The internal variability
simulated by each model is indicated by the whiskers in
Figure 1. Current frameworks for multi-model inference often
ignore internal variability and select a single initial condition
run from each model (e.g., Tebaldi et al. 2005; Smith et al.
2009; Bishop and Abramowitz 2013) or take the average
over all runs from each model (e.g., Watterson and Whetton
2011; Bracegirdle and Stephenson 2012). Measurement and
representation errors in our observations of the climate system
can also contribute significant observation uncertainty. Some
authors have accounted for observation uncertainty (e.g.,
Bowman et al. 2018; Cox, Huntingford, and Williamson
2018), but it is frequently ignored and plays an important
role if we want to constrain future projections using past
observations.

The remainder of this study proceeds as follows. Section 2
outlines the data used to project future warming in the Arc-
tic. In Section 3, we develop a hierarchical Bayesian frame-
work for inferring time mean future climate from multi-
model experiments for any future time period and location
for which we have model simulations, conditional on simu-
lations of a recent period for which we have corresponding
observations. We do not attempt to account for spatial cor-
relation between locations or temporal variation within each
time period. Section 4 compares our proposed framework
to existing multi-model ensemble approaches. In Section 5,
we apply our framework to the projection of future climate
change in the Arctic. We end with concluding remarks in
Section 6.

2. Future Climate Change in the Arctic

The magnitude of the projected warming in the polar regions
is much greater than at lower latitudes (Holland and Bitz 2003).
We combine outputs from 13 climate models participating in
the World Climate Research Programme’s Coupled Model Inter-
comparison Project Phase 5 (CMIP5, Taylor, Stouffer, and Meehl
2012) to investigate the impact of emergent constraints on pro-
jections of winter (December–January–February) near-surface
(2 m) temperature change in the Arctic. The climate models
included and the number of initial condition runs available from
each are listed in the supplementary materials. We compare the
30 year average winter temperature between two time periods.
The historical period is defined as between December 1975 and
January 2005, as simulated under the CMIP5 historical emis-
sions scenario. The future period of interest is between Decem-
ber 2069 and January 2099, as simulated under the RCP4.5
mid-range mitigation scenario (Moss et al. 2010). A total of 50
initial condition runs of the historical period were included,
and 39 runs of the future period. The domain of interest is
45◦N–90◦N, including not only the Arctic Ocean but also the
Bering Sea and the Sea of Okhotsk, both of which also currently
experience significant seasonal sea ice coverage. Due to the
presence of seasonal ice coverage and the complexity associated
with modeling it, both model uncertainty and internal variabil-
ity in near-surface temperature are much greater in the Arctic
than at lower latitudes (Northrop and Chandler 2014). Prior to
analysis, data from all models were interpolated bicubically to
a common grid with equal 2.5◦ spacing in both longitude and
latitude.

Observational data in the Arctic are very sparse and no
spatially complete datasets exist that include estimates of obser-
vational uncertainty. Therefore, we combine four contemporary
reanalysis datasets to obtain spatially complete estimates of sur-
face temperature during the historical period, and estimates of
the observational uncertainty (see the supplementary materials
for details). Reanalysis data were interpolated to the same grid
as the models.

3. A Hierarchical Framework for Multi-Model
Experiments

The proposed framework is summarized in graphical form in
Figure 2. We compare one historical time period denoted H and
one future time period denoted F, conditioned on a single future
emissions scenario. The top level of Figure 2 consists of quanti-
ties for which we have data, that is, model outputs (XHmr,XFmr)
and observations (ZH). The mid-level consists of the climates of
the individual models and the Earth system, quantified by the
means (XHm,XFm,YH,YF) and variances (σ 2

m, ψ2
m, σ 2

a , ψ2
a ) of

the simulated or plausible conditions during each time period.
The bottom level consists of parameters quantifying model
uncertainty, the “representative” climate of the ensemble, model
inadequacy, and observation uncertainty. All of these quantities
will be fully defined in the development that follows.

We proceed in three stages. First, we propose a hierarchical
model for the outputs of the multi-model ensemble (left-hand
side, Figure 2). Second, we propose a similar hierarchical model
for the climate of the Earth system (middle right, Figure 2).
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Figure 2. Graphical representation. The proposed framework represented as a
directed acyclic graph. Diamonds represent data, circles represent latent quantities,
and squares represent parameters. The dashed box represents the multi-model
ensemble. The actualized climate Yta is placed at the data level to emphasize its
relationship with the model runs Xtmr .

Finally, we specify a model for the relationship between the actu-
alized climate and the observations (right-hand side, Figure 2).

3.1. The Multi-Model Ensemble

Suppose we have an ensemble of M climate models. Each model
performs a number of runs of the historical and future time
periods, conditioned on a single future emissions scenario. Each
run is initialized from slightly perturbed initial conditions. Let
Xtmr be the output of run r, during time period t = {H, F},
by model m = 1, . . . , M. The outputs Xtmr are assumed to
be time averages over periods of equal length. The number of
runs of each model for each time period is denoted Rtm, that is,
r = 1, . . . , Rtm for model m in time period t. We do not require
that the number of runs from each model be equal, or that the
number of runs of each period by a particular model be equal
(frequently RFm < RHm). Each model is attempting to simulate
the same target, that is, the climate of the Earth system under a
specific emissions scenario. Therefore, we assume a priori that
the model outputs Xtmr are exchangeable, conditional on the
emissions scenario. Exchangeability implies that we hold the
same prior beliefs about the output of every run from every
model, given a particular scenario. Therefore, we should specify
the same probability model for each run of a particular scenario
from every model. We model the individual runs Xtmr as

XHmr|XHm ∼ N
(
XHm, σ 2

m
)

XFmr|XFm ∼ N
(
XFm, (ϕmσm)2) .

(1)

The outputs Xtmr are assumed to be independent between runs r,
conditional on the other parameters. The model specific means
Xtm represent the expected climate of model m at time t. The
model specific variances σ 2

m quantify the spread of the runs from
each model in the historical period, that is, internal variability.
The coefficients ϕ2

m allow the internal variability of each model
to change in the future period. We assume that the historical
and future periods are sufficiently separated in time that depar-
tures due to internal variability can be considered independent
between periods.

To satisfy the assumption of exchangeability between the
model outputs, we must also specify the same probability model
for the expected climate of each model XHm and XFm, and the
internal variability of each model σ 2

m and ϕ2
m. We model the

expected climates as

XHm ∼ N
(
μH , σ 2

H
)

XFm|XHm ∼ N
(
μF + β (XHm − μH), σ 2

F|H
)

(2)

and the internal variabilities as

σ 2
m ∼ Inv-gamma

(
νH
2

,
νHψ2

2

)

ϕ2
m ∼ Inv-gamma

(
νF
2

,
νFθ2

2

)
. (3)

The model specific parameters XHm, XFm, σ 2
m, and ϕ2

m are
assumed to be independent between models m, conditional
on the other parameters. The common means μH and μF in
Equation (2) are interpreted as the representative climate of the
ensemble in the historical and future periods, respectively, that
is, representative in the sense that they summarize the climates
simulated by the models. The variances σ 2

H and σ 2
F|H quantify

the spread of the models around the representative climate,
that is, model uncertainty. The parameterization of the internal
variabilities in Equation (3) implies that ψ2 = 1/E

[
σ−2

m
]

, θ2 =
1/E

[
ϕ−2

m
]
, and θ2ψ2 = 1/E

[
(ϕmσm)−2]. Therefore, ψ2 and

θ2 can be interpreted as the representative internal variability
of the ensemble. The degrees-of-freedom νH and νF control the
precision of σ 2

m and ϕ2
m and quantify model uncertainty about

the internal variability.
The parameter β is intended to capture any linear association

between the historical climates and future climate responses of
the models, that is, any emergent relationship, and is referred
to as the emergent constraint. The emergent constraint applies
to the expected climates of the models, not the individual runs,
because emergent relationships are the result of model/process
differences, not internal variability. A value of β = 1 implies
conditional independence of the expected response XFm − XHm
of model m from its expected historical state XHm, that is,
E [XFm − XHm|XHm] = μF − μH for all m. Any value of β �= 1
implies that the expected historical climate XHm is informative
for the expected climate response XFm − XHm.

The representation in terms of the common unknown
means, μH and μF, induces a common prior correlation (depen-
dence) between the model means and consequently the model
outputs, for example, cov (XHm, XHm′) = var (μH) for all m �=
m′. Thus, we do not require the much stronger assumption that
the model outputs are independent.

3.2. The Earth System

Let Yta represent the single actualization of the Earth system
that we observe during time period t. We model the actualized
climate as

YHa|YH ∼ N
(
YH , σ 2

a
)

YFa|YF ∼ N
(
YF , (ϕaσa)

2) . (4)
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The means YH and YF represent the expected climate of the
Earth system in the historical and future periods, respectively.
The variance σ 2

a quantifies the historical natural variability in
the Earth system, and the coefficient ϕ2

a represents any future
change in variability.

Since each model attempts to approximate the Earth system
as realistically as possible, we should hope that both the expected
climate and internal variability simulated by each model is infor-
mative climate of the Earth system. While there are differences
between individual climate models, both the mean climates and
internal variabilities are usually similar to the Earth system, that
is, the observed quantities usually (but not always) lie within the
range simulated by the different models. We model the expected
climate and natural variability of the Earth system conditional
on the representative model as

YH ∼ N
(
μH , σ 2

�H

)
YF|YH ∼ N

(
μF + β (YH − μH), σ 2

�F|H

)
(5)

and

σ 2
a ∼ Inv-gamma

(
νHa

2
,
νHaψ2

2

)

ϕ2
a ∼ Inv-gamma

(
νFa
2

,
νFaθ2

2

)
. (6)

In Equation (5), we assume that the emergent constraint β

has a well understood physical basis, and therefore applies to
the Earth system in the same way as the climate models. The
variances σ 2

�H
and σ 2

�F|H quantify our uncertainty about the
effects of common differences between the models and the
Earth system, that is, model inadequacy. Equation (6) implies
that E

[
1/σ 2

a
] = 1/ψ2 and E

[
1/ϕ2

a
] = 1/θ2. The degrees-

of-freedom νHa and νFa quantify model inadequacy in simu-
lating natural variability in the Earth system. In the language
of Rougier, Goldstein, and House (2013), the Earth system is
assumed to be coexchangeable with the models. Conditioning
on the representative model induces a correlation (dependence)
between the expected climate and the model means, that is,
cov (YH , XHm) = var (μH) for all m.

3.3. The Observed Climate

Let ZH be the observed climate during the historical period. We
model the observed climate as

ZH ∼ N
(
YHa, σ 2

Z
)

. (7)

The variance σ 2
Z quantifies our observation uncertainty.

3.4. Making Inferences About Future Climate

The multi-model ensemble is described by nine parameters μH,
μF, β , σ 2

H , σ 2
F|H , ψ2, θ2, νH, and νF. Given outputs from a

moderate number of climate models M, it should be possible to
obtain reasonable inferences for the mean parameters μH, μF,
and β , and the model uncertainty σ 2

H and σ 2
F|H . The internal

variability ψ2 and θ2 can be distinguished from model uncer-
tainty provided we have multiple initial condition runs from

several models. Some models may have only a single initial
condition run in one or both time periods. In that case, our hier-
archical framework allows the model specific internal variability
σ 2

m and ϕ2
m to be estimated by borrowing strength from models

with multiple runs, under the assumption that models should
have similar internal variability (Equation (3)). The most diffi-
cult parameters to infer are likely to be the degrees-of-freedom
νH and νF, since these are essentially variances of variances.

The Earth system is represented by a further four parameters
σ 2

�H
, σ 2

�F|H , νHa, and νFa. The future parameters σ 2
�F|H and νFa

cannot be estimated from data, since we have no future obser-
vations of the Earth system. Therefore, additional modeling
assumptions are required. If an estimate of the historical natural
variability σ 2

a is available, then this can be substituted directly,
otherwise it can be inferred from the representative model using
Equation (6).

In principle, the historical model inadequacy quantified by
σ 2

�H
and νHa could be estimated from a time series of observa-

tions and corresponding simulations. This would require careful
modeling to account for time-varying trends and to separate
model inadequacy from internal variability and natural variabil-
ity. In addition, an extremely long time series would be required,
since the discrepancy between the Earth system and the ensem-
ble is expected to change only slowly over time. Instead, we
adopt the approach proposed by Rougier, Goldstein, and House
(2013) and parameterize the model inadequacy as proportional
to the ensemble spread

σ 2
�H

= κ2σ 2
H σ 2

�F|H = κ2σ 2
F|H ,

νHa = νH/κ2 νFa = νF/κ2,
(8)

where κ ≥ 1. The coefficient κ acts to inflate the ensemble
spread to account for uncertainty due to processes not well
captured by any model, and errors common to all models. κ

can be interpreted as quantifying how much less informative
the representative model is for the Earth system than for a new
climate model comparable to those already in the ensemble.
Setting κ = 1 implies that the Earth system is exchangeable
with the climate models, that is, just another computer model.
The value of κ must be fixed a priori, and Rougier, Goldstein,
and House (2013) suggested a value of κ = 1.2 for surface
temperature. Larger values of κ might be appropriate for less
well simulated processes, for example, when the models are less
informative for the real world and the observations lie outside
of the spread in the models.

4. Discussion

The hierarchical framework proposed in Section 3 is an exten-
sion of the coexchangeable framework of Rougier, Goldstein,
and House (2013) to account for internal variability in the mod-
els and natural variability in the Earth system. Our framework
also makes the role of emergent constraints in constraining
model inadequacy explicit.

It is well known that errors in the independent variable in
a regression will cause the slope estimate to be biased toward
zero, a phenomenon known as regression dilution or regression
attenuation (Frost and Thompson 2000). Therefore, frameworks
that ignore internal variability, such as those proposed by Brace-
girdle and Stephenson (2012) and Bowman et al. (2018), risk
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biased estimates of emergent constraints and hence biased pro-
jections. Like the earlier frameworks proposed by Tebaldi et al.
(2005), Smith et al. (2009), and others, these frameworks also
ignore model inadequacy. This makes them unrealistic unless
we believe there are no missing processes in the climate models
and that discretizing space and time does not affect our projec-
tions. A more detailed comparison between the framework pro-
posed here and these and other existing methods for analyzing
multi-model ensemble experiments and emergent constraints is
provided in the supplementary materials.

A variety of model weighting schemes have been proposed
in the literature, a number of examples are given in Section 1. In
principle, model weighting will respect emergent relationships.
Consider the example in Figure 1. If the models closest to
the observations receive the most weight, then the projected
climate response will be lower than the ensemble mean estimate.
However, the weights are usually estimated by comparing model
performance at multiple locations, often across the entire study
region (e.g., Bhat et al. 2011; Knutti et al. 2017). If the emergent
relationship does not apply across the entire region, or varies
within the region, then the weights are unlikely to reflect the
relationship and the constraining behavior will be lost.

The framework proposed here was developed to model tem-
perature data for which the normal distribution is a natural
choice. However, since the model outputs Xtmr are assumed to
be time-averages, for example, 30-year means, the central limit
theorem guarantees that the distribution of the Xtmr should
converge to a normal distribution, regardless of the underly-
ing distribution. Therefore, the proposed framework should be
suitable for a wide range of other climate variables. If necessary,
different distributional choices can be substituted provided the
hierarchical structure is respected to maintain the assumption
of exchangeability between the model outputs.

In our application, the historical and future variables are the
same, that is, temperature. However, there are many examples
of emergent relationships in the literature between different
variables in the historical and future periods, for example,
Cox, Huntingford, and Williamson (2018) related historical
temperature variability to equilibrium climate sensitivity. The
framework proposed in Section 3 is easily generalized to the
case of different historical and future variables by making the
future internal variability independent of the historical internal
variability in Equation (1), and likewise the natural variability in
Equation (4), that is, var (XFmr) = ϕ2

m rather than var (XFmr) =
ϕ2

mσ 2
m. No other changes are necessary since all other quantities

are specified independently for historical and future variables.
The formulation of the emergent relationship in Equa-

tions (2) and (5) reflects the linear relationships that have so far
been documented in the literature. Bracegirdle and Stephenson
(2012) also considered quadratic relationships and Hall et al.
(2019) proposed the existence of more general functional rela-
tionships. The methodology proposed here generalizes immedi-
ately to polynomial relationships and could easily be generalized
to other parametric forms.

In Equations (2) and (3), we assume that the climate mod-
els are exchangeable, that is, they can be considered indepen-
dent conditional on the representative model. If we treat mod-
els that share common components as independent then we
risk unfairly weighting particular groups of models. Methods

for assessing model dependence based on comparing spatial-
temporal outputs have been shown to successfully capture sim-
ilarities between groups of related models (Masson and Knutti
2011; Knutti, Masson, and Gettelman 2013). However, current
methods lack a formal statistical framework for combining pro-
jections from different models, and can produce unexpected
results where models that are known to have little in common
are considered close (Sanderson, Knutti, and Caldwell 2015b).
Rougier, Goldstein, and House (2013) addressed the problem
of model dependence by selecting a subset of models that they
judge a priori to be exchangeable. We adopt a similar approach
in Section 5 based on readily available data about climate model
structure and components shared between models. By analyzing
only a subset of the available data we risk losing valuable infor-
mation. However, the information loss is likely to be acceptable
given the known similarities between many climate models
(Annan and Hargreaves 2011; Pennell and Reichler 2011)

The framework proposed here makes no assumptions about
spatial dependence. Climate model output is often analyzed grid
box by grid box, and this is the approach we take in Section 5.
In practice, nonphysical discontinuities between neighboring
grid boxes are rarely a problem due to the inherent smooth-
ness of computer model output in comparison to observations.
Accounting for spatial dependence could potentially lead to
more efficient estimates by borrowing strength across neighbor-
ing grid boxes. However, any increase in efficiency would come
at the cost of additional complexity both in terms of the number
of parameters and the computational requirements of fitting to
all grid boxes simultaneously.

In the framework proposed here, we adopt the approach
introduced by Chandler (2013) and Rougier, Goldstein, and
House (2013) and represent multi-model inadequacy as an
unknown discrepancy between the climate system and a rep-
resentative model. This generalizes the well-established sin-
gle model approach in the uncertainty quantification literature
(Craig et al. 2001; Kennedy and O’Hagan 2001) by splitting the
discrepancy into two parts: one common to all models, and
one unique to each model. The limitations of climate models
in approximating the Earth system may manifest themselves in
a variety of ways. In the absence of stronger beliefs about how
these limitations will manifest, an unknown discrepancy is the
simplest and most intuitive way of representing the possibil-
ity. Other approaches to representing model inadequacy in an
ensemble of computer models may be possible, but we are not
aware of any published alternatives.

In Section 1, we made the distinction between a purely
statistical “emergent relationship,” and an “emergent constraint”
for which a plausible physical mechanism has been identified.
Hall et al. (2019) made a similar distinction between what
they call “proposed” and “confirmed” emergent constraints, and
outline how a constraint might transition from “proposed” to
“confirmed.” In formulating our framework, we assume that the
emergent constraint applies in the Earth system the same way
it does in the models. This assumption is implicit in all pro-
jections based on emergent constraints, although never stated.
By formulating a principled statistical framework, we make this
assumption clear and transparent. Thus, by making a projection
based on an emergent relationship, we are making a strong
statement of confidence in that relationship. The framework
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proposed here addresses this by separating model inadequacy
from model uncertainty, that is, by allowing for additional
uncertainty about the response of the Earth system. However,
the appropriate amount of additional uncertainty remains a
subjective choice.

5. Improved Estimates of Arctic Climate Change

The CMIP5 ensemble includes output from more than 40 mod-
els submitted by over 20 centers around the world. To satisfy the
assumption of exchangeability in Section 3, we consider a subset
of the models that we judge to be approximately exchangeable.
The thinned ensemble consists of 13 models and includes 50
runs of the historical period and 39 runs of the future period
under the RCP4.5 emissions scenario. The models included in
the thinned ensemble were chosen to have similar horizontal
and vertical resolutions, but to minimize common component
models. In particular, only one model was retained from any one
modeling center, usually the most recent and feature complete
version submitted by each center. Full details of the thinning
process, the included models, and the number of runs from each
model are given in the supplementary materials. Our approach
to ensemble thinning differs from that of Rougier, Goldstein,
and House (2013) who chose models judged to be most sim-
ilar to a familiar model, effectively minimizing the differences
between the models. In contrast, by choosing models with the
fewest common components, we are effectively maximizing the
differences between the models. In doing so, we aim to capture
the broadest range of uncertainty due to model differences.
For consistency, we adopt the assessment made by Rougier,
Goldstein, and House (2013) and set κ = 1.2. Observation
uncertainty σ 2

Z was estimated by combining several different
observational datasets. Posterior analysis was performed for
each grid box separately. Identical conjugate prior distributions
were specified at all grid boxes. Posterior inference proceeds by
Gibbs’ sampling with Metropolis-Hastings steps for νH and νF.
Full details of the prior specifications, posterior computation
and how we estimate observation uncertainty are given in the
supplementary materials.

5.1. Model Checking

We checked the assumption of exchangeability between mod-
els using a leave-one-out cross-validation approach similar to
Smith et al. (2009) and Rougier, Goldstein, and House (2013).
Each model in turn is left out of the analysis, and the expected
response X


Fm − X

Hm of a new model is predicted. The pre-

dictions are compared to the model output using a probability
integral transform, that is, by computing the probability that the
response under the leave-one-out predicted distribution is less
than the mean response of the excluded model. If the models are
exchangeable, then the distribution over the models of the trans-
formed projections should be uniform. Kolmogorov–Smirnov
tests were used to assess uniformity at each grid box. A small
amount of nonuniformity is expected due to shrinkage of the
representative climate toward the observations. First, we with-
held all data from each model in turn. There was no evidence
against the null hypothesis that the models are exchangeable at
the 10% level. Second, we withheld only the future simulations
to test conditional exchangeability given any emergent relation-
ships. Only two grid boxes were significantly nonuniform at
the 10% level. The cross-validation procedure suggests that the
chosen models can be considered exchangeable.

5.2. Results

The posterior mean estimates of the expected historical climate
YH, future climate YF, and climate response YF −YH are shown
in Figure 3. The 0 ◦C contour that approximates the sea ice
edge has receded noticeably in the projected future climate YF in
Figure 3(b) compared to the historical climate YH in Figure 3(a).
The projected warming tends to increase with latitude in
Figure 3(c).

Figure 4 shows the effects of emergent relationships in near-
surface temperature in the Arctic. The posterior mean estimate
of the historical discrepancy between the expected climate YH
and the representative climate μH is 2 ◦C–3 ◦C across most of
the Arctic (Figure 4(a)). The historical discrepancy is largest in
the Greenland and Barents seas. This may be due to differences
in ocean heat transport simulated by the models (Mahlstein

Figure 3. Expected climate. The posterior mean of (a) the historical climate YH ; (b) the future climate YF ; and (c) the climate response YF − YH .
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Figure 4. Effect of emergent constraints. The posterior mean of (a) the historical discrepancy YH −μH , (b) the emergent constraint β , and (c) the difference in the projected
climate response YH due to the emergent constraint (β − 1)(YH − μH). (d) Ratio of posterior standard deviation of the response YF − YH with and without an emergent
constraint.

and Knutti 2011). From Equation (5), the expected climate
response is E [YF − YH|YH] = μF − μH + (β − 1)(YH − μH).
The difference in the projected response due to the emergent
relationship is given by (β − 1)(YH − μH) and is plotted in
Figure 4(c). The expected warming is reduced by up to 3 ◦C in
the far north of Canada, and by around 1 ◦C along most of the ice
edge. Figure 4(d) compares the posterior uncertainty about the
climate response YF − YH with and without an emergent con-
straint. Around the ice edge, the emergent constraint reduces the
posterior standard deviation of the climate response YF −YH by
20%–30%.

Our posterior mean estimate of the emergent relationship
in the Beaufort sea, north of Alaska in Figure 4(b), is much
greater than that of Bracegirdle and Stephenson (2013). Internal
variability is small compared to model uncertainty in the Arctic
(not shown), so the difference is not due to regression dilution in
the ensemble regression estimates. Bracegirdle and Stephenson
(2013) analyzed an ensemble of 22 CMIP5 models, some of
which were excluded from the ensemble analyzed here. Further

investigation revealed that two of the models excluded from
our analysis are strongly warm biased in this region, and two
are strongly cold biased, but all four simulate similar climate
responses. This acts to neutralize the emergent relationship
evident in the remaining models (not shown) in the analysis of
Bracegirdle and Stephenson (2013).

The greatest warming occurs near the islands of Svalbard
and Franz Josef Land in the north of the Barents sea. Fig-
ure 5(a) investigates the strong warming near Svalbard in detail.
The representative climate response μF − μH in Figure 5(a)
is already high at 10.5 ◦C (90% equal-tailed credible interval
7.7 ◦C–13.3 ◦C). The representative response may be influ-
enced by 3 models with unusually large responses. There is a
positive emergent relationship β = 1.4 (0.8,2.0) at this grid
box, and a historical discrepancy of YH − μH = 3.0 ◦C
(−2.7 ◦C, 8.2 ◦C). The emergent relationship predicts an addi-
tional 1.1 ◦C (−1.6 ◦C, 4.8 ◦C) of warming. This is relatively
insignificant compared to the uncertainty about the response,
even when conditioned on the historical climate. The emergent
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Figure 5. Gridbox details. Data and projections from grid boxes (a) north of Svalbard (81◦N,39◦E), and (b) east of Devon Island (76◦N,94◦W). The solid red line indicates
the estimated emergent relationship and the dotted red lines indicate a 90% credible interval. The black dashed line indicates the representative climate μH and climate
response μF − μH . The red dashed line indicates the expected climate YH and climate response YF − YH . The blue density represents the distribution of the observations.
The blue dashed line indicates the observed climate ZH and the climate response based directly on the observations. Auxiliary plots in the right hand margins show the
posterior distribution of the climate response YF − YH with (red) and without (black) an emergent constraint.

relationship here does little to constrain our uncertainty about
the climate response.

Bracegirdle and Stephenson (2013) also estimated a positive
emergent relationship over Svalbard, Franz Josef Land, and
parts of Siberia, similar to that in Figure 4(b). The posterior
probability that β > 1 exceeds 0.90 over Western Siberia. Emer-
gent constraints in air temperatures over polar land regions are
particularly relevant for constraining estimates of changes in
permafrost, which by melting in future could lead to accelerated
emissions in greenhouse gases such as methane (Burke, Jones,
and Koven 2013). There are significant differences in model
temperatures over polar land regions related to model repre-
sentation of processes such as snow physics and soil hydrology
(Koven, Riley, and Stern 2013; Slater and Lawrence 2013). It
remains an interesting open question as to why models are
showing a positive emergent relationship in the vicinity Western
Siberia.

In contrast, a negative emergent relationship is visible in the
North West Passage near Devon Island in northern Canada in
Figure 5(b). The representative climate response μF − μH in
Figure 5(b) is more moderate at 6.6 ◦C (5.1 ◦C, 8.0 ◦C). There is a
negative emergent relationship β = 0.4 (0.2,0.7) and a historical
discrepancy of YH − μH = 3.7 ◦C (−1.1 ◦C, 8.4 ◦C). The
emergent relationship combines with the historical discrepancy
to project 2.2 ◦C (−5.3 ◦C, 0.6 ◦C) less warming than the rep-
resentative model. At this grid box, our uncertainty is usefully
constrained by the emergent relationship. The modification to
both the mean and standard deviation of the posterior projected
response is shown in the right hand margin of Figure 5(b). The
posterior standard deviation of the projected response YF − YH
is reduced by 18%, falling from 3.9 ◦C to 3.2 ◦C.

The examples of Svalbard and Devon Island in Figure 5
both demonstrate the important role of observation and sam-
pling uncertainty when combining models and observations.
Due to the sparsity of observations in these remote regions,
the observation uncertainty is quite large relative to the model
uncertainty. In both cases, there is noticeable shrinkage of the
posterior mean estimate of the historical climate YH away from
the observations ZH and toward the representative climate μH.
As a result, the projected response YF − YH lies closer to the

representative response μF − μH than it would if observation
uncertainty were ignored.

6. Conclusion

Emergent relationships have become an important topic in cli-
mate science for their potential to constrain our uncertainty
about future climate change. In this study, we have argued that
such relationships can be used to constrain discrepancies due
to model inadequacy, if a physical mechanism for the rela-
tionship can be identified. The negative emergent constraint
on near surface temperature in the Arctic is well understood,
and our analysis broadly confirms the findings of previous
studies. The projected warming in the Arctic is reduced by
up to 3 ◦C by the emergent constraint. Internal variability in
the Arctic is large compared to lower latitudes, but is dwarfed
by model uncertainty due to the difficulty of representing
the many complex processes involved in simulating sea ice,
snow cover and the polar vortex. Therefore, regression dilu-
tion is unlikely to have significantly biased previous studies of
Arctic climate change. However, the sparsity of observations
in the Arctic means there is significant observation uncer-
tainty, and this is the first time that observation uncertainty
has been accounted for when exploiting emergent constraints.
Shrinkage of the expected climate toward the representative
climate results in differences of up to 1 ◦C in the projected
response compared to estimates based on the observations
directly.

The main contribution of this study is to link the concepts
of model inadequacy in an ensemble of models and emergent
relationships. The proposed Bayesian hierarchical framework
also allows the inclusion of multiple runs from each simula-
tor for the first time in a practical application. This allows
us to separate uncertainty due to differences between mod-
els from internal variability within models. It is differences
in the representation of key processes that lead to emergent
relationships. Initial conditions should be forgotten over suf-
ficiently long time scales, and therefore should not lead to
emergent behavior. We have shown that if internal variability
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is not accounted for, then projections based on emergent con-
straints may be biased. Future multi-model studies exploiting
emergent constraints should include multiple runs from each
simulator to separate model uncertainty from internal variabil-
ity and avoid potentially biased projections. Another unique
aspect of the framework proposed here is the separation of
natural variability and observation uncertainty in the climate
system.

The framework proposed in this study allows robust estima-
tion and projection using emergent constraints, but there are
still open problems to be addressed both in general multi-model
experiments and emergent relationships. The methodology pro-
posed here allows projection of time mean climate accounting
for uncertainty due to natural variability. If time-series realiza-
tions of natural variability are required within the future study
period, for example, for adaptation studies, then our methodol-
ogy could be extended using the time-series approach proposed
by Tebaldi and Sansó (2009), or by transforming observations as
proposed by Poppick et al. (2016). Where emergent constraints
have been studied at a local level, rather than an aggregate
or process level, they have been analyzed one grid box at a
time. Ignoring spatial dependence between grid boxes may
lead to overly smooth estimates, due to differences in feature
placement between models. To obtain physically realistic infer-
ences, spatial statistical methods are required that can represent
spatial dependence while accounting for differences between
models.

The CMIP5 multi-model ensemble included four future
emissions scenarios, but we have analyzed only one. Like climate
models, emissions scenarios are difficult to interpret together
as an ensemble. Innovative methods are required to extract
meaningful probabilistic projections that span the likely range
of future emissions. Another source of uncertainty not usually
addressed in multi-model experiments is uncertainty about the
internal parameters of the climate models. The computational
cost of running large perturbed-parameter ensembles is pro-
hibitive. However, each model undergoes a tuning process dur-
ing which the internal parameters are tested and fixed. Statistical
emulators for key quantities, trained during this tuning process,
might provide a way of integrating parameter uncertainty into
multi-model experiments to provide a more holistic assessment
of our uncertainty.

To satisfy the assumption of exchangeability we analyze only
a subset of the available models. By adopting this approach,
we risk losing valuable information contained in runs from
other models and ignoring more detailed insights about model
dependence that could be gained by comparing model outputs.
In principle, additional levels could be added to the hierarchy
proposed here to represent models that share components or
were built by the same group. However, the complex over-
lapping relationships make such a highly structured approach
problematic. Current methods for quantifying model depen-
dence based on comparing spatial-temporal output patterns
ignore all the prior knowledge we have about have about the
relationships between models. One way forward might be to
develop frameworks that combine grouping based on compar-
ing spatial-temporal outputs with simple judgments based on
prior knowledge of model inter-dependence. Until alternative
methods are found, we recommend thinning the ensemble to

obtain an approximately exchangeable set of models and trans-
parently documenting the thinning process. This does require
some prior knowledge on the part of the analyst. However,
the burden could be alleviated by establishing standard lists
of models, for example, centers submitting to model inter-
comparison projects could be asked to nominate a primary
model for analysis. This opens up the interesting question of
multi-model experiment design. However, the greatest statis-
tical challenge in climate projection is meaningful quantifica-
tion of model inadequacy. The results here and in Rougier,
Goldstein, and House (2013) demonstrate how far we can go
with simple judgments. Specifying the model inadequacy via
the coefficient κ forces the analyst to make a transparent state-
ment about how informative they believe the models are for
the Earth system. However, additional co-operation between
statisticians and climate scientists is required to make further
progress.

Supplementary Materials

The online supplementary materials include an extended theoretical com-
parison with existing multi-model frameworks, a full description of the
ensemble thinning process and the included models and runs, full details
of our approach to estimating observation uncertainty, the derivation of the
Gibbs-Metropolis updating equations, details of the posterior sampling and
checking procedures, and plots of additional posterior parameter estimates
for the representative climate and the observations.

The data and code used in this study are available from https://doi.org/
10.5281/zenodo.4279112.
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