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Abstract
Climate trends over multiple decades are important drivers of regional climate change that need to be considered for climate 
resilience. Of particular importance are extreme trends that society may not be expecting and is not well adapted to. This 
study investigates approaches to assess the likelihood of maximum moving window trends in historical records of climate 
indices by making use of simulations from climate models and stochastic time series models with short- and long-range 
dependence. These approaches are applied to assess the unusualness of the large positive trend that occurred in the North 
Atlantic Oscillation (NAO) index between the 1960s to 1990s. By considering stochastic models, we show that the chance 
of extreme trends is determined by the variance of the trend process, which generally increases when there is more serial 
correlation in the index series. We find that the Coupled Model Intercomparison Project (CMIP5 + 6) historical simulations 
have very rarely (around 1 in 200 chance) simulated maximum trends greater than the observed maximum. Consistent with 
this, the NAO indices simulated by CMIP models were found to resemble white noise, with almost no serial correlation, in 
contrast to the observed NAO which exhibits year-to-year correlation. Stochastic model best fits to the observed NAO sug-
gest an unlikely chance (around 1 in 20) for there to be maximum 31-year NAO trends as large as the maximum observed 
since 1860. This suggests that current climate models do not fully represent important aspects of the mechanism for low 
frequency variability of the NAO.

Keywords  North Atlantic · North Atlantic Oscillation · Extreme trends · Multi-decadal variability · Climate modelling · 
Stochastic modelling

1  Introduction

Climate trends over multiple decades are often estimated 
using moving window linear trend analysis, for example, 
trends in the North Atlantic Oscillation (Deser et al. 2017; 
Scaife et al. 2008, 2009; Semenov et al. 2008; Raible et al. 
2005) and in the North Atlantic jet characteristics (Brace-
girdle et al. 2018). Moving window trend analysis has been 
used to detect significant changes in other variables such 
as the onset of spring (Ge et al. 2014) and European winter 
precipitation (Matti et al. 2009), but also to investigate the 
likelihood of periods of zero trend, such as the slowdown 

in the rise of global mean temperature at the start of this 
century (Shi et al. 2016). The trend slope in these studies 
is typically estimated using ordinary least squares (OLS) 
regression. In what follows, we will adopt such an approach 
to define multi-decadal trends using a 31-year window and 
investigate their distribution in climate time series.

In this study we shall use trends in the winter NAO as 
an exemplar because they have been particularly prominent 
and are known to have a strong impact on European and N. 
American regional climate. The NAO is a large-scale mode 
of atmospheric variability in the North Atlantic region that 
exhibits strong persistent multi-decadal variations (Hurrell 
et al. 2003). It is manifested by changes in the North–South 
pressure gradient related to the variability in the Azores high 
and Icelandic low pressure systems, and to changes in the 
mean wind flow and storm tracks (Wanner et al. 2001; Great-
batch 2000; Woollings et al. 2015; Hurrell 1995). The NAO 
is known to influence regional climate in the surrounding 
continents of Europe and North America, particularly on 
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seasonal timescales (Scaife et al. 2014), but has also been 
shown to have far reaching teleconnections such as an influ-
ence on the variability of surface temperatures in South-
Central China (Zuo et al. 2016). Trends in the winter NAO 
over multiple decades have a large impact on temperature in 
the whole of the Northern Hemisphere extra-tropics, with a 
large positive trend accounting for at least half of the winter 
warming from the 1960s to 1990s while a large negative 
trend more than halved the winter warming from the 1920s 
to 1960s (Iles and Hegerl 2017; Scaife et al. 2005).

The winter NAO is related to variations in temperature, 
rainfall and drought that have impacts on industries such as 
agriculture, fishing and water management (Hurrell et al. 
2001). In the energy sector, the NAO affects energy demand 
through winter temperature variability and energy supply 
from wind, solar and hydropower (Jerez et al. 2013; Uvo and 
Berndtsson 2002; Thornton et al. 2017). The winter NAO 
has a large effect on crop yields in Europe and the USA, 
and planning for food imports (Kim and McCarl 2005). 
The NAO governs flooding and associated insurance losses 
(Zanardo et al. 2019). Understanding trends in the NAO over 
multiple decades, especially for winters, is therefore impor-
tant for long term planning within all these sectors and needs 
to be taken into account when planning for regional climate 
change adaptation.

The 1960s to 1990s increasing trend mentioned above has 
gained considerable attention in the scientific literature. In 
the early 1990s it was identified as the largest multi-decadal 
trend in the observed NAO record and was speculated to 
be a response to increased greenhouse gases (e.g. Gillett 
et al. 2003; Shindel et al. 1999), however the negative trend 
that followed makes this speculation unlikely (e.g. Pinto 
and Raible 2012; Hanna et al. 2015). There is still a lack 
of consensus as to whether the increasing 1960s to 1990s 
NAO trend can be explained by internal climate variability, 
relating to the aggregation of shorter timescale atmospheric 
variability with the possibility of some longer term memory 
element such as that estimated using stochastic processes 
(e.g. Wunsch 1999), or whether the magnitude of variability 
is unusual in this context (e.g. Feldstein 2002).

General Circulation Model (GCM) historical simulations 
from the Coupled Model Intercomparison Project Phase 5, 
CMIP5 (Taylor et al. 2012) very rarely simulate a 30-year 
trend in the winter NAO or Atlantic jet strength of magnitude 
comparable to that observed in the 1960s to 1990s anywhere 
in their 150 year period of simulation (Bracegirdle et al. 2018). 
These CMIP5 simulations lack the low frequency variability 
of the NAO found in observations, despite successfully rep-
resenting the interannual variability (Kravtsov 2017; Wang 
et al. 2017). It is not immediately clear whether the failure 
of GCMs to simulate the magnitude of the observed trend is 
due to the unlikeliness of occurrence, a missing or incorrect 
forcing element, or some model deficiencies in simulating 

relevant processes (e.g. Osborn 2004). For example, in GCMs, 
the NAO has been shown to be weakly forced by Sea Surface 
Temperature (SST), but the models appear to underestimate 
the strength of the real-world trend (Scaife et al. 2009; Simp-
son et al. 2018). If GCMs are underestimating the magnitude 
of NAO trends, then this could have important implications 
for attributing the contribution of external forcing to past 
observed trends (Hegerl et al. 2007) and forecasting future 
regional climate trends over the next few decades (e.g. Lowe 
et al. 2018) as projections of trends in temperature and rain-
fall in the northern extra-tropics are dominated by the internal 
variability of the NAO on these time scales (Deser et al. 2017).

This study estimates how unusual are notable extreme 
multidecadal trends using simulations from state of the art 
GCMs and from stochastic time series models. Our focus 
is on understanding the large positive 1963–1993 trend in 
winter NAO, which is the maximum 31-winter trend in the 
historical NAO record. When considering the chance of 
exceeding this trend value, we shall take into account the 
important fact that it has been selected because of it being 
the maximum of all the values in the historical time series. 
A similar issue is discussed in Percival and Rothrock (2005) 
in the context of trends at the end of a time series where 
the start point (or window length) from which the trend is 
calculated may have been chosen after “eyeballing” a period 
of interest. They account for this in their probability esti-
mate by simulating a large sample of stochastic time series 
for a range of window lengths, which encompass the length 
which has essentially been “eyeballed”. We instead approach 
this issue using extreme value distributions, building on the 
distribution of moving window linear trends to estimate the 
distribution of the maximum trend value in the time series 
of moving window slope estimates.

2 � Definitions of multi‑decadal trends

Multi-decadal trends in a climate index can be quantified by 
using slope parameter estimates obtained from linear regres-
sion of the index on time. Moving window trends can be 
obtained by shifting a window along the index time series 
year-by-year and calculating the linear trend estimate within 
each window. For a regular time series {Y1,Y2,…,Yn} of 
length n, the OLS slope parameter estimate of the trend (Zi) 
in a window of length 2 K + 1 centered at time i = 1 + K, 
2 + K, …, n–K is given by

where h2 =
∑K

j=−K
j2 = K(K + 1)(2K + 1)∕3.

The window length 2K + 1 is chosen to be an odd number 
to avoid the central point being half-way between two years. 
From this processed time series the maximum trend can be 

(1)Zi =
1

h2

K
∑

j=−K

jYi+j,
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identified, which we will hereon refer to as an “extreme 
trend”.

From Eq. (1), it can be seen that the resulting trend val-
ues are a linear combination of the index values: trend time 
series Z is a moving average filtered version of index series 
Y with the 2K + 1 filter weights { −K

h2
,−(K−1)

h2
,…,K−1

h2
,K
h2

 }. Hence, 
if Y can be represented as a p’th order auto-regressive pro-
cess AR(p) then Z is an auto-regressive moving average pro-
cess ARMA(p,2K + 1) (see Appendix). The Moving Average 
MA(2K + 1) filter is non-invertible since it has a unit root 
(i.e., the filter applied to a constant series gives 0) but this 
is not a problem here since we are not concerned with esti-
mating the ARMA process from a given trend series—the 
MA coefficients are the known filter weights determined by 
our choice of K.

In this study, we choose a fixed window length of 
2K + 1 = 31 winters (~ 3 decades) as this is within the stand-
ard 10–30 year time scale considered to be decadal vari-
ability (Meehl et al. 2009) while still having enough data 
points to robustly estimate a linear trend. Shpakova et al. 
(2020) suggest that window length should be around one 
third of the length of the time series but also long enough 
to take into account climate factors such as solar irradiance, 
thus ~ 3 decades seems a sensible window length for century 
long station based climate time series.

3 � Data

3.1 � NAO observations

The winter NAO index is defined here as a standardised dif-
ference in the seasonal DJF (December to February) mean 
sea level pressure (MSLP) at the two main nodes of NAO 
variability, that is the Azores (37.7 N, 25.7 W) minus Ice-
land (65.0 N, 22.8 W). We use the HadSLP2r gridded obser-
vation dataset available for 1850–2020 (Allan and Ansell 
2006) and the twentieth century reanalysis data (“C20C”) 
available for 1872–2012 (Compo et al. 2011). The nearest 
grid box is used to represent each of the NAO nodes, and 
the individual time series for each node are first standard-
ised so that neither node dominates the variability. This 
definition is chosen to match the NAO reconstructed index 
from Luterbacher et al. (1999, 2001), which is available for 
1659–2001 (“L99”), based on a mix of station data (pres-
sure, temperature and precipitation) and proxy data. It also 
makes it easier to compare all model and observation time 
series simultaneously with the same stochastic processes, 
without having to consider differences in the interannual 
variance of MSLP fields. The climate period for standardisa-
tion was chosen to be 1862–2005 to match the period used 
for the GCM experiments.

All three NAO datasets show consistent interannual 
variability over the common period of 1872–2001, with a 
prominent shift from large negative values in the 1960s to 
large positive values in the 1990s (Fig. 1a). The 31-winter 
moving window trend time-series (Fig. 1b) shows that the 
maximum 31-winter trend occurs for the winters 1963–1993, 
i.e. the window centred on 1978 with years referring to the 
January in DJF. The 1978 centred window has the maximum 
31-winter trend compared to any other window in any of 
the observation or reanalysis datasets including the whole 
343 years of L99 reconstruction, i.e. this is an extreme trend. 
This trend has magnitude 0.0737 year−1 in HadSLP2r grid-
ded observations, 0.0709 year−1 in C20C reanalysis gridded 
observations and 0.0659 year−1 in L99 reconstruction. Over 
the 3 decades this is equivalent to a total shift of ~ 2 standard 
deviations of the winter mean NAO interannual variability. 
The HadSLP2r maximum trend value, 0.0737 year−1, is used 
for the exceedance threshold in our subsequent analysis as 
trend magnitudes are somewhat sensitive to the period used 
for standardisation of the NAO time series and this data set 
covers the same period as the GCMs.

Fig. 1   Low frequency variability of the NAO and its trend in observa-
tions and GCMs. a The standardised DJF mean North Atlantic Oscil-
lation (NAO) index based on HadSLP2r gridded observation data 
(black solid line), twentieth century reanalysis data (black dot-dash 
line) and proxy-reconstructed L99 NAO data (black dash line). b The 
31-winter moving linear trend estimate (per year). The maximum and 
minimum observed/reanalysis values are shown as horizontal black 
lines and the window containing the maximum 31-winter moving lin-
ear trend, centred on 1978, is marked with a vertical black line. The 
individual standardised NAO time series from 281 general circulation 
model (GCM) simulations are shown in gray, with the 3 simulations 
from CMIP6-HadGEM3-GC31-MM highlighted in darker gray as an 
example of the variability in individual simulations
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3.2 � NAO simulations from general circulation 
models

To further understand the distribution of extreme trends 
in the NAO we assess historical simulations from state 
of the art coupled GCMs from the Coupled Model Inter-
comparison Project Phase 6, CMIP6 (Eyring et al. 2016), 
alongside those from CMIP5 (Taylor et al. 2012) that were 
assessed in Bracegirdle et al. (2018). These are continuous 
transient simulations with external forcings (solar, volcanic, 
and anthropogenic) and we focus on the common period of 
1862–2005. From CMIP6 we assess 178 simulations across 
32 models (Table 1), while from CMIP5 we assess 103 
simulations across 42 models (Table 2) making a total of 
40,464 years (281 simulations × 144 years). For each indi-
vidual simulation we calculate the standardised NAO index 
as for the observations, using the MSLP output and the near-
est grid box definition. We then filter the NAO time series 
in the same way as for the observed NAO to calculate the 
31-winter moving window trend (Fig. 1b).

For the absolute NAO index (difference in MSLP anoma-
lies without standardisation) the GCMs simulate interannual 
variability in reasonable agreement with observations: the 
average interannual standard deviation of the winter NAO 
in GCM simulations is 7.8 hPa (with a standard deviation 
across members of 0.7 hPa) while the observed HadSLP2r 
and C20C values are 5.9 hPa and 8.0 hPa for the common 
period 1862–2005, noting that HadSLP2r is known to under-
estimate interannual variability (e.g. Semenov et al. 2008). 
For the rest of this paper the standardised NAO index is 
used (Fig. 1a) to enable comparison with single stochastic 
models (with variance 1) and isolate differences in behaviour 
due to features in autocorrelation structure rather than due 
to sample variance.

Table 1   GCM historical 
experiments used to model the 
NAO with columns showing the 
institution, model name and the 
number of distinct simulations 
(ensemble members)

All experiments are from the CMIP6 database https://​esgf-​index1.​ceda.​ac.​uk/​search/​cmip6-​ceda (Eyring 
et al. 2016)

Institution Model name Number of 
simulations

AS-RCEC TaiESM1 1
AWI AWI-CM-1-1-MR; AWI-ESM-1-1-LR 5; 1
BCC BCC-CSM2-MR; BCC-ESM1 3; 3
CAMS CAMS-CSM1-0 3
CAS CAS-ESM2-0; FGOALS-g3 4; 6
CCCma CanESM5 (ripf code p1; p2) 25; 40
CCCR-IITM IITM-ESM 1
CMCC CMCC-CM2-HR4; CMCC-CM2-SR5 1; 1
CSIRO-ARCCSS ACCESS-CM2 3
E3SM-Project E3SM-1-0; E3SM-1-1 5; 1
FIO-QLNM FIO-ESM-2-0 3
HAMMOZ-Consortium MPI-ESM-1-2-HAM 2
INM INM-CM4-8; INM-CM5-0 1; 10
KIOST KIOST-ESM 1
MIROC MIROC-ES2L 10
MOHC HadGEM3-GC31-LL; HadGEM3-GC31-MM 4; 3
MPI-M MPI-ESM1-2-LR 10
MRI MRI-ESM2-0 5
NASA-GISS GISS-E2-1-G-CC; GISS-E2-1-G 1; 3
NCAR​ CESM2-FV2; CESM2-WACCM-FV2; CESM2-

WACCM; CESM2
1; 1; 2; 3

NCC NorCPM1; NorESM2-LM; NorESM2-MM 2; 2; 1
NIMS-KMA KACE-1-0-G 2
NUIST NESM3 5
SNU SAM0-UNICON 1
UA MCM-UA-1-0 2

https://esgf-index1.ceda.ac.uk/search/cmip6-ceda
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4 � Stochastic time series models

4.1 � Autocorrelation in the observed and simulated 
NAO indices

We can attempt to understand the differences between 
the properties of the observed and the GCM simulated 
NAO indices by considering the stochastic properties of 
the series. The most common stochastic models used to 
represent the NAO are short-range dependence red noise 
processes (e.g. Wunsch 1999; Feldstein 2000; Thompson 
et al. 2015) and long-range dependence processes (Ste-
phenson et al. 2000). A short-range first order auto-regres-
sive AR(1) process has the form Yi+1 = ρYi + εi+1, where 
ρ is the lag-1 year autocorrelation parameter and εi+1 are 
independent Gaussian random variables. A long-range 
fractional difference (FD) process has the form (1 − B)d 
Yi+1 = εi+1, where d is the difference parameter and B is the 
backward shift operator such that BYt = Yt-1. For the AR(1) 
process, the autocorrelations at time lag k have a known 
parametric form ρk = ρ|k|. For the FD process, the lag auto-
correlations decay slower than exponential i.e. ρk+1 = ρk 
(k + d)/(k + 1 − d) for k = 0, 1, 2,… (Hosking 1981).

Higher order auto-regressive processes were also con-
sidered but are not included in subsequent analysis as our 
observed NAO time series shows no significant autocorrela-
tion beyond lag-1 year, and hence fitted higher order auto-
regressive models show no real improvement over an AR(1) 
model. Stephenson et al. (2000) found that the best fitted 
stochastic models were a fractional difference process and 
an AR(10) process, however as they gave very similar results 
the fractional difference process is preferred here due to its 
relative simplicity and having fewer parameters to estimate.

The HadSLP2r winter NAO time series has a lag-1 year 
autocorrelation ρ1 estimate of 0.169 for the period 
1850–2020 (n = 170 years). There is considerable uncer-
tainty in this estimate due to the short length of the time 
series, with an approximate 95% confidence interval of 
[0.0212, 0.317] based on the Bar tlett  formula 

�1 ± 1.96

√

(1−�21)
n

 (Bartlett 1946). Similar lag-1 year auto-

correlation values of 0.142 and 0.161 are obtained for 
C20C and L99 within the same time period. Fitting a long-
range FD process to the HadSLP2r winter NAO time series 
has a difference parameter (d) estimate of 0.123. Some 
studies have suggested non-stationarity in the NAO behav-
iour (e.g. Hurrell and Van Loon 1997; Pozo Vazquez et al. 

Table 2   GCM historical experiments used to model the NAO with columns showing the institution, model name and the number of distinct 
simulations (ensemble members)

All experiments are from the CMIP5 database https://​esgf-​node.​llnl.​gov/​search/​cmip5 (Taylor et al. 2012)

Institution Model name Number of 
simulations

BCC BCC-CSM1-1; BCC-CSM1-1-m 3; 3
BNU BNU-ESM 1
CCCma CanESM2 5
CMCC CMCC-CM; CMCC-CESM; CMCC-CMS 1; 1; 1
CNRM-CERFACS CNRM-CM5-2; CNRM-CM5 1; 5
CSIRO-BOM ACCESS1-0; ACCESS1-3 2; 1
CSIRO-QCCCE CSIRO-Mk3-6-0 5
FIO FIO-ESM 1
INM INMCM4 1
IPSL IPSL-CM5A-LR; IPSL-CM5A-MR; IPSL-CM5B-LR 5; 3; 1
LASG-CESS FGOALS-g2 1
MIROC MIROC5; MIROC-ESM; MIROC-ESM-CHEM 5; 3; 1
MOHC HadGEM2-ES; HadGEM2-CC; HadCM3 4; 1; 1
MPI-M MPI-ESM-LR; MPI-ESM-MR; MPI-ESM-P 3; 3; 1
MRI MRI-CGCM3; MRI-ESM1 3; 1
NASA-GISS GISS-E2H 5
NCAR​ CCSM4 5
NCC NorESM1-M; NorESM1-ME 3; 1
NIMR-KMA HadGEM2AO 1
NOAA-GFDL GFDL-ESM2M; GFDL-ESM2G; GFDL-CM2p1; GFDL-CM3 1; 1; 10; 5
NSF-DOE-NCAR​ CESM1-BGC; CESM1-CAM5; CESM1-FASTCHEM; CESM1-WACCM 1; 1; 1; 1

https://esgf-node.llnl.gov/search/cmip5
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2001), however such trends in autocorrelation would be 
difficult to detect due to the large amount of sampling 
uncertainty. We assume that the NAO multi-decadal vari-
ability can be reasonably represented by a stationary sto-
chastic process that represents the aggregation of atmos-
pheric noise (Wunsch 1999; Feldstein 2002) with some 
year-to-year memory deriving from either internal atmos-
pheric processes or external drivers such as ocean variabil-
ity or external forcing.

It is notable that the observed estimates of lag-1 year 
autocorrelation values are substantially larger than esti-
mates from GCMs (Fig. 2a). Only 13 out of the total of 
281 GCM simulations (a proportion of 5%) are found to 
have lag-1 year autocorrelation estimates lying outside the 
95% confidence interval ( 0.0 ± 0.163 ) for zero autocorrela-
tion, i.e. a white noise process of matching length. This 
selection of 13 simulations is not dominated by any par-
ticular models so is not highlighting any single model as 
having more or less realistic autocorrelation than the rest 
of the CMIP models. This suggests that the CMIP GCM 
simulated NAO is consistent with white noise, i.e. having 
no serial correlation, as was found for the jet stream vari-
ability in Simpson et al. (2018).

4.2 � NAO simulations from stochastic time series 
models

To investigate the behaviour of maximum moving window 
trends in stochastic models, discussed in Sect. 5, we gener-
ated 5000 random stochastic simulations of length n = 144 
from both short-range and long-range Gaussian stochas-
tic processes, and then computed the moving window 
trends (window length 31) for each simulation to match 
the handling of the GCM NAO simulations. We estimate 
the distribution of maximum moving window trends for 
a specified stochastic model by using the sample of 5000 
maximum trends, one from each of the 5000 simulated 
moving window trend series.

A set of stochastic simulations was generated from 
short-range AR(1) processes for lag-1 year autocorrelation 
parameters ρ in the range − 0.2 to 1.0. Another set of simu-
lations was generated for long-range FD processes using 
a set of difference parameters matched to the lag-1 year 
autocorrelation parameters, noting that ρ1(d) = d/(1 − d) 
(Hosking 1981), to enable a direct comparison of the two 
types of stochastic process in Sect. 5

Fig. 2   The relationship of maximum trends and variance of moving 
window trends with autocorrelation in the NAO. a The maximum 
moving window trend (from the 31-winter moving window trends in 
Fig.  1) vs the lag-1  year autocorrelation estimate. Observed values 
are shown for HadSLP2r (black circle), twentieth century reanalysis 
(black square) and proxy-reconstructed NAO data (black filled cir-
cle). CMIP6 and CMIP5 historical simulations are differentiated 
by dark and light gray crosses respectively, with the 40 simulations 
from CMIP6-CanESM5(p2) highlighted by black squares around the 

crosses. The 95% prediction interval ellipse (black solid line) and 
ensemble mean value (black diamond) represent the combined multi-
model ensemble. The correlation r for the cloud of CMIP simulation 
values is shown in the legend for each scatter plot. b Shows the rela-
tionship of the variance of moving window trends with autocorre-
lation in the same manner as (a), with the expected variance for an 
autoregressive (black dashed curve, 95% prediction interval in gray 
shading) and fractional difference process (black dotted curve) as 
described in Sect. 5.2
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5 � Distribution of trends

5.1 � Distribution of maximum trends simulated 
by the General Circulation Models

Assessing the GCMs for the specific time window 
1963–1993, none of the individual simulations (ensemble 
members) contain a trend as large as that observed (Fig. 1b). 
The multi-model ensemble mean has only a very weak posi-
tive trend of 0.00183 year−1 compared to the observed value 
of 0.0737 year−1. The ensemble members are spread fairly 
symmetrically about zero with a 95% confidence interval 
of − 0.0366 to 0.0360 year−1. This suggests that NAO vari-
ability in the GCMs for this period is primarily caused by 
internal variability and is not responding strongly to their 
common boundary condition forcing such as greenhouse 
gases.

By taking the maximum 31-winter trend from each GCM 
simulation, over the period 1862–2005 (144 years), we can 
explore the distribution of extreme trends in the GCMs. Over 
the full length of the GCM simulations there is no consist-
ency in the timing of maximum linear trends across the mod-
els, and their individual maximum trend windows are spread 
fairly evenly across the whole time period (Fig. 1b). Fig-
ure 2a shows the maximum NAO trends from all the CMIP5 
and CMIP6 simulations. The distribution of maximum 
trends from CMIP6 simulations is broadly similar to the 
distribution from CMIP5 (Fig. 2a). Just 1 out of the 281 sim-
ulations has a maximum trend greater than 0.0737 year−1, 
giving an exceedance probability of 3.56 × 10–3 (Table 3), 
i.e. it is a very unlikely occurrence in GCMs (IPCC likeli-
hood scale, Mastrandrea et al. 2010). This simulation is from 
the CMIP6 model CanESM5(p2), however the remaining 
39 simulations from this ensemble have a similar spread in 
maximum trend and lag-1 year autocorrelation estimates to 

that of the whole CMIP ensemble (Fig. 2a), so it does not 
appear that this model is more realistic than the rest of the 
CMIP models.

Semenov et al. (2008) used two GCMs to deduce that 
the distribution of 30-year NAO trends in GCMs is not 
significantly different to the observed distribution. How-
ever, their assessment is for the distribution of all moving 
window trends in the series rather than the distribution of 
maximum trends. They suggest that any differences between 
the observed distribution and the GCM distribution can be 
explained by the short length of the observed trend series. 
However, they state that their 3150 year simulation (moving 
window trend series of length 3121) only exceeds the maxi-
mum observed 30-year NAO trend once, i.e. the exceedance 
probability estimate would be 1/3121 = 3.20 × 10–4, com-
pared to our CMIP estimate of 1/(281 × 114) = 3.12 × 10–5. 
In our case it cannot be argued that the lack of extreme multi-
decadal NAO trends in GCM simulations is due to the GCM 
sample being too small. Using the values from Semenov 
et al. (2008), the approximate probability of a maximum 
trend exceeding the maximum observed 30-winter NAO 
trend would be ~ 1/21 = 0.0476 (sub-setting the 3150 years 
into 21 intervals of length 144 to match the CMIP simula-
tions), which is consistent with our result that the 1960s to 
90s trend is a very unlikely occurrence in GCMs. The fol-
lowing two sections will attempt to understand these results 
by considering the distribution of extreme trends in stochas-
tic processes.

5.2 � Distribution of the trend in a predefined year

The probability distribution of the moving window trend in 
any predefined year is determined by the moving window 
filter weights and the distribution of the underlying index 
series. Firstly, since any linear combination of Gaussian 
variables is Gaussian, the trend series will be Gaussian if the 
index series is Gaussian (which is often a reasonable approx-
imation for climate indices). Furthermore, for index series 
that are 1st order stationary (i.e. E[Yk] does not depend on 
year k), the expectation of the trend is zero,

Hence, the trend in any year i will be Gaussian distributed 
Zi ~ N(0, σz

2), where σz
2 is the variance of the trend process. 

The probability of the trend in year i exceeding a threshold 
value of z is then simply given by Pr(Zi ≥ z) = 1 − Φ(z / σz), 
where Φ(.) is the cumulative distribution function of the 
standard normal. For a given threshold z, the probability 
of exceedance is solely determined by the variance of the 
trend process σz

2.
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Table 3   Probabilities (in 1000ths) of trend exceedance for a single 
31-winter trend p = Pr(Zi ≥ 0.0737  year−1) using all available data 
(trend series of length 140 from HadSLP2r observation dataset) 
and for the maximum 31-winter trend q = Pr(max{Z1+K, Z2+K, … 
Zn-K} ≥ 0.0737  year−1) in a trend series of length 114  years, calcu-
lated using GCMs and fitted stochastic models

Lower and upper bounds for the stochastic models are shown 
in brackets, computed using the 95% confidence interval for the 
lag − 1  year autocorrelation parameter ρ, [0.0212, 0.317] (Bartlett 
1946)

Model p q

Empirical HadSLP2r 7.14 (= 1/140) Not available
GCMs 0.0312 (= 1/32034) 3.56 (= 1/281)
White noise 0.121 6.00
AR(1) ρ = 0.169 0.822 (0.159, 3.09) 34.6 (7.80, 123.0)
FD d = 0.123 1.41 (0.199, 5.84) 60.6 (13.4, 194.0)
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By substitution of Eq. (1), the variance of the trend pro-
cess is given by

where ρk—j is the autocorrelation function and σy
2 is the 

variance of the original index process. Woodward and Gray 
(1993) used sample moment estimates of ρ1, ρ2, … and a 
similar equation to estimate the trend variance. Alterna-
tively, one can obtain more precise estimates by assuming 
that the lag autocorrelations have a known parametric form 
e.g. ρk–j = ρ|k − j| if the index can be well represented by an 
AR(1) process, as is often assumed for climate indices (e.g. 
Santer et al. 2000; Thompson et al. 2015).

The black dashed curve in Fig. 2b shows the trend vari-
ance calculated numerically using Eq. (2), for an AR(1) 
process having variance σy

2 = 1, over a range of values of 
the lag-1 autocorrelation ρ. It captures the mean variance 
σz

2 dependence on ρ, increasing slowly with ρ for small val-
ues, but then more rapidly as ρ increases. Interestingly, as 
ρ approaches one, the variance drops sharply back to zero. 
This is a consequence of using an OLS estimator of slope 
that tends to zero for large values of ρ when consecutive val-
ues in the index series become very similar to one another.

For typical ρ < 0.3 for the NAO, similar variance results 
are obtained with different choices of time series model. The 
black dotted curve in Fig. 2b shows results using the long-
range FD process. The variance for moving window trends 
is slightly higher for a FD process than for an AR(1) process 
for lag-1 autocorrelation values relevant for the NAO, but 
for larger lag-1 autocorrelation the variance increases more 
slowly and peaks at a considerably lower value for the FD 
process than for the AR(1) process. The moving window 
trend filter is a high-pass filter and so the resulting trend is 
not unduly sensitive to the low-frequency properties of the 
index series i.e., how the weak red noise is modelled.

In Fig.  2b we show the variance of moving window 
trends estimated directly from GCM NAO trend series. The 
GCM spread in autocorrelation and variance estimates is 
consistent with being that of a white noise process. The 
GCM estimate of the total variance of trends over all simu-
lations combined is 3.89 × 10–4 year−2 (the average for indi-
vidual simulations is 3.87 × 10–4 year−2, black diamond in 
Fig. 2b), which is very close to the white noise estimate of 
4.03 × 10–4 year−2. To estimate the uncertainty in the vari-
ance of moving window trends we used the stochastic simu-
lations from Sect. 4.2, computing the variance of 31-winter 
moving window trends for each individual simulation. The 
95% prediction interval for the variance estimate is shaded 
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gray in Fig. 2b using the 2.5% and 97.5% variance percen-
tiles from the AR(1) simulations. The individual GCM simu-
lation estimates for the variance of moving window trends 
are consistent with a white noise model as the 95% predic-
tion interval for a white noise process encapsulates 96% of 
the GCM values in terms of the variance of trends (Fig. 2b, 
gray shading at ρ = 0.0).

Within the CMIP ensemble of simulations there is a fairly 
strong relationship between the maximum trend and the vari-
ance of moving window trends (correlation 0.65). However, 
the GCM spread does not show any systematic improvement 
of one climate model over another as multiple members from 
the same model show a similar range of values to the multi-
model ensemble (e.g. CMIP6-CanESM5(p2) in Fig. 2a). The 
large spread in stochastic model variance estimates for single 
simulations (Fig. 2b) shows that the observed time series is 
too short to confidently estimate the distribution of trends 
directly.

Figure  3a shows the distribution of moving window 
trends in terms of the exceedance probability p = Pr(Zi ≥ z) 
and return period (1/p). Gaussian distributions with mean 
zero and variance σz

2 (Eq. 2) for a set of stochastic processes 
are used to show how the exceedance probability and return 
period vary with threshold z and the autocorrelation func-
tion of the original time series. The 95% prediction interval 
for the white noise model probabilities is shown, calculated 
using the 95% prediction interval for the white noise model 
variance of trends (Fig. 2b). The same technique is used for 
the fitted AR(1) process (Fig. 3a) using the best parameter 
estimate from HadSLP2r of ρ = 0.169.

The empirical probabilities based on sample rank values 
from the multi-model ensemble of GCM NAO moving win-
dow trend are indistinguishable from a white noise process 
as the probabilities follow the curve for ρ = 0.0 (Fig. 3a). In 
contrast, the observations are outside the white noise 95% 
prediction interval for large trend thresholds, suggesting the 
tail of the distribution may be significantly different to that 
of a white noise model. The observed probability curves 
for trend exceedance are consistent with the fitted AR(1) 
process, however they are towards the upper edge of the 
95% prediction intervals (Fig. 3a dark gray shading). Similar 
results are found for a fitted FD processes with the difference 
parameter estimate d = 0.123 (not shown).

Using the HadSLP2r period 1851–2020 (moving win-
dow trend series of length 140), the empirical probabil-
ity of a trend exceeding the maximum observed trend 
is given by 1/140 = 7.14 × 10–3, whereas the AR(1) and 
FD fitted models give considerably smaller probabilities 
for Pr(Zi ≥ 0.0737 year−1) of 8.22 × 10–4 and 1.41 × 10–3 
respectively (Table 3). The uncertainty on these estimates 
calculated using the Bartlett 95% confidence interval for 
lag-1 year autocorrelation [0.0212, 0.317] gives a proba-
bility 95% confidence interval of [1.59 × 10–4, 3.09 × 10–3] 
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for the AR(1) model and [1.99 × 10–4, 5.84 × 10–3] for 
the FD model. Compared to these confidence intervals, 
the empirical probability 3.12 × 10–5 estimated from the 
GCMs is significantly lower, and is even smaller than 
the estimate for a white noise process (1.21 × 10–4). 
The observed estimate is not very robust as it is totally 
dependent on the length of the time series, however, using 
the whole L99 trend series still leads to a probability esti-
mate that is higher than the stochastic and climate model 
best estimates: 1/313 = 3.19 × 10–3. This suggests that the 
extreme trends are more likely in the observations than 
one might expect from natural variability represented by 
an AR(1) or a FD process. Furthermore, the observed 
trends are far more likely than is simulated by GCMs. 
This suggests a role for external drivers that may not be 
adequately represented in the models, for example Sun 
et al. (2015) show, using observation based analysis with 
a delayed oscillator model, that coupling with the Atlantic 
Ocean SST and Atlantic Meridional Overturning Circula-
tion (AMOC) is key to modelling the NAO multi-decadal 
variability.

5.3 � Distribution of the maximum in a trend series

Rather than considering trends in a predefined year, one is 
often more interested in particularly unusual trends that have 
been selected because they are the maximum seen in a given 
record e.g., the 1963–1993 trend in NAO observations. To 
assess how unusual such trends are, we need an estimate of 
the exceedance probability of maximum trends

Generalised extreme value (GEV) distributions can be 
used to relate the distribution of the maximum trend to prop-
erties of the index series of random variables. It would be 
convenient to apply extreme value theory at this point to find 
the theoretical relationship, but unfortunately such asymp-
totic behaviour is not achieved for our trend series due to the 
shortness of the series and the strong serial dependence due 
to the moving window filter. If the trend series {Z1+K, Z2+K, 
… Zn-K} were independent Gaussian variables (white noise), 
the maximum value distribution would asymptotically 

q = Pr
(

max
{

Z1+K, Z2+K, … Zn−K

}

≥ z
)

.

Fig. 3   Return plots and exceedance probabilities for trends and maxi-
mum trends in the NAO, CMIP GCMs and stochastic models. The 
return period (lower x-axis), i.e. the reciprocal of the exceedance 
probabilities (upper x-axis), is shown for a range of trend thresholds 
(y-axis) for a the distribution of moving window linear trends (see 
Sect. 5.2) and b the distribution of maximum trends (see Sect. 5.3). 
The empirical probabilities based on GCM sample rank values are 
shown as gray crosses for all 114 × 281 trend values (a) and all 281 
maximum trend values (b). The empirical probabilities from the Had-
SLP2r observed NAO trend series are shown as black circles (a) and 
the maximum observed trend 0.0737 year−1 is marked as a horizontal 
black line. The expected exceedance probabilities for stochastic mod-

els are shown as black dashed lines for the ρ values labelled using 
an AR(1) process. In a the 95% prediction intervals are shown as 
light gray shading for the white noise model and dark gray shading 
for the fitted AR(1) model with ρ = 0.169 (labelled “0.17”) represent-
ing the uncertainty due to time series of length 144  years (medium 
gray shading where they overlap, such that the lower edge marks the 
lower boundary of the dark gray and the upper edge marks the upper 
boundary of the light gray). In b the 95% prediction interval is shown 
for a white noise model (gray shading) representing the uncertainty 
due to having a limited sample of 281 GCM simulations, using ran-
dom bootstrapped samples from white noise simulations of maximum 
trends
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converge to the Gumbel distribution, a special case of the 
GEV distribution with a shape parameter of zero (Coles 
et al. 2001 chapter 3; Kinnison 1985 chapter 7; Wilks 2006 
chapter 4). However, GEV fits to the stochastic simulations 
of maximum trends from Sect. 4.2 find that negative shape 
parameter GEV distributions (Weibull distributions) provide 
better fits.

In Fig. 3b we estimate the probability distribution for 
maximum moving window trends by using the stochastic 
simulations of maximum trends from Sect. 4.2 and calculat-
ing the empirical probabilities based on sample rank values. 
Figure 3b shows the probability q for a range of thresholds 
z using simulations from the fitted AR(1) process with 
lag-1 year autocorrelation 0.169. The return period is simply 
1/q, but as the event refers to the maximum trend in a series 
generated from 144 years, the units relate to the number of 
such series, rather than the total number of years. Probability 
curves are also shown for the white noise process (ρ = 0.0) 
and for AR(1) processes with ρ = -0.1, 0.1, 0.2, 0.3, 0.4. 
The probability q is higher for a FD process than an AR(1) 
process for ρ values relevant for the NAO index, but the FD 
probability curves are less sensitive to ρ as ρ increases, due 
to the relationship of the variance of trends to ρ shown in 
Fig. 2b.

The AR(1) and FD fitted models give exceedance prob-
abilities (q) of 0.0346 and 0.0606 respectively for trend 
threshold 0.0737  year−1 (Table 3). The 95% confidence 
intervals for these exceedance probabilities, based on the 
interval for ρ found in Sect. 4.1, are [0.00780, 0.123] for the 
AR(1) model and [0.0134, 0.194] for the FD model. In con-
trast, the GCM exceedance probability q is 1/281 = 0.00356 
which is significantly smaller than both the fitted stochas-
tic model estimates. The empirical probabilities calculated 
from the GCM maximum trend sample lie close to the white 
noise probability curve and are well within the white noise 
95% prediction interval for the extreme trend values of the 
NAO we are interested in (Fig. 3b). This 95% probability 
prediction interval has been calculated using 5000 bootstrap 
samples of size 281 (the number of GCM simulations) taken 
from the white noise sample of 5000 maximum trend values. 
This provides evidence that the maximum observed NAO 
trend is more consistent with the fitted stochastic models 
than the GCMs. It therefore seems that the GCMs underesti-
mate the likelihood of the 1963–1993 observed trend occur-
ring, and the lack of multi-decadal variability in the GCMs 
can be partially explained by a lack of year-to-year memory.

To gain some insight into the role of ocean SST in driving 
NAO trends, the extreme trend analysis has been repeated 
for an ensemble of ERA-20CM atmospheric model simu-
lations which cover the winters 1900/1901 to 2009/2010 
(Hersbach et al. 2015). There are 10 simulations, each driven 
by observations of SST/sea ice and the same radiative forc-
ing as used in CMIP5. None of these simulations reproduce 

the magnitude of the observed maximum NAO trend and the 
average lag-1 year autocorrelation is − 0.0287. The timing 
of the maximum trends in individual ERA-20CM simula-
tions are spread fairly evenly throughout the period, as for 
the CMIP simulations. This suggests that the models are 
missing processes that lead to persistence within the atmos-
phere itself or that the model atmosphere is responding too 
weakly to boundary forcings that may themselves provide 
some year-to-year memory, such as Atlantic SST and the 
AMOC (Sun et al. 2015).

To test the sensitivity of our results to the choice of win-
ter NAO definition, the analysis has been repeated, using 
HadSLP2, GCMs and AR1 models, for the extended winter 
season December-to-March (DJFM) and for an Empirical 
Orthogonal Function (EOF) based NAO index using the 
leading principal component in the North Atlantic (Hurrell 
1995). For the DJFM season, the results are consistent with 
those for DJF. The probability of a maximum NAO trend 
exceeding the maximum observed (0.0758 year−1) is 0.0176 
when estimated by the fitted AR1 process, whereas none of 
the GCM simulations reproduce this magnitude of trend. It 
has been shown that there is greater multi-decadal variability 
for the observed NAO in late winter than early winter (Simp-
son et al. 2018), which may lead to this larger discrepancy 
between observations and CMIP models. The probability 
of a maximum NAO EOF index trend (DJF) exceeding the 
maximum observed (0.0701 year−1) is 0.00356 when esti-
mated by the GCMs, which is the same value as for the grid 
point index (i.e. just 1 simulation reproduces this magnitude 
of trend). In this case the average autocorrelation for the 
GCMs is close to zero (ρ = − 0.00849) with 15 out of 281 
GCM simulations having lag-1 year autocorrelation esti-
mates lying outside the 95% confidence interval for zero 
autocorrelation, i.e. very similar results to those for the grid 
point based index (Sect. 4.1).

As mentioned in the introduction, it is important to 
remember that the NAO trend from 1963 to 1993 (or close 
to this time interval) has been a feature of interest in the cli-
mate literature as it has already been identified as unusual in 
the historical record. Percival and Rothrock (2005) account 
for this in their analysis by considering a range of different 
window lengths. Repeating our analysis for window lengths 
15 years and 45 years leads to results that are consistent 
with those of the 31 year window in terms of the GCMs 
likely underestimating the magnitude of multi-decadal NAO 
trends. The probability of a maximum NAO trend exceeding 
the maximum observed trend from HadSLP2 (0.177 year−1 
for a 15 year window and 0.0402 year−1 for a 45 year win-
dow) is significantly lower when estimated by the GCMs 
(probabilities 0.114 and 0.0107 respectively) than when esti-
mated by the fitted AR1 process (probabilities 0.269 and 
0.0306 respectively), however the AR1 model probabilities 
are only 2 and 3 times that of the GCM probabilities whereas 
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for the 31-year window this ratio is 10 times. Using the fitted 
AR1 model, the maximum observed 45-year trend would 
still be considered a very unlikely occurrence whereas the 
maximum observed 15-year trend would be characterised as 
unlikely, according to the IPCC likelihood scale (Mastran-
drea et al. 2010).

6 � Conclusions

This study has explored the use of time series modelling 
to quantify the behaviour of extreme trends in a moving 
window trend series. If the time series can be well repre-
sented by a stationary Gaussian stochastic process, such as 
an AR(1) or FD process, then the distribution of the moving 
window trend in any given year is solely determined by the 
variance of moving window trends (σz

2). The distribution of 
maximum moving window trends has been found empiri-
cally using a large set of stochastic simulations and is not 
overly sensitive to the choice of stochastic model for time 
series with some weak year-to-year memory.

This stochastic modelling approach has been compared 
with a climate modelling approach to address the ques-
tion of how likely it is for multi-decadal trends (linear-in-
time trends) to exceed high thresholds. The focus has been 
to quantify the chance of seeing larger positive trends in 
the NAO than have occurred in historical observations, 
specifically the maximum seen for the 31-winter win-
dow 1963–1993 (0.0737  year−1). The exceedance prob-
ability for a moving window trend in any predefined year, 
p = Pr(Zi ≥ 0.0737 year−1), estimated from the fitted stochas-
tic models is 8.22 × 10–4 for the AR(1) model and 1.41 × 10–3 
for the FD model (Table 3). Both estimates are significantly 
higher than the GCM probability of 3.12 × 10–5.

The exceedance probability for the maximum trend in a 
trend series of length 114 (i.e. for n = 144 years, the length of 
the coincident CMIP historical period and observed record), 
q = Pr(max{Z1+K, Z2+K, … Zn-K} ≥ 0.0737 year−1), estimated 
from the fitted stochastic models is 0.0346 for the AR(1) 
model and 0.0606 for the FD model. The 1963–1993 NAO 
trend was therefore a very unlikely occurrence (around 1 in 
20 chance) with respect to these stochastic models (IPCC 
likelihood scale, Mastrandrea et al. 2010) and significantly 
less likely in the GCMs with a probability q = 0.00356 
(around 1 in 200 chance). Furthermore, we have found no 
improvement in CMIP6 compared to CMIP5 models in 
reproducing the observed low frequency variability of the 
NAO.

CMIP GCMs underestimate the multi-decadal variability in 
the NAO and this appears as a lack of serial correlation com-
pared to the observed NAO. This lack of serial correlation in 
CMIP GCMs is closely linked to the low signal-to-noise ratio 
in GCMs (Zhang and Kirtman 2019), whereby the variance 

of the ensemble mean (signal) in predictions of the NAO is 
weaker than would be expected given the correlation with 
observations (Scaife et al. 2014; Eade et al. 2014; Scaife and 
Smith 2018; Smith et al. 2020). The CMIP 1963–1993 multi-
model ensemble mean trend is very weak (0.00183 year−1) 
relative to the observed trend, and there is no consistency in 
the timing of maximum NAO trends in the individual GCM 
simulations. This suggests that the extreme multi-decadal 
NAO trends in GCMs are dominated by internal variability 
and are not responding strongly to their common boundary 
condition forcing (e.g. greenhouse gases).

The extreme NAO trend from the 1960s to 1990s accounted 
for at least half of the winter warming in the northern extra-
tropics (Iles and Hegerl 2017; Scaife et al 2005), yet the GCM 
estimate of the likelihood of this trend is only about 10% of 
that from a fitted AR(1) or FD model. Policy makers and plan-
ners need to be aware of this deficiency in model simulations 
of multi-decadal variability when using climate projections 
of the NAO for adaptation in order to avoid underestimating 
the risk of extreme trends. We have found that both AR(1) and 
FD processes are valuable additional models for estimating the 
distribution of extreme multi-decadal trends and they will be a 
useful tool to better quantify the uncertainty in multi-decadal 
or century long projections.

Appendix: Proof that the trend series 
is the realization of an ARMA(p, 2K + 1) 
process

If the index series is an AR process, then the proof below 
shows that the moving window trend series is an ARMA pro-
cess (see Wilks 1995 chapter 8 for an introduction to AR and 
MA processes). From Eq. (1), it can be noted that the trend 
series is a MA(2K + 1) filtered version of the index series:

having filter weights given by θ = [−K
h2

,−(K−1)
h2

,…,K−1
h2

,K
h2
] . Note 

that this MA filter has a unit root since the filter weights 
add up to 0. If the index series Y is a p’th order autore-
gressive process AR(p) with parameters φ = [φ1, φ2, …, φp] 
then Yj =

∑p

l=1
�lYj−l + εj (where εj are independent Gauss-

ian variables). Substitution of this into the Equation above 
and rearranging the sums gives

Zi =

K
∑

j=−K

θjYi+j,
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The εi+j are independent and identically distributed and 
therefore the trend series Z is a realization of an ARMA(p, 
2K + 1) process.
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