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Abstract
Multi-decadal trends in the wintertime North Atlantic Oscillation (NAO) are under-represented by coupled general circula-
tion models (CGCMs), consistent with a lack of autocorrelation in their NAO index series. This study proposes and tests 
two simple “reddening” approaches for correcting this problem in simulated indices based on simple one parameter short-
term (AR; Auto-Regressive order 1) and long-term (FD; Fractional-Difference) time series filters. Using CGCMs from the 
Coupled Model Intercomparison Project Phase 6 (CMIP6), the FD filter successfully improves the autocorrelation structure 
of the NAO, and in turn the simulation of extreme trends, while the AR filter is less successful. The 1963–1993 NAO trend 
is the maximum 31-year trend in the historical period. Raw CGCMs underestimate the likelihood of this trend by a factor 
of ten but this discrepancy is corrected after reddening. CMIP6 future projections show that long-term (2024–2094) NAO 
ensemble mean trends systematically increase with the magnitude of radiative forcing: -2.4 to 3.5 hPa/century for low-to-high 
forcing after reddening (more than double the range using raw output). The related likelihood of future maximum 31year 
trends comparable to 1963–1993 ranges from 3 to 7% whereas none of these CMIP6 projections simulate this without red-
dening. Near-term projections of the next 31 years (2024–2054) are less sensitive than long term trends to the future scenario, 
showing weak-to-no forced trend. However, reddening increases the ensemble range by 74% (to +/-1 standard deviation/
decade), which could increase/decrease regional climate change signals in the Northern Hemisphere by magnitudes that are 
underestimated when using raw CGCM output.

Keywords North Atlantic Oscillation · Recalibration · Future projections · Extreme trends · Multi-decadal variability · 
Climate modelling · Stochastic modelling

1 Introduction

The North Atlantic Oscillation (NAO) is the dominant 
mode of variability in the North Atlantic on interannual and 
longer timescales. It is often defined as the first Empirical 
Orthogonal Function (EOF) of monthly mean sea level pres-
sure (MSLP) variability in the North Atlantic region, with 
physically consistent patterns of variability in other atmos-
pheric variables (Hurrell 1995; Ambaum et al. 2001). This 
paper focusses on the winter NAO which has been shown 
to impact many aspects of society in Europe and the USA. 

The NAO can impact agriculture, fishing and water man-
agement through its effect on temperature, extreme rainfall 
and drought (Hurrell 2001) which in turn affects planning 
for food import needs (Kim and McCarl 2005). The energy 
sector is influenced by the NAO in terms of energy demand 
relating to winter temperatures and in terms of energy supply 
relating to wind, solar and hydropower (Jerez et al. 2013; 
Uvo and Berndtsson 2002; Thornton et al. 2017). The NAO 
can also impact the insurance industry, related to dam-
age from extreme events such as high winds and flooding 
(Zanardo et al. 2019), and transport via snow and ice (Palin 
et al. 2016). Temperature related impacts in Eurasia may 
also be apparent beyond winter into spring and summer due 
to the interaction between the NAO and sea surface tempera-
ture in the North Atlantic (Wu and Chen 2020; Chen et al. 
2020). Understanding multi-decadal variability of the NAO 
is therefore important for all these sectors when planning 
for future adaptation.
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The multi-decadal variability of the NAO dominates 
northern hemisphere regional rainfall and temperature pro-
jections in winter (Deser et al. 2017). The NAO was shown 
to be responsible for the tendency for cold UK winters in 
the 1960s moving towards milder and wetter winters in the 
1990s (Hurrell 1995). The large positive trend in the winter 
NAO index from 1963 to 1995 accounted for at least half 
of the winter warming in the Northern Hemisphere extra-
tropics (Iles and Hegerl 2017; Scaife et al. 2005), while the 
large negative trend from 1920 to 1971 more than halved 
the winter warming (Iles and Hegerl 2017). These time 
windows, on which the linear trends are calculated, actually 
contain the maximum 33-year trend and minimum 52-year 
trend in the NAO historical record. It is therefore of inter-
est to quantify the likelihood of such extreme NAO trends 
occurring in the future.

Previous studies have found that externally forced coupled 
general circulation models (CGCMs), such as those from the 
Coupled Model Intercomparison Project (CMIP), are gener-
ally unable to simulate the full magnitude of multi-decadal 
NAO trends observed in the historical record. This issue 
was originally noticed after the large positive NAO trend 
was observed around the 1960s to 1990s and both CMIP 
Phase 2 (CMIP2) CGCMs and atmosphere-only simulations 
underestimated the magnitude of this trend (e.g. Stephenson 
et al. 2006; Scaife et al. 2009). Davini and Cagnazzo (2013) 
show that CMIP5 models are fairly good at simulating the 
observed NAO pattern of interannual variability, but some of 
these models do not correctly capture the related dynamics 
and physical processes particularly the observed coupling to 
the Greenland blocking frequency. More recently, the CMIP 
Phase 5 (CMIP5) and Phase 6 (CMIP6) simulations have 
been used to show that climate models still underestimate 
the NAO multi-decadal variability (Lee et al. 2021; O’Reilly 
et al. 2021) and extreme 31-year linear trends (Bracegirdle 
et al. 2018; Eade et al. 2022; Bracegirdle 2022), despite hav-
ing interannual variability similar that observed (Lee et al. 
2021; Eade et al. 2022). The recent longer-term NAO trend 
1951–2020 is also underestimated in CMIP6 experiments 
(combining historical experiments with near-term future 
projections) which so happens to be the maximum 70-year 
NAO trend in the observational record (Blackport and Fyfe 
2022). The lack of multi-decadal variability in CGCMs in 
the historical experiments suggests that future projections 
likely also underestimate the magnitude of NAO multi-dec-
adal variability (O’Reilly et al. 2021).

The underestimation of multi-decadal NAO trends in 
CGCMs has been shown to be consistent with a lack of 
autocorrelation in the NAO index series compared to the 
observed NAO (Eade et al. 2022). The most common sto-
chastic models used to represent the NAO are short-range 
dependence first order auto-regressive (AR(1) red noise 
processes (e.g. Wunsch 1999; Feldstein 2000; Thompson 

et al. 2015) and long-range dependence (FD) processes (Ste-
phenson et al. 2000). These simple stochastic models, using 
parameter estimates fitted to the observed winter mean NAO 
index, have been shown to better simulate the magnitude 
of the observed extreme NAO trends compared to CGCMs 
which in turn behave more like a white noise process i.e. 
with zero autocorrelation (Eade et al. 2022). The source of 
the observed NAO autocorrelation may be related to the 
interaction with North Atlantic sea surface temperature 
(Mosedale et al. 2006) and ocean reemergence (e.g. Timlin 
et al. 2002; Buchan et al. 2014). It could also be related to 
the response to external forcings such as solar variability 
(Scaife et al. 2013; Gray et al. 2013) or aerosol forcing (e.g. 
Watanabe and Tatebe 2019). The CGCM lack of autocorre-
lation and similarity to a white noise process has been noted 
in terms of jet stream variability (Simpson et al. 2018), and 
also for North Atlantic variability more generally (O’Reilly 
et al. 2021). The CGCM lack of autocorrelation and under-
estimation of extreme trends is not sensitive to the defini-
tion of the NAO index, as Eade et al. (2022) found the same 
results when using an Empirical Orthogonal Function based 
index. The cause of the lack of autocorrelation in CGCMs is 
unclear but could be related to differences in the atmospheric 
internal variability, the response to external forcings and 
the strength of ocean-atmosphere coupling (Gastineau and 
Frankignoul 2015; Blackport and Fyfe 2022; Bracegirdle 
2022). The lack of autocorrelation is also likely related to 
the signal-to-noise paradox (Zhang et al. 2021; Strommen 
and Palmer 2018; Strommen 2020).This paradox has been 
identified in recent studies whereby the magnitude of the 
CGCM NAO forced signal is weaker than expected from the 
magnitude of the correlation with observations (Scaife et al. 
2014; Eade et al. 2014; Scaife and Smith 2018; Smith et al. 
2020; Klavans et al. 2021). The cause of this is not yet fully 
explained but may be related to a lack of eddy feedback in 
models (Hardiman et al. 2022).

A new recalibration reddening method is proposed here 
to increase the autocorrelation of the NAO index series in 
CGCMs and thereby improve the simulation of extreme 
multi-decadal NAO trends. The NAO index definition and 
the reddening method are described in Section 2. The red-
dening method is tested on the historical simulations from 
CMIP6 in Section 3 and then applied to future projections 
in Section 4 to forecast potential changes in NAO multi-
decadal variability under different future scenarios.

2  Data and methods

2.1  Observation and model data

The winter NAO index is calculated using Mean Sea Level 
Pressure (MSLP) averaged over the winter season December 
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to February (DJF), where January is used to define the 
year. The HadSLP2r gridded observation dataset (Allan 
and Ansell 2006) is used to represent the observed NAO 
as it is available for a long historical period of 171 years 
(1851–2021).

The CGCM NAO index series are computed using the 
multi-model ensemble output from CMIP6 (Eyring et al. 
2016) for sets of historical experiments (1850–2014) and 
future projections (2015–2100). Experiments from CMIP6 
use a single set of historical external forcings for the period 
up to 2014 representing past natural changes such as solar 
irradiance and volcanic aerosol due to past eruptions and 
also past anthropogenic changes such as emissions of green-
house gases and aerosols. From 2015 to 2100 multiple future 
scenarios have been defined to determine the levels of exter-
nal forcing applied. These scenarios are known as Shared 
Socio-economic Pathways (SSP) and represent a range 
of possible futures with different anthropogenic forcings. 
Four scenarios are analysed in this paper: SSP126, SSP245, 
SSP370 and SSP585 going from optimistic reductions of 
greenhouse gas and aerosol emissions (compatible with a 
2 °C target level of global mean warming by 2100) to the 
more pessimistic “business as usual” scenario where emis-
sions continue to increase (O’Neill et al. 2016). All future 
scenarios have the same natural external forcings with a 
regular 11-year solar cycle and a background level of vol-
canic forcing without future eruptions. All scenarios show 
an increase of the anthropogenic effective radiative forcing 
out to 2100 except SSP126 which has a slight decrease in the 
second half of the 21st century but levels are still higher than 
historical values (Arias et al. 2021). Models are included 
where they have the same set of members available for the 
historical experiments and all four future scenario experi-
ments. This results in a set of 36 models with a total of 258 
members (Appendix 1).

2.2  Definition of the NAO trend series

A standardised NAO index is defined as the standardised 
difference of the standardised MSLP time series at the 
two main nodes of NAO variability, that is Ponta Delgada, 
Azores at 37.7 N, 25.7 W minus Reykjavík, Iceland at 
65.0 N, 22.8 W (Hurrell 1995), using the nearest grid boxes 
in the winter mean MSLP gridded observation datasets and 
CGCM output. This NAO index is referred to in units of 
“sd” meaning standard deviations. The climate period for 
standardisation is defined to be 1862–2005. A non-stand-
ardised version of this index, the straight MSLP difference 
between Ponta Delgada and Reykjavík, is also sometimes 
referred to so that results can be discussed in units of hPa, 
and results are not sensitive to the choice of definition.

A multi-decadal trend is here defined as an Ordinary 
Least Squares (OLS) trend in time for a window of fixed 

length, and is the slope parameter estimate obtained from 
linear regression of the index on time. This NAO trend is 
referred to in units of “sd/decade”, meaning standard devia-
tions per decade. Moving window trend series are obtained 
by shifting a window along the index time series year-by-
year and calculating the linear trend estimate within each 
window, resulting in a moving average filtered version of the 
original index series (Eade et al. 2022). A 31-year window 
is chosen to match results from Eade et al. (2022) but other 
window lengths are also considered. An extreme trend is 
defined as the block maximum (or minimum) value in the 
moving window trend series.

2.3  Distribution of moving window trends

In Eade et al. (2022) it was shown that the distribution of 
moving window trends can be explicitly determined if the 
original index is a Gaussian stationary stochastic process. 
In this case, the moving window trends have a Gaussian 
distribution with a mean of zero and variance

where 2 K + 1 is the window length, and �2

Y
 and �k−j are 

respectively the variance and the lag k–j autocorrelation 
of the index process. It can be seen from Eq. (1) that, for 
a given window length, the variance of the moving win-
dow trends is related to the magnitude of the variance �2

Y
 

and autocorrelation �k−j of the original index process. For 
example, if the lag-1 year autocorrelation is increased then 
the multi-decadal variability of the index series is generally 
increased, described here by the variance of the moving win-
dow trend series ( �2

z
 ), and thus the likelihood of large trends 

is also increased, whether the window length represents a 
short- or a long-term trend.

Discrepancies between CGCMs and observations may 
thus be approached by correcting the variance and/or the 
autocorrelation structure of the CGCM index series. In Eade 
et al. (2022) it was shown that the CMIP5 and CMIP6 mod-
els underestimate the autocorrelation of the winter mean 
NAO index series with lag-1 year autocorrelation coeffi-
cients that are approximately zero and behaviour similar to 
that of a white noise process, while the observed estimate of 
lag-1 year autocorrelation is around 0.17. For the standard-
ised NAO index definition used here, the CGCM variance 
has already been corrected to match that observed (i.e. a 
variance of one). For the non-standardised version of the 
NAO index, CMIP5 and CMIP6 models are also reasonable 
at simulating the interannual variability (Eade et al. 2022). 
Thus, it is just the discrepancy in autocorrelation structure 
that is considered here.
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2.4  Reddening methods

To correct for the low level of autocorrelation in the CGCM 
NAO index series, a parsimonious low-pass linear time 
series filter approach is proposed to increase the autocorre-
lation. The filters are based on a Fractional first order Auto-
Regressive FAR(1) process which involves two parameters, 
the auto-regressive parameter φ ϵ (-1, 1) and the difference 
parameter d ϵ (-0.5, 0.5). Given an original index series Y, 
the filtered or “reddened” series YR using a FAR(1) process 
is given by

(Hosking 1981) where B is the backward shift operator such 
that BY(t) = Y(t 1) and γ is a constant chosen to retain the 
variance of the original series. The parameters for this red-
dening filter can be determined such that the resulting red-
dened CGCM NAO index series will have the same fitted 
FAR(1) parameters as for the observed NAO index series.

Because of the shortness of the observed index series, it 
is not possible to reliably estimate all three of the parameters 
in this (or more complex) models. Therefore, we consider 
instead these simple cases: Short-term AR(1) filter and long-
term FD filter. These processes have been used previously to 
model the NAO (Wunsch 1999; Feldstein 2000; Stephenson 
et al. 2000).

If it is assumed that the observed NAO index can be 
approximated as an AR(1) process then it is appropriate to 
apply an AR(1) filter to increase the level of short-range 
dependence in the CGCM index (Y). For the AR(1) filter, 
the new reddened index YR is defined by

If Y is assumed to be a memory-less Gaussian white noise 
process, YR is then an AR(1) process and φ can be simply 
estimated to be equal to the lag-1 sample autocorrelation of 
the observed index series:

The scaling parameter γ is chosen to ensure that the 
expected variance of YR equals the expected variance of Y. 
It can be shown that the variance of the AR(1) process YR 
is given by

(Hamilton 1994). To make these variances equal, the scaling 
parameter γ is given by:

(2)YR = �(1 − �B)−dY

(3)YR = �(1 − �B)−1Y

(4)� = �R.

(5)Var
(

YR
)

=
�
2Var(Y)

1 − �2

(6)�
2 = 1 − �

2
.

If it is assumed that the observed NAO index series can 
be approximated as a FD process, then it is appropriate to 
apply a FD filter to increase the level of long-range depend-
ence in the CGCM index (Y). For the FD filter, the new 
reddened index YR is defined by

For the simple case where Y is a Gaussian white noise 
process, YR is then an FD process having lag-1 autocorrela-
tion � =

d

1−d
.For given values of the difference parameter dR 

estimated from the observed index series, the level of long-
range dependence in this new FD process YR is controlled 
by setting

The scaling parameter γ is chosen to ensure that the 
expected variance of YR equals the expected variance of Y. 
It can be shown that the variance of the FD process YR is 
given by

where Γ is the Gamma function (Hosking 1981). To make 
these variances equal, the scaling parameter γ is given by

The reddening methods outlined above assume that the 
CGCM NAO index series can be modelled as a white noise 
process, which appears to be justifiable from the lag-1 auto-
correlations (Section 3.1; Eade et al. 2022). An extension 
of these methods to account for a non-zero level of autocor-
relation or long-range dependence in CGCM NAO index 
series is outlined in Appendix 2, but the results show little 
sensitivity compared to the original method (Section 3).

2.5  Autocorrelation in the observed NAO index

The observed winter mean NAO index has a lag-1 year auto-
correlation parameter of ρ = 0.17 estimated from the Had-
SLP2r NAO index 1851–2020 (Eade et al. 2022). For the 
convenience of quantitatively comparing the AR(1) and FD 
reddening methods, the difference parameter is estimated 
from ρ using

(Hosking 1981) such that d = 0.15. The autocorrelation 
parameter estimate has been shown to be somewhat sen-
sitive to the time period used (e.g. Hurrell and van Loon 

(7)YR = �(1 − B)−dY .

(8)d = dR.
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(
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1997), but this could easily be due to the uncertainty from 
using relatively short observation datasets. The distribution 
of the lag-1 year autocorrelation parameter can be assumed 
to be Gaussian such that the 95% confidence interval (i.e. 
2.5th to 97.5th percentiles) for the lag-1 year autocorrelation 
parameter ρ for an index series of length n is given by the 
Bartlett formula:

(Bartlett 1946) where 1.96 is the threshold such that the 
probability P(|X| < 1.96) = 0.95 for the standard Gaussian 
variable X. For the HadSLP2r lag-1 year autocorrelation 
estimate of ρ = 0.17 with n = 170 (time series length), the 
Bartlett 95% confidence interval for ρ is (0.021, 0.32) and 
the equivalent interval for d is (0.021, 0.24). These confi-
dence intervals are considered when reddening the CGCM 
NAO series, however the lower values are so close to zero 
that there will be little-to-no effect from reddening.

(12)� ± 1.96

√

(

1 − �2
)

n

3  Improved distribution of historical NAO 
trends in climate models

3.1  Autocorrelation of NAO index series

Figure 1a shows the effect of the reddening process on the 
distribution of the lag-1 year autocorrelation parameter 
across all the 258 CGCM NAO simulations. The distri-
bution for the raw CGCM output is centred on zero, as 
found in Eade et al. (2022). The observed level of lag-1 
year autocorrelation is 0.17 and significantly different 
to that of a white noise process when compared to the 
related 95% confidence interval (Fig. 1a). After applying 
the AR(1) and FD reddening methods with observed esti-
mates of autocorrelation and fractional difference param-
eters ( �R = 0.17 and dR = 0.15), these distributions are 
shifted up to the observed values as expected and retain 
roughly the same width as for the raw output. The 95% 
confidence interval for the estimate of the autocorrelation 
in the observed NAO index series shows considerable 
uncertainty (Section 2.5), thus this interval is also con-
sidered when reddening the CGCMs. The lower values 
in these intervals are so close to zero that there will be 
little-to-no effect from reddening so only the upper values 
are shown in subsequent analysis. Figure 1b shows the 

Fig. 1  Reddening effect on autocorrelation function of CGCM NAO 
index. a The distribution of lag-1 year autocorrelation parameter esti-
mates for all the individual raw CGCM historical simulations (1851–
2021) using SSP585 beyond 2014 (black dashed line). The distribu-
tions are also shown for the reddened CGCM output using the AR(1) 
method with stochastic parameters shown in brackets (ρR = 0.17, 0.32; 
dR = 0.15, 0.24). The HadSLP2r observed estimate is shown by the 

thick black vertical line (ρ = 0.17). b  The average lag autocorrela-
tion value across all individual CGCM ensemble members for lags 
zero to ten years for the raw and reddened CGCM output as in (a). 
The observed estimates are shown by the thick black solid line. Gray 
shading represents the 95% confidence interval for a white noise pro-
cess using the Bartlett formula (Eq. 12) with ρ = 0
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multi-model ensemble mean of lagged autocorrelation 
estimates for lags up to ten years. An AR(1) process can 
only model short-range dependence, thus the weak long-
range dependence apparent in the observed NAO series 
is better captured by the FD reddened CGCMs than the 
AR(1) reddened, especially if the upper parameter esti-
mate dR = 0.24 is used.

3.2  Variability of NAO multi‑decadal trend series

Figure 2a shows the effect of the reddening process on a sin-
gle CGCM simulation of the NAO index (UKESM1-0-LL) 
using the AR(1) and FD methods with upper estimates of 
the stochastic distribution parameters �R = 0.32 and dR = 
0.24. Both reddening methods lead to accentuated clusters 
of positive or negative phases of CGCM NAO index values 
while retaining the original timing. The reddening methods 

Fig. 2  Reddening effect on 
CGCM NAO 31-year trend 
series. a NAO index and (b) 
31-year trend (relative to the 
central year) for a single CGCM 
simulation (UKESM1-0-LL) 
using raw (black) model output 
and AR(1) (red) and FD (blue) 
reddened output with �

R
 = 

0.32 and d
R
 = 0.24. c and (d) 

Dashed curves show CMIP6 
multi-model ensemble mean 
NAO 31-year trend series using 
historical (black) and future 
(colours) experiments for (c) 
raw model output and (d) FD 
reddened output ( d

R
 = 0.24). 

Light and dark gray shading 
shows the ensemble range 
and empirical 95% prediction 
interval respectively (historical 
and SSP585). The observed 
31-year trend series is shown for 
HadSLP2r in a-c (black solid 
curve)
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lead to a widening of the CGCM 31-year moving window 
trend distribution in both directions and an increase in the 
absolute magnitude of both maximum and minimum 31-year 
NAO trends (Fig. 2b).

Figures 2c and 3a show the time evolution of the raw 
CGCM 31-year and 71-year NAO trend series in terms of 
the multi-model ensemble mean, ensemble range, and 95% 
prediction interval (based on the empirical 2.5th and 97.5th 
percentiles across all 258 single members in the CMIP6 
ensemble), using future scenario SSP585 beyond 2014. 
31-year and 71-year windows are chosen to enable com-
parisons to other recent results for extreme NAO trends in 
Section 3.3. The multi-model ensemble mean trend series 
exhibit multi-decadal variability but this is much weaker 
than the observed variability as expected. Over the historical 
period, the observed moving window trend series are mainly 
contained within the CGCM ensemble 95% prediction inter-
val but the observed extreme trends are generally outside 
of the prediction interval and in many cases outside of the 
CGCM total ensemble range. After applying the FD redden-
ing method with dR = 0.24 (Figs. 2d and 3b), the variance 
of the CGCM moving window NAO trends is increased (as 
expected from Section 2.3 and Eq. (1) where the reddening 
method has increased the magnitude of the autocorrelation 
function) and thus the 95% prediction interval and range are 
inflated to better encompass the full range of the observed 
multi-decadal variability.

The standard deviation of the observed 31-year trend 
series for the historical period 1851–2014 is about 35% 
larger than the total standard deviation of the raw CGCM 
ensemble (0.264 sd/decade vs. 0.195 sd/decade, Table 1 row 
a). The upper level of reddening ( �R = 0.32 or dR = 0.24) 
is needed for the CGCMs to have a total standard deviation 
of 31-year trends comparable to that observed, and this also 
leads to an inflation of the standard deviation of the ensem-
ble mean by 33% and 52% respectively (Table 1 row b). 
The estimate of the standard deviation of the observed trend 
series is not very robust given that there are very few inde-
pendent 31-year windows in the 164-year historical record 
(just five non-overlapping windows in period 1851–2014) so 
this analysis is not repeated for longer windows.

The cumulative distribution function for moving window 
trends is given by one minus the exceedance probability p(z) 
of the trend in year i (Zi) exceeding a threshold value of z:

For the probability of trends more negative than a thresh-
old, we will use the terms negative-exceedance probability 
and p’(z):

The effect of the reddening methods on CGCM 31-year 
moving window trend exceedance probabilities is shown in 

(13)p(z) = Pr
(

Zi ≥ z
)

.

(14)p�(z) = Pr
(

Zi ≤ z
)

.

Fig. 3  Reddening effect on 
CGCM NAO 71-year trend 
series. a and (b) Dashed curves 
show CMIP6 multi-model 
ensemble mean NAO 71-year 
trend series using historical 
(black) and future (colours) 
experiments for (a) raw model 
output and (b) FD reddened 
output ( d

R
 = 0.24). Light and 

dark gray shading shows the 
ensemble range and empirical 
95% prediction interval respec-
tively (historical and SSP585). 
The observed 31-year trend 
series is shown for HadSLP2r 
(black solid curve)
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Table 1  Effect of the reddening 
methods on the CGCM 
historical distribution of 31-year 
moving window and extreme 
trends

CGCM statistics are shown using the raw NAO index series and for the AR(1) and FD reddened NAO 
index series with autocorrelation and difference parameters as indicated by�

R
andd

R
 in the column headings. 

(a) The total standard deviation of 31-year moving window NAO trend series from CMIP6 simulations 
over the historical period 1851–2014 (in units of sd/decade) and (b) the standard deviation of the CGCM 
ensemble mean. The standard deviation of the observed trend series using HadSLP2r over the same period 
is 0.264 sd/decade. (c) The ensemble range for the linear trend on the specific time window centred on 
1978 (Z1978, 1963–1993). The percentage increase in standard deviation and range values for the reddened 
CGCMs relative to the raw CGCM values are shown in brackets. (d) CGCM empirical probabilities (shown 
as percentages) of trend exceedance q = Pr(max trend ≥ z) in the historical period 1862–2005, where z is 
the maximum observed 31-year trend (0.737 sd/decade). (e) Fitted stochastic model exceedance probability 
estimates of q taken from Eade et al. (2022; Appendix Table 3), using the same stochastic models as used 
in the reddening methods and using a white noise process for the Raw CMIP column. (f) as in (d) but the 
reddening methods use the sample estimates of the CGCM lag-1 year autocorrelation rather than assum-
ing these are identically equal to zero. Values are shown to three significant figures (except percentage 
increases shown to two)

Raw CMIP AR(1) reddened CGCM FD reddened CGCM

(�
R
 = 0.0) �

R
 = 0.17 �

R
 = 0.32 d

R
 = 0.15 d

R
 = 0.24

(a) Total S.D. 0.195 0.227 (17%) 0.262 (34%) 0.248 (27%) 0.284 (46%)
(b) Ens. Mean S.D. 0.012 0.014 (16%) 0.016 (33%) 0.016 (26%) 0.019 (52%)
(c)  Z1978 Range 1.108 1.310 (18%) 1.526 (38%) 1.505 (36%) 1.740 (57%)
(d) CGCM q 0.388% 2.71% 11.6% 6.59% 15.5%
(e) Stoch. q 0.600% 3.46% 12.30% 6.06% 19.40%
(f) CGCM q ext. 0.388% 2.33% 9.69% 6.20% 16.7%

Fig. 4  Return Period Plots for NAO 31-year moving window trends 
and extreme trends for reddened CGCMs. The empirical exceed-
ance probabilities (top axis) for 31-year moving window NAO trend 
series (return period on the bottom axis) are shown for the CGCMs 
using raw model output (black solid line) and observations (black 
open circles, using HadSLP2r) with the maximum observed trend 
identified by the horizontal black line. The pink shading shows the 
range of probabilities after applying (a) the AR(1) reddening method 
with �

R
 in range (0.17, 0.32) and (b) the FD reddening method with 

d
R
 in range (0.15, 0.24), bounded by the red curves identified in the 

key by solid and dashed lines respectively. The gray curves show the 
theoretical probability curves assuming a Gaussian distribution with 

mean zero and variance computed using Eq.  (1) with �2

Y
 = 1 for a 

white noise process (solid) and FD processes with d
R
 = 0.15 (dashed) 

and 0.24 (dotted). The gray shading represents the CGCM sampling 
uncertainty due to short time series (sample size 114), using the 95% 
prediction interval for empirical exceedance probabilities from each 
of the individual CGCM NAO simulations, for raw and reddened out-
put as shown in the key. These intervals overlap so they are plotted 
such that the upper bound of each interval is visible. The short time 
series mean that the lowest non-zero probability is 1/114 thus the 
gray shading does not extend across the full range of return periods 
shown



7877Recalibration of missing low‑frequency variability and trends in the North Atlantic…

Fig. 4a and b. The raw CGCM empirical rank exceedance 
probabilities are shown using the total multi-model ensem-
ble, treated as one large sample (114 trend points x 258 
simulations = 29,412 data points). The observation based 
empirical rank exceedance probabilities (using HadSLP2r) 
are considerably underestimated by the raw CGCM prob-
ability curve (as shown in Eade et al. 2022). The pink shad-
ing in Fig. 4 represents an uncertainty interval for reddened 
CGCM exceedance probabilities related to the uncertainty 
in the observed estimate of the �R and dR parameters used 
in the reddening filter. For clarity, only the upper half of the 
parameter confidence intervals from Section 2.5 are shown 
(observed estimate to 97.5th percentile) as the observed 
probabilities would clearly be outside of the range based on 
lower parameter estimates. Theoretical probability curves 
for p(z) are shown (Fig. 4, gray curves) assuming a Gaussian 
distribution with mean zero and variance computed using 
Eq. (1) with �2

Y
 = 1 and the autocorrelation functions for 

AR(1) and FD processes (as in Eade et al. 2022) with the 
same ρ and d parameters as used in the reddening filters. The 
raw CGCM probabilities are close to the Gaussian curve 
for a white noise process, and the reddened CGCM prob-
abilities are close to the Gaussian curves for the associated 
AR(1) and FD processes with autocorrelation and difference 
parameters matching �R and dR , i.e. the reddened CGCM 
probabilities are increased relative to the raw CGCM prob-
abilities by the amount expected based on the theory of Eade 
et al. (2022).

The gray shading in Fig. 4 represents an uncertainty 
interval for CGCM exceedance probabilities related to the 
sampling uncertainty for the raw and reddened CGCM NAO 
simulations. These prediction intervals represent the uncer-
tainty due to having only 1 sample of length 144 years (31-
year trend series of length 114), equivalent to the observed 
NAO series. 95% prediction intervals are constructed by 
computing the empirical exceedance probabilities for each 
of the 258 individual CGCM NAO simulations relative to 
a sequence of NAO trend thresholds, and then computing 
the 2.5th and 97.5th percentiles for each trend threshold. 
For moderate trend thresholds, the observed exceedance 
probabilities are within the 95% prediction intervals for the 
reddened CGCMs, whereas they are mainly outside of the 
prediction interval for the raw CGCMs. For more extreme 
trend thresholds, the upperestimate of reddening ( �R = 0.32 
and dR = 0.24) better captures the observed empirical rank 
probabilities, especially for the AR(1) reddening method for 
which the observed probabilities are outside of the uncer-
tainty range when �R = 0.17 is used. Both the AR(1) and 
FD reddening methods lead to a substantial improvement 
over using the raw CGCM NAO output which considerably 
underestimates the exceedance probabilities. The FD method 
is more effective, leading to probabilities that are more con-
sistent with the observed distribution.

3.3  Distribution of NAO extreme multi‑decadal 
trends

The cumulative distribution function for extreme trends, i.e. 
the maximum moving window trend in a series, is given by 
one minus the exceedance probability q(z):

where Z1 + K is the moving window trend for a window cen-
tred on time step 1 + K, n is the length of the original index 
series and the window length is 2K + 1. For the probability 
of minimum trends more negative than those observed, the 
negative-exceedance probability is termed q’(z):

The exceedance probability q(z) is shown in Fig. 5a and b 
for trends of 11 to 81 years. The raw CGCMs estimate that 
the observed maximum NAO trends are rare (q(z) < 10%) 
for windows of length 27 years and beyond, and in many 
cases these probabilities are less than 1%. The raw CGCMs 
estimate that the observed minimum NAO trends have neg-
ative-exceedance probabilities less than 10% for windows 
of length 43 years and beyond (Fig. 5c and d), and in most 
cases these probabilities are also less than 1%. The differ-
ences in rarity of extreme maximum and minimum NAO 
trends with respect to window length does not necessarily 
mean that CGCMs are more or less proficient at simulating 
specific types of extreme, as the probabilities are sensitive 
to the specific exceedance thresholds derived from the small 
sample of observations being more or less extreme. Some 
specific cases are chosen for comparison later in this section. 
If the CGCM moving window trend series are inverted (i.e. 
multiplied by -1), the exceedance and negative-exceedance 
probabilities are virtually identical to the original prob-
abilities (black dashed versus black solid curves in Fig. 5) 
as the CGCM distributions of moving window trends are 
fairly symmetrical even in the tails, meaning that CGCMs 
are equally proficient at simulating maximum and minimum 
trends. The observed extreme NAO trends are consistently 
found to be rare in CGCMs for window lengths of three or 
four decades and beyond.

Application of the reddening methods leads to increased 
exceedance probabilities and negative-exceedance probabili-
ties for all the 11 to 81 year windows tested (Fig. 5, pink 
shading). This suggests that the CGCMs consistently under-
estimate the distribution of minimum and maximum NAO 
trends for multi-decadal window lengths. This CGCM defi-
ciency has also been noted in terms of multi-year mean NAO 
variability by Kravtsov (2017) who finds that the standard 
deviation of low-pass filtered winter NAO index series is 
consistently underestimated by CMIP5 models for filter 
timescales up to at least 61 years. The lack of autocorrelation 

(15)q(z) = Pr
(

max
{

Z1+K , Z2+K ,… , Zn−K
}

≥ z
)

(16)q�(z) = Pr
(

min
{

Z1+K , Z2+K ,… , Zn−K
}

≤ z
)

.
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impacts extreme trend exceedance probabilities across this 
whole range of window lengths. The FD reddening method 
leads to a larger increase in probabilities than the AR(1) 
method, especially for the longer window lengths due to 
the long-range dependence characteristics of the FD pro-
cess. Even after reddening, some observed extreme NAO 
trends are still rare in the CGCMS, specifically the 31-year 
and 33-year maximum trends and the longer-term mini-
mum trends (61-years and beyond) where the pink shading 
in Fig. 5 dips below the 10% probability curve (pink dots). 

31-year and 71-year windows are chosen for further discus-
sion as comparisons can be made to other recent results.

The maximum observed 31-year trend (0.737 sd/decade) 
centred on 1978 (1963–1993) is clearly unusual as it is 85% 
larger in magnitude than the previous peak trend in the his-
torical NAO observation record (0.398 sd/decade, centred 
on 1910). It is also very unusual with respect to the CGCM 
model range (Fig. 2c), with only 1 member out of 258 having 
a comparable maximum trend (q(0.737) = 0.4%), as found in 
previous studies (Bracegirdle et al. 2018; Eade et al. 2022; 

Fig. 5  Likelihood of extreme 
NAO trends versus window 
length. CGCM estimates of 
block maxima exceedance 
probabilities q(z) (a and b) and 
block minima negative-exceed-
ance probabilities q’(z) (c and 
d) for NAO trends on window 
lengths 11 to 81 years in the his-
torical period 1851–2021 using 
the empirical rank probabilities. 
Probabilities are shown for raw 
CGCM output (black solid line) 
relative to the observed (Had-
SLP2r) maximum or minimum 
trend thresholds z. Pink shading 
represents the probabilities for 
reddened CGCM output using 
the AR(1) method with ρR in 
the range 0.17 to 0.32 (a and c) 
and the FD method with dR in 
the range 0.15 to 0.24 (b and d). 
The black dashed line repre-
sents the probabilities using the 
raw CGCM inverted NAO trend 
series. Probability thresholds 
10% and 1% are shown as gray 
horizontal lines, representing 
very unlikely and exceptionally 
unlikely categories of the IPCC 
likelihood scale (Mastrandrea 
et al. 2010), and points below 
these lines are marked as gray 
and black dots respectively for 
the raw model output and pink 
and red for the reddened model 
output
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Bracegirdle 2022). In contrast, the minimum 31-year trend 
is not such an extreme trend (-0.435 sd/decade, window 
1981–2011 centred on 1996): It is just 13% larger in abso-
lute magnitude than the previous negative peak trend (-0.385 
sd/decade centred on 1935) and it is easily reproduced by 
the CGCM ensemble (q’(-0.435) = 48%). After applying the 
FD reddening method with dR = 0.24 (Fig. 2d), the ensem-
ble range for the trend in the specific period 1963–1993 is 
inflated by 57% (Table 1 row c) but the observed maximum 
31-year trend is still only just within the model spread for 
this period.

The maximum 71-year trend (0.186 sd/decade) centred 
on 1985 (1950–2020) is also unusual, being 78% larger in 
magnitude than the previous peak trend in the historical 
NAO record (0.104 sd/decade, centred on 1896). It is outside 
the CGCM model range for this specific period (Fig. 3a), 
as found in Blackport and Fyfe (2022), but it is within the 
range of CGCM max trends throughout the historical period 
(q(0.186) = 3.5%). For the minimum observed 71-year trend 
(-0.215 sd/decade) centred on 1938 (1903–1973) there are 
no previous negative peaks in the relatively short observa-
tion record to compare this with, but it appears more unusual 
than the maximum 71-year trend as it is larger in absolute 
magnitude and is outside the entire CGCM model range. 
After applying the FD reddening method with dR = 0.24 
(Fig. 3b), the 95% prediction interval and range for 71-year 
trends are inflated to better encompass the observed multi-
decadal variability, but the observed minimum 71-year 
trend is still only just within the model range for that spe-
cific period. Blackport and Fyfe (2022) suggest that climate 
model inadequacies may be due to underestimating the 
response to human emissions or underestimating the mag-
nitude of internal multi-decadal variability, but the former 
suggestion is more difficult to reconcile with the underesti-
mation of the observed minimum 71-year trend as trends in 
the effective radiative forcing have been positive throughout 
the 20th century (Arias et al. 2021).

After reddening, the CGCM estimates of the exceedance 
probability q(0.737), i.e. the probability of a maximum 
31-year trend greater than that observed, are very similar 
to the stochastic model estimates from Eade et al. (2022) 
as expected (Table 1 rows d and e), while the raw CGCM 
estimates are similar to the white noise model estimates. 
Reddening the CMIP6 CGCMs using the observed param-
eter estimates ( �R = 0.17 or dR = 0.15) leads to an average 
estimate of q(0.737) = 4.65% (Table 1 row d), i.e. a 1 in 20 
chance, while using raw CGCMs underestimates q(0.737) 
by a factor of ten, as found in Eade et al. (2022). Relative 
to the CGCM distribution of maximum 31-year trends and 
minimum 71-year trends, the observed extreme trends are 
still very rare after reddening the CGCMs (q and q’ less than 
10%) unless the upper level of reddening is applied, and for 
the minimum 71-year trend only the FD reddening method 

( dR = 0.24) is sufficient to achieve a value of q’ greater than 
10% (Fig. 5).

The reddening methods described in Section 2.4 assume 
that the raw CGCM NAO index series have a lag-1 year 
autocorrelation parameter (and difference parameter) of 
zero. The reddening methods can be extended to account 
for non-zero autocorrelation or long-range dependence char-
acteristics in the original raw index series (see Appendix 
2 for details). Repeating the analysis in this section to use 
the individual (non-zero) model sample estimates of lag-1 
year autocorrelation ( �Y ) does not substantially change the 
results but generally leads to slightly lower exceedance prob-
abilities for extreme trends (Table 1 row f). The distribution 
of CGCM NAO autocorrelation estimates ( �Y ) is centred 
around zero but with a fairly large range (Fig. 1a). Under 
the assumption that �Y = 0, the new range of autocorrela-
tion estimates from the reddened simulations has a similar 
width to the original range of �Y sample estimates as all 
simulations are reddened by the same magnitude (Fig. 1a). 
In contrast, if the individual model estimates of �Y are used 
for the reddening of the individual model NAO simulations, 
the range of autocorrelation estimates from the reddened 
simulations will be much narrower than the original range 
of �Y sample estimates as each simulation is reddened just 
enough to achieve an autocorrelation of �R . This means that 
the distribution of maximum trends is likely to be narrower 
using the �Y sample estimates than when assuming that �Y 
= 0. Despite these subtle differences, the assumption that �Y 
= 0 is deemed valid for analysis of historical variability and 
future projections as the sensitivity of exceedance probabili-
ties to this assumption is small compared with the sensitivity 
to the choice of reddening method (AR(1) versus FD) and 
to the strength of reddening applied (magnitude of �R or dR).

The AR(1) and FD reddening methods are useful recali-
bration tools to make the CGCM NAO multi-decadal vari-
ability consistent with that observed. The FD reddening 
method with the upper estimate of the difference parameter 
( dR = 0.24) is needed for the CGCMs to be able to simulate 
the observed maximum 31-year trend and minimum 71-year 
trend for the same periods (Figs. 2d and 3b), and this also 
leads to the best representation of the observed exceedance 
probabilities for moving window trends (Fig. 4). The FD 
reddening method with dR = 0.24 is chosen for application 
in the remainder of this paper.

4  Future distributions of NAO trends

4.1  Future projections of NAO multidecadal 
variability

Figure 6a shows the multi-model ensemble mean 31-year 
moving window mean series for the raw CMIP6 CGCM 
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historical experiments and four future experiments with 
different external forcing scenarios (Section 2.1). Despite 
the seemingly weak model response to external forcings, 
there are clear differences between the future scenarios with 
increased forcing scenarios leading to increased long-term 
trends in the NAO out to the end of this century (Fig. 3a).

SSP585 NAO simulations have a positive trend similar 
to that in the historical experiments whereas SSP126 simu-
lations have a negative trend back towards early 20th cen-
tury values (Figs. 3a and 6a). For the final 71-year trend 
(2028–2098), all scenarios have significantly different trend 
values at the 5% level when using a standard paired hypoth-
esis test (Wilks 2006), except for SSP245 vs. SSP126. The 
differences between the future scenarios are clearer after 
the FD reddening method is applied (Figs. 2d, 3b and 6b). 
The FD reddening method also inflates the multi-decadal 
variability of the NAO (as discussed in Section 2.3), seen 
in Fig. 6b as a widening of the 95% prediction interval and 
range (of 31-year NAO mean) to better encompass the full 
range of the observed multi-decadal variability, as for the 
trend series in Figs. 2 and 3.

The projection of an increase in the NAO index under 
higher emissions scenarios is also noted in the recent IPCC 
report (Lee et al. 2021) but they state that it is likely that any 
such forced response will be smaller than the magnitude of 
natural internal variability. Under the high-emissions sce-
nario, the projected future increase in winter mean NAO 

generally leads to an increase in extreme positive NAO 
winters and a related increase in the severity of precipita-
tion impacts in Europe such as flooding and drought (McK-
enna and Maycock 2022). These studies use the raw CGCM 
output, thus they are likely to underestimate future impacts 
given that the CGCMs underestimate the multi-decadal 
trends in the winter NAO series.

4.2  Distribution of NAO extreme trends in future 
climate projections

The CGCM ensemble spread and 95% prediction inter-
vals for trend series are continued into the future using the 
SSP585 scenario in Figs. 2c and d and 3a and b. As dis-
cussed in Section 3, the observed maximum 31-year trend 
and minimum 71-year trend are clearly unusual in the con-
text of the raw CGCM historical trend series and they con-
tinue to be unusual in the context of the future NAO projec-
tions unless the FD reddening method is applied (Figs. 2d 
and 3b).

The distribution of maximum NAO trends is sensitive to 
the total block length, i.e. the period over which the trend 
series is computed. The future period is here defined as 
2024–2098 (75-years). To make direct comparisons to the 
distribution of maximum trends in the historical period the 
most recent 75-year block available from the observed Had-
SLP2r dataset is chosen: 1947–2021. Figure 7a shows the 

Fig. 6  Reddening effect on 
CGCM NAO 31-year mean 
series. a and (b) Dashed curves 
show CMIP6 multi-model 
ensemble mean NAO 31-year 
moving average series using 
historical (black) and future 
(colours) experiments for (a) 
raw model output and (b) FD 
reddened output ( d

R
 = 0.24). 

Light and dark gray shading 
shows the ensemble range and 
empirical 95% prediction inter-
val respectively (historical and 
SSP585). The observed 31-year 
mean series is shown for Had-
SLP2r (black solid curve)
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Fig. 7  Effect of reddening on 
distribution of NAO trends. The 
distribution of (a) maximum and 
(b) minimum 31-year trends in 
the 75-year period 2024–2098 
for four future SSP experi-
ments, and for the historical 
(HIST) period 1947–2021 
(using SSP585 beyond 2014). 
c The distribution of near-term 
31-year trends 2024–2054 
(SSP), and the historical 31-year 
trends 1963–1993 (HIST). 
d The distribution of long-term 
71-year trends 2024–2094 
(SSP), and the historical 71-year 
trends 1950–2020 (HIST). 
CGCM distributions are shown 
using raw model output (gray) 
and after applying the fractional 
difference reddening method 
with d

R
 = 0.24 (red), with the 

median line in the centre of the 
25 to 75 percentile box and total 
range whiskers. The observed 
maximum and minimum 
31-year (71-year in (d)) trends 
are shown (dashed horizontal 
lines) with the percentage of 
model members above/below 
these thresholds displayed 
above/below
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raw CGCM distributions of maximum 31-year NAO trends 
for the historical period (historical experiments combined 
with SSP585 beyond 2014) and for the future period (four 
different future SSP experiments). After FD reddening, the 
historical and future CGCM distributions of maximum NAO 
trends are wider and shifted in location towards more posi-
tive values. The CGCM future distributions of maximum 
trends are generally similar to the recent historical distribu-
tion, except for the lowest forcing scenario SSP126 which is 
shifted towards slightly lower magnitude trends. Using the 
same method for minimum 31-year NAO trends, FD red-
dening shifts the CGCM distribution of minimum trends 
to more negative values compared to the raw distributions 
(Fig. 7b). After reddening, the distributions of minimum 
31-year trends for the lower radiative forcing future sce-
narios (SSP126 and SSP245) are similar to the recent his-
torical distribution and are centred close to the minimum 
observed 31-year NAO trend (-0.437 sd/decade) with nega-
tive exceedance probability q’(-0.437) being close to 50%. 
For the higher radiative forcing future scenarios (SSP370 
and SSP585) the distribution is shifted towards less extreme 
minimum trends and q’(-0.437) is reduced to around 30%.

In summary, the CMIP6 multi-model ensemble of NAO 
simulations suggests that the distribution of maximum 
31-year NAO trends will remain relatively unchanged in the 
next 75 years compared to the previous period, except for 
the lower radiative forcing scenario which forecasts a shift 
towards weaker positive trends. The distribution of mini-
mum 31-year NAO trends remains relatively unchanged in 
the future under lower radiative forcing scenarios, but the 
higher radiative forcing scenarios lead to a shift of the dis-
tribution towards weaker negative trends.

It has been shown that a strong positive NAO trend such 
as the maximum observed 31-year trend in 1963–1993 
(0.737 sd/decade) can account for at least half the winter 
warming in the Northern Hemisphere extra-tropics, while 
a similarly strong negative trend from the 1920s to 1970s 
reduced the winter warming by half (Iles and Hegerl 2017; 
Scaife et al. 2005). It therefore seems plausible that a mini-
mum negative trend with absolute magnitude equal to that 
of the maximum observed (-0.737 sd/decade) could poten-
tially offset around half of the winter warming over the three 
decades. These magnitudes of trends are within the spread 
of the FD reddened CGCMs (Fig. 7a and b). The associ-
ated exceedance probability estimates q(0.737) range from 
3 to 7% across the four future scenario experiments, with 
SSP126 having the lowest probability (Fig. 7a; Table 2). 
The negative-exceedance probability estimates q’(-0.737) 
range from 3 to 9%, with SSP126 having the highest prob-
ability (Table 2). The total range of possible minimum and 
maximum 31-year trends across all four future experiments 
goes from − 1.12 to 1.05 sd/decade. In pressure units, this 
range is -8.86 hPa/decade to 8.60 hPa/decade (using the 

non-standardised version of the NAO index). Without FD 
reddening, none of the CGCM future simulations have 
extreme 31-year trends exceeding the thresholds ± 0.737 sd/
decade. In general, the likelihood of future extreme maxi-
mum (minimum) trends increases (decreases) as the level of 
radiative forcing increases, though the rarity of the chosen 
threshold (± 0.737 sd/decade) makes the result less clear 
than the relationship with the longer-term trends described 
in Section 4.1 (and later in Section 4.4). The likelihood of 
these high magnitude future trends is fairly low (less than 
10%) but these probabilities would be greatly underesti-
mated if just raw CGCM output was used which could lead 
to an underestimation of the related impacts discussed in 
the introduction.

4.3  Distribution of NAO near‑term future climate 
projections

For projections of regional climate change, a key timescale 
is out to the middle of the 21st century, for example the 
UK Climate Projections (UKCP, Lowe et al. 2018) issue 
projections for the UK for 2041–2060 as this is a planning-
based timescale that can be more important for their users 
than longer climate projections out to the end of the century. 
Figure 7c uses box and whisker plots to show the CMIP6 
CGCM distribution of 31-year NAO trends for the specific 
future period 2024–2054 for four future SSP scenarios. None 
of the raw future experiments simulate a trend as large as 
the maximum observed NAO trend. Similar results have 
been noted by Schurer et al. (2023) who found that none of 
the CMIP6 near-term projections of 28-year NAO trends 
(2023–2050) are as large as the maximum observed.

As discussed in Section 3, FD reddening with the upper 
estimate of d = 0.24 is needed to widen the CGCM distribu-
tion of 1963–1993 NAO trends sufficiently to encompass 
the observed trend at this time-step (Fig. 7c), though still 
only one member out of 258 has a trend exceeding this 
observed value (p(0.737) = 0.4%). The FD reddened CGCM 

Table 2  Influence of the future scenario on the CGCM distribution of 
31-year extreme NAO trends

Reddened CMIP6 CGCM multi-model empirical rank probabilities 
(shown as percentages) for exceedance probability q(z) = Pr(max 
trend ≥ z) and negative-exceedance probability q’(z) = Pr(min 
trend ≤ z) for block maximum and minimum 31-year NAO trends in 
the period 2024–2098 (z displayed in column 1). CGCM statistics are 
shown to three significant figures. The CMIP6 NAO index series have 
first been reddened using the FD filter with difference parameter d

R
 = 

0.24

SSP126 SSP245 SSP370 SSP585

q (0.737) 3.10 5.43 6.98 5.43
q‘ (-0.737) 8.53 5.04 2.71 3.10
q‘ (-0.435) 52.7 50.8 34.5 26.0
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distributions of near-term future 31-year NAO trends stay 
centred about zero, except for the lowest forcing scenario 
SSP126 which estimates a slightly negative mean trend. The 
reddened CGCM future NAO trends have a large ensemble 
range due to internal variability, spanning − 1.12 to 1.00 
sd/decade across the four scenarios (or -6.62 to 7.71 hPa/
decade using the non-standardised NAO index), which is 
74% wider than the range for the raw CGCMs (-0.59 to 
0.63 sd/decade). Even so, the likelihood of a future trend 
comparable to the maximum or minimum observed is fairly 
low with p(0.737) less than 2% and p’(-0.435) less than 7%. 
These future NAO trend distributions are comparable to 
those from the covariance approach of Eade et al. (2022) 
which assumes a stationary climate and leads to probabilities 
p(0.737) = 0.6% and p’(-0.435) = 6.9% using Eq. (13) with 
�
2

Y
 = 1 and difference parameter d = 0.24 (see Eade et al. 

2022 for details). In summary, these near-term projections 
of NAO trends for 2024–2054 are not overly sensitive to the 
choice of radiative forcing scenario, showing weak-to-no 
forced trend, but with a large ensemble range due to internal 
variability which is greatly underestimated when using raw 
climate model output.

4.4  Distribution of NAO long‑term future climate 
projections

Figure 7d shows the distribution of future NAO trends out 
to the end of the century for the specific 71-year period 
2024–2094 for the four CMIP6 future SSP scenarios. As dis-
cussed in Section 3, FD reddening with the upper estimate of 
d = 0.24 is needed to widen the CGCM 1950–2020 distribu-
tion of trends sufficiently to encompass the observed trend 
at this time-step (Fig. 7d). Virtually none of the raw future 
experiments simulate a trend as large in absolute magnitude 
as the maximum or minimum observed 71-year NAO trends 
(just one SSP585 ensemble member exceeds the observed 
maximum such that p(0.186) = 0.4%). After FD reddening 
the exceedance (p) and negative-exceedance (p’) probabili-
ties relative to the observed maximum (0.186 sd/decade) and 
minimum (-0.215 sd/decade) 71-year trends respectively are 
increased but are still small (less than 7%).

The differences between the future scenarios are clearer 
after the FD reddening method is applied, with increased 
radiative forcing across the scenarios leading to a positive 
shift in the distribution of long-term trends in the NAO. 
This impact of radiative forcing scenarios is not apparent 
for near-term trends (Section 4.3) as the radiative forcing 
scenarios are initially fairly similar and don’t significantly 
diverge until further into the future (O’Neill et al. 2016). The 
reddened CGCM exceedance probability p(0.186) increases 
with the strength of the radiative forcing (while p’(-0.215) 
decreases) (Fig. 7d) and the ensemble mean trends increase 
from − 0.03 sd/decade to 0.05 sd/decade (-0.24 to 0.35 hPa/

decade using the non-standardised NAO index). This range 
in ensemble mean trends is over double that obtained from 
the raw CGCMs: -0.01 to 0.02 sd/decade (-0.09 to 0.16 hPa/
decade using the non-standardised NAO index). For these 
long-term future projections, use of raw climate model out-
put leads to an underestimation of both the externally forced 
NAO trend signal and the range of plausible trends due to 
internal variability (Fig. 7d).

5  Discussion and conclusions

GCM simulations greatly underestimate the plausible range 
of NAO trends and extreme multi-decadal NAO trends 
on timescales of three decades and beyond. This study 
has shown that a simple reddening method can be used to 
improve the autocorrelation structure and the multi-decadal 
variability of the winter NAO in CGCM historical simula-
tions and future projections in terms of the externally forced 
signal and natural internal variability. The method has been 
tested on the large-scale seasonal mean NAO index, but 
could equally be applied to indices on smaller temporal and 
spatial scales. The FD reddening method is more effective 
than the AR(1) method for achieving distributions of NAO 
autocorrelation parameters and NAO multi-decadal trends 
comparable to those observed. These methods could also be 
applied to shorter term prediction systems such as seasonal-
to-decadal forecasts and may help to improve the representa-
tion of clusters of positive or negative NAO years.

There has been considerable research showing how 
extreme multi-decadal trends in the NAO can have seri-
ous implications for regional climate change and society 
relevant impacts in the northern hemisphere (Scaife et al. 
2005; Deser et al. 2017; O’Reilly et al. 2021; Smith et al. 
2022). The relationship of multi-decadal NAO trends to 
northern hemisphere regional winter temperature and 
European precipitation means that the range of plausible 
multi-decadal trends for these variables are also likely 
to be greatly underestimated, thus having a concerning 
impact on the fidelity of near-term climate projections in 
these regions. For example, the 1963–1993 NAO trend 
was the maximum 31-year trend in the historical record 
and in this period the NAO accounted for around half of 
the winter warming in the Northern Hemisphere extra-
tropics (Scaife et al. 2005; Iles and Hegerl 2017; Deser 
et al. 2017) but without reddening the CGCMs underes-
timate the likelihood of this NAO trend by at least a fac-
tor of ten. O’Reilly et al. (2021) show that constraining 
the North Atlantic multi-decadal variability in CGCMs 
to match that observed leads to a considerable increase in 
the uncertainty in future projections of temperature and 
precipitation in the Northern extra-tropics. Our reddening 
method is only applied to the NAO part of this variability, 
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but it has the advantage that the climate models also retain 
the externally forced variability enabling a comparison of 
the different future forcing scenarios.

CMIP6 future projections show a small systematic 
increase in long-term (2024–2094) NAO ensemble mean 
trends relative to the magnitude of the radiative forcing 
scenario going from − 0.09 hPa/decade (low radiative forc-
ing) to 0.16 hPa/decade (high radiative forcing). This range 
more than doubles after reddening: -0.24 to 0.35 hPa/decade. 
There is also a related shift in the distribution of extreme 
31-year NAO trends, which is clearer after reddening: The 
likelihood of future maximum 31year trends comparable to 
1963–1993 ranges from 3 to 7% across the radiative forcing 
scenarios after reddening, whereas none of the raw CMIP6 
projections simulate such a positive trend. Near-term projec-
tions of the next 31 years (2024–2054) are less sensitive than 
long term trends to the future scenario. After reddening they 
still show weak-to-no forced trend in the models but have a 
74% larger ensemble range (around +/-1 standard deviation 
per decade). This level of internal variability could increase 
or decrease regional climate change signals in the North-
ern Hemisphere by amounts that are greatly underestimated 
when using raw climate models.

The lack of autocorrelation or persistence of the NAO in 
CGCMs has been shown to be closely linked to the signal-
to-noise paradox (Zhang et al. 2021; Strommen and Palmer 
2018; Strommen 2020). This is a phenomenon originally 
noticed in seasonal forecasts of the winter NAO which 
exhibit a high correlation between the ensemble mean and 
observations (a measure of the predictable component in 
the observations) but a relatively low signal-to-total-vari-
ance ratio (a measure of the predictable component in the 
CGCMs defined as the ratio of the standard deviation of 
the ensemble mean to the total ensemble standard devia-
tion). This leads to the ratio of predictable components being 
greater than the expected value of one (Scaife et al. 2014; 
Eade et al. 2014; Scaife and Smith 2018; Smith et al. 2020; 
Klavans et al. 2021). The AR(1) and FD reddening methods 
lead to an increase in the year-to-year persistence and inflate 
both the strength of the ensemble mean trend series and the 
total ensemble standard deviation. It would be interesting to 
see how reddening methods might influence the ratio of pre-
dictable components for seasonal-to-decadal hindcasts of the 
winter NAO. There is still a lack of understanding as to the 
cause of the signal-to-noise paradox but seeking to explain 
why the autocorrelation of the NAO index is underestimated 
in CGCMs may help with resolving this problem.

Appendix 1: Table of CMIP6 Models

Table 3

Appendix 2: Accounting for CGCMs 
with non‑zero autocorrelation function

AR(1) reddening

If the original index series Y is an AR(1) process with non-
zero autocorrelation parameter �Y , then Y can be written as 
Y =

(

1 − �YB
)−1

� . Substituting this into Eq. (3) and expand-
ing the brackets shows that the reddened series is now an 
AR(2) process:

Using the Yule-Walker equations for auto-regressive pro-
cesses (Hamilton 1994), the lag-1 year autocorrelation for 
this new AR(2) process is given by

Thus, for given values of �R estimated from the observed 
index series and �Y estimated from a CGCM index series, 
φ is found using:

It can be shown that the variance of the AR(1) process Y 
and the AR(2) process YR are given by 

(Hamilton 1994). To make these variances equal, the scaling 
parameter γ is

FD reddening

 If the original index series Y is a FD process with non-
zero difference parameter dY  , then Y can be written as 
Y = (1 − B)−dY� . Substituting this into Eq. (7) and expand-
ing the brackets shows that the reddened series is also a FD 
process:

(17)YR = �

(

1 −
(

� + �Y

)

B + ��YB
2
)−1

�.

(18)�R =
� + �Y

1 + ��Y

.

(19)� =
�R − �Y

1 − �R�Y

(20)Var(Y) =
Var(�)

1 − �Y
2

(21)Var
(

YR
)

=
�
2Var(�)

1 −
(

� + �Y

)2 (1−��Y)

(1+��Y)
− �2�Y

2

(22)
�
2 =

1 −
(

� + �Y

)2 (1−��Y)

(1+��Y)
− �

2
�Y

2

1 − �Y
2

.

(23)YR = �(1 − B)−(d+dY)�.
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For given values of dR estimated from the observed index 
series and dY estimated from a CGCM index series, d is 
found using

It can be shown that the variance of the FD processes Y 
and YR are given by:

where Γ(.) is the Gamma function (Hosking 1981). To make 
these variances equal, the scaling parameter γ is given by:
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Table 3  CMIP6 CGCM historical and future SSP experiments used to model the NAO with columns showing the institution, model names and 
the number of realisations (ensemble members)

Where institutions have submitted realisations for multiple models, the individual model names and ensemble sizes are separated by a semi-
colon. Where institutions have submitted realisations from different model configurations, the individual configurations (identified by the “p” 
and/or “f” parts of the "ripf" codes which identify the precise model setup) and ensemble sizes are separated by a semi-colon. All experiments 
are from the CMIP6 database https:// esgf- index1. ceda. ac. uk/ search/ cmip6- ceda (Eyring et al. 2016)

Institution Model name Realisations

AS-RCEC TaiESM1 1
AWI AWI-CM-1-1-MR 1
BCC BCC-CSM2-MR 1
CAMS CAMS-CSM1-0 ripf code f1 2
CAS CAS-ESM2-0 2
CCCma CanESM5 ripf code p1; p2; CanESM5-1 p1; p2; CanESM5-CanOE 25; 25; 1; 1; 3
CCCR-IITM IITM-ESM 1
CMCC CMCC-CM2-SR5; CMCC-ESM2 1; 1
CNRM-CERFACS CNRM-CM6-1; CNRM-CM6-1-HR; CNRM-ESM2-1 6; 1; 5
CSIRO ACCESS-ESM1-5 40
CSIRO-ARCCSS ACCESS-CM2 5
EC-Earth-Consortium EC-Earth3; EC-Earth3-Veg 5; 2
INM INM-CM4-8; INM-CM5-0 1; 1
MIROC MIROC6; MIROC-ES2H; MIROC-ES2L 50; 1: 10
MOHC UKESM1-0-LL ripf code f2 5
MPI-M MPI-ESM1-2-LR 30
MRI MRI-ESM2-0 5
NASA-GISS GISS-E2-1-G ripf code p3f1; p5f1; GISS-E2-1-H ripf code p1f2; p3f1; GISS-E2-2-G 4; 4; 5; 1; 5
NCAR CESM2; CESM2-WACCM 3; 1
NIMS-KMA KACE-1-0-G 3

https://esgf-index1.ceda.ac.uk/search/cmip6-ceda/
https://esgf-index1.ceda.ac.uk/search/cmip6-ceda/
https://www.metoffice.gov.uk/hadobs
https://www.metoffice.gov.uk/hadobs
https://esgf-index1.ceda.ac.uk/search/cmip6-ceda


7886 R. Eade et al.

Declarations 

Competing interests The authors have no conflicts of interest to 
declare that are relevant to the content of this article.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Allan R, Ansell T (2006) A new globally complete monthly historical 
gridded mean sea level pressure dataset (HadSLP2): 1850–2004. 
J Clim 19(2):1850–2004. https:// doi. org/ 10. 1175/ jcli3 937.1

Ambaum MHP, Hoskins BJ, Stephenson DB (2001) Arctic Oscillation 
or North Atlantic Oscillation? J Clim 14:3495–3507. https:// doi. 
org/ 10. 1175/ 1520- 0442(2001) 014< 3495: aoona o>2. 0. co;2

Arias PA, et al. (2021) Technical summary. In: Masson-Delmotte V, 
Zhai P, Pirani A, Connors SL, Péan C, Berger S, Caud N, Chen 
Y, Goldfarb L, Gomis MI, Huang M, Leitzell K, Lonnoy E, Mat-
thews JBR, Maycock TK, Waterfield T, Yelekçi O, Yu R, Zhou B 
(eds). Climate Change 2021: The Physical Science Basis. Con-
tribution of Working Group I to the Sixth Assessment Report 
of the Intergovernmental Panel on Climate Change. Cambridge 
University Press, pp 33–144, https:// doi. org/ 10. 1017/ 97810 09157 
896. 002

Bartlett MS (1946) On the theoretical specification and sampling 
properties of autocorrelated time-series. Suppl J R Stat Soc 8:27. 
https:// doi. org/ 10. 2307/ 29836 11

Blackport R, Fyfe JC (2022) Climate models fail to capture strengthen-
ing Wintertime North Atlantic jet and impacts on Europe. Sci Adv 
8. https:// doi. org/ 10. 1126/ sciadv. abn31 12

Bracegirdle TJ (2022) Early-to‐late winter 20th Century North Atlan-
tic Multidecadal Atmospheric variability in observations, CMIP5 
and CMIP6. Geophys Res Lett 49. https:// doi. org/ 10. 1029/ 2022g 
l0982 12

Bracegirdle TJ, Lu H, Eade R, Woollings T (2018) Do CMIP5 models 
reproduce observed low-frequency North Atlantic Jet Variability? 
Geophys Res Lett 45:7204–7212. https:// doi. org/ 10. 1029/ 2018g 
l0789 65

Buchan J, Hirschi JJ-M, Blaker AT, Sinha B (2014) North Atlantic SST 
anomalies and the Cold North European Weather events of Winter 
2009/10 and December 2010. Mon Weather Rev 142:922–932. 
https:// doi. org/ 10. 1175/ mwr-d- 13- 00104.1

Chen S, Wu R, Chen W, Li K (2020) Why does a colder (warmer) 
Winter tend to be followed by a warmer (cooler) summer over 
Northeast Eurasia? J Clim 33:7255–7274. https:// doi. org/ 10. 1175/ 
jcli-d- 20- 0036.1

Davini P, Cagnazzo C (2013) On the misinterpretation of the North 
Atlantic Oscillation in CMIP5 models. Clim Dyn 43:1497–1511. 
https:// doi. org/ 10. 1007/ s00382- 013- 1970-y

Deser C, Hurrell JW, Phillips AS (2017) The role of the North Atlantic 
Oscillation in European climate projections. Clim Dyn 49:3141–
3157. https:// doi. org/ 10. 1007/ s00382- 016- 3502-z

Eade R, Smith D, Scaife A et al (2014) Do seasonal-to-decadal climate 
predictions underestimate the predictability of the real world? 
Geophys Res Lett 41:5620–5628. https:// doi. org/ 10. 1002/ 2014g 
l0611 46

Eade R, Stephenson DB, Scaife AA, Smith DM (2022) Quantifying 
the rarity of extreme multi-decadal trends: how unusual was 
the late twentieth century trend in the North Atlantic. Oscilla-
tion? Clim Dynamics 58:1555–1568. https:// doi. org/ 10. 1007/ 
s00382- 021- 05978-4

Eyring V, Bony S, Meehl GA et al (2016) Overview of the coupled 
model Intercomparison Project Phase 6 (CMIP6) experimental 
design and organization. Geosci Model Dev 9:1937–1958. https:// 
doi. org/ 10. 5194/ gmd-9- 1937- 2016

Feldstein SB (2000) The timescale, power spectra, and climate noise 
properties of teleconnection patterns. J Clim 13:4430–4440. 
https:// doi. org/ 10. 1175/ 1520- 0442(2000) 013< 4430: ttpsa c>2. 0. 
co;2

Gastineau G, Frankignoul C (2015) Influence of the North Atlantic 
SST variability on the atmospheric circulation during the Twen-
tieth Century. J Clim 28:1396–1416. https:// doi. org/ 10. 1175/ 
jcli-d- 14- 00424.1

Gray LJ, Scaife AA, Mitchell DM et al (2013) A lagged response to the 
11 year solar cycle in observed winter Atlantic/European weather 
patterns. J Geophys Res: Atmos 118:13:405–413. https:// doi. org/ 
10. 1002/ 2013j d0200 62

Hamilton JD (1994) Time series analysis. Princeton University Press, 
Princeton

Hardiman SC, Dunstone NJ, Scaife AA et al (2022) Missing eddy 
feedback may explain weak signal-to-noise ratios in climate pre-
dictions. Npj Clim Atmos Sci 5:1–8. https:// doi. org/ 10. 1038/ 
s41612- 022- 00280-4

Hosking JRM (1981) Fractional differencing. Biometrika 68:165–176. 
https:// doi. org/ 10. 1093/ biomet/ 68.1. 165

Hurrell JW (1995) Decadal trends in the North Atlantic Oscillation: 
Regional temperatures and Precipitation. Science 269:676–679. 
https:// doi. org/ 10. 1126/ scien ce. 269. 5224. 676

Hurrell JW (2001) The North Atlantic Oscillation. Science 291:603–
605. https:// doi. org/ 10. 1126/ scien ce. 10587 61

Hurrell JW, Van Loon H (1997) Decadal variations in climate associ-
ated with the north atlantic oscillation. Clim Change 36:301–326. 
https:// doi. org/ 10. 1023/a: 10053 14315 270

Iles C, Hegerl G (2017) Role of the North Atlantic Oscillation in dec-
adal temperature trends. Environ Res Lett 12:114010. https:// doi. 
org/ 10. 1088/ 1748- 9326/ aa9152

Jerez S, Trigo RM, Vicente-Serrano SM et al (2013) The impact of 
the North Atlantic Oscillation on renewable energy resources in 
Southwestern Europe. J Appl Meteorol Climatol 52:2204–2225. 
https:// doi. org/ 10. 1175/ JAMC-D- 12- 0257.1

Kim M-K, McCarl BA (2005) The Agricultural Value of Informa-
tion on the North Atlantic Oscillation: yield and economic 
effects. Clim Change 71:117–139. https:// doi. org/ 10. 1007/ 
s10584- 005- 5928-x

Klavans JM, Cane MA, Clement AC, Murphy LN (2021) NAO predict-
ability from external forcing in the late 20th century. NPJ Clim 
Atmos Sci 4. https:// doi. org/ 10. 1038/ s41612- 021- 00177-8

Kravtsov S (2017) Pronounced differences between observed and 
CMIP5-simulated multidecadal climate variability in the twenti-
eth century. Geophys Res Lett 44:5749–5757. https:// doi. org/ 10. 
1002/ 2017g l0740 16

Lee J-Y, Marotzke J, Bala G, Cao L, Corti S, Dunne J et al (2021) 
Future Global Climate: scenario-based projections and Near-Term 
Information. In: Masson-Delmotte V, Zhai P, Pirani A, Connors 
SL, Pean C, Berger S et al (eds) Climate Change 2021 – the 
physical science basis: Working Group I contribution to the Sixth 
Assessment Report of the Intergovernmental Panel on Climate 

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1175/jcli3937.1
https://doi.org/10.1175/1520-0442(2001)014<3495:aoonao>2.0.co;2
https://doi.org/10.1175/1520-0442(2001)014<3495:aoonao>2.0.co;2
https://doi.org/10.1017/9781009157896.002
https://doi.org/10.1017/9781009157896.002
https://doi.org/10.2307/2983611
https://doi.org/10.1126/sciadv.abn3112
https://doi.org/10.1029/2022gl098212
https://doi.org/10.1029/2022gl098212
https://doi.org/10.1029/2018gl078965
https://doi.org/10.1029/2018gl078965
https://doi.org/10.1175/mwr-d-13-00104.1
https://doi.org/10.1175/jcli-d-20-0036.1
https://doi.org/10.1175/jcli-d-20-0036.1
https://doi.org/10.1007/s00382-013-1970-y
https://doi.org/10.1007/s00382-016-3502-z
https://doi.org/10.1002/2014gl061146
https://doi.org/10.1002/2014gl061146
https://doi.org/10.1007/s00382-021-05978-4
https://doi.org/10.1007/s00382-021-05978-4
https://doi.org/10.5194/gmd-9-1937-2016
https://doi.org/10.5194/gmd-9-1937-2016
https://doi.org/10.1175/1520-0442(2000)013<4430:ttpsac>2.0.co;2
https://doi.org/10.1175/1520-0442(2000)013<4430:ttpsac>2.0.co;2
https://doi.org/10.1175/jcli-d-14-00424.1
https://doi.org/10.1175/jcli-d-14-00424.1
https://doi.org/10.1002/2013jd020062
https://doi.org/10.1002/2013jd020062
https://doi.org/10.1038/s41612-022-00280-4
https://doi.org/10.1038/s41612-022-00280-4
https://doi.org/10.1093/biomet/68.1.165
https://doi.org/10.1126/science.269.5224.676
https://doi.org/10.1126/science.1058761
https://doi.org/10.1023/a:1005314315270
https://doi.org/10.1088/1748-9326/aa9152
https://doi.org/10.1088/1748-9326/aa9152
https://doi.org/10.1175/JAMC-D-12-0257.1
https://doi.org/10.1007/s10584-005-5928-x
https://doi.org/10.1007/s10584-005-5928-x
https://doi.org/10.1038/s41612-021-00177-8
https://doi.org/10.1002/2017gl074016
https://doi.org/10.1002/2017gl074016


7887Recalibration of missing low‑frequency variability and trends in the North Atlantic…

Change. Cambridge University Press, Cambridge, pp 553–672. 
https:// doi. org/ 10. 1017/ 97810 09157 896. 006

Lowe JA et al (2018) UKCP18 Science Overview Report November 
2018. https:// www. metoffi ce. gov. uk/ pub/ data/ weath er/ uk/ ukcp18/ 
scien ce- repor ts/ UKCP18- Overv iew- report. pdf. Accessed Mar 
2019

Mastrandrea MD, Field CB, Stocker TF et al (2010) Guidance Note for 
Lead Authors of the IPCC Fifth Assessment Report on Consistent 
Treatment of Uncertainties. Intergovernmental Panel on Climate 
Change (IPCC)

McKenna CM, Maycock AC (2022) The role of the North Atlan-
tic Oscillation for projections of Winter Mean Precipitation in 
Europe. Geophys Res Lett 49. https:// doi. org/ 10. 1029/ 2022g l0990 
83

Mosedale TJ, Stephenson DB, Collins M, Mills TC (2006) Granger 
causality of coupled climate processes: Ocean Feedback on the 
North Atlantic Oscillation. J Clim 19:1182–1194. https:// doi. org/ 
10. 1175/ jcli3 653.1

O’Neill BC, Tebaldi C, van Vuuren DP et al (2016) The scenario Model 
Intercomparison Project (ScenarioMIP) for CMIP6. Geosci Model 
Dev 9:3461–3482. https:// doi. org/ 10. 5194/ gmd-9- 3461- 2016

O’Reilly CH, Befort DJ, Weisheimer A et al (2021) Projections of 
northern hemisphere extratropical climate underestimate internal 
variability and associated uncertainty. Commun Earth Environ 2. 
https:// doi. org/ 10. 1038/ s43247- 021- 00268-7

Palin EJ, Scaife AA, Wallace E et al (2016) Skillful seasonal forecasts 
of Winter disruption to the U.K. transport system. J Appl Meteorol 
Climatol 55:325–344. https:// doi. org/ 10. 1175/ jamc-d- 15- 0102.1

Scaife AA, Smith D (2018) A signal-to-noise paradox in climate 
science. NPJ Clim Atmos Sci 1. https:// doi. org/ 10. 1038/ 
s41612- 018- 0038-4

Scaife AA, Knight JR, Vallis GK, Folland CK (2005) A stratospheric 
influence on the winter NAO and North Atlantic surface climate. 
Geophys Res Lett 32. https:// doi. org/ 10. 1029/ 2005g l0232 26

Scaife AA, Ineson S, Knight JR et al (2013) A mechanism for lagged 
North Atlantic climate response to solar variability. Geophys Res 
Lett 40:434–439. https:// doi. org/ 10. 1002/ grl. 50099

Scaife AA, Arribas A, Blockley E et al (2014) Skillful long-range pre-
diction of European and north American winters. Geophys Res 
Lett 41:2514–2519. https:// doi. org/ 10. 1002/ 2014g l0596 37

Scaife AA, Kucharski F, Folland CK, Kinter J, Brönnimann S, Fere-
day D, Fischer AM, Grainger S, Jin EK, Kang IS, Knight JR, 
Kusunoki S, Lau NC, Nath MJ, Nakaegawa T, Pegion P, Schu-
bert S, Sporyshev P, Syktus J, Yoon JH, Zeng N, Zhou T (2009) 
The CLIVAR C20C project: selected twentieth century climate 
events. Climate Dynamics 33(5):603–614. https:// doi. org/ 10. 
1007/ s00382- 008- 0451-1 

Schurer A, Hegerl GC, Goosse H et al (2023) Role of multi-decadal 
variability of the winter North Atlantic oscillation on northern 
hemisphere climate. Environ Res Lett 18:044046–044046. https:// 
doi. org/ 10. 1088/ 1748- 9326/ acc477

Simpson IR, Deser C, McKinnon KA, Barnes EA (2018) Modeled 
and observed multidecadal variability in the North Atlantic Jet 
Stream and its connection to Sea Surface temperatures. J Clim 
31:8313–8338. https:// doi. org/ 10. 1175/ jcli-d- 18- 0168.1

Smith DM, Scaife AA, Eade R et al (2020) North Atlantic climate far 
more predictable than models imply. Nature 583:796–800. https:// 
doi. org/ 10. 1038/ s41586- 020- 2525-0

Smith D, Gillett NP, Simpson IR et al (2022) Attribution of multi-
annual to decadal changes in the climate system: the large 

ensemble single forcing model Intercomparison Project (LES-
FMIP). Front Clim 4. https:// doi. org/ 10. 3389/ fclim. 2022. 955414

Stephenson DB, Pavan V, Bojariu R (2000) Is the North Atlantic Oscil-
lation a random walk? Int J Climatol 20:1–18. https:// doi. org/ 10. 
1002/ (sici) 1097- 0088(200001) 20: 1< 1:: aid- joc45 6>3. 0. co;2-p

Stephenson DB, Pavan V, Collins M et  al (2006) North Atlantic 
Oscillation response to transient greenhouse gas forcing and 
the impact on European winter climate: a CMIP2 multi-model 
assessment. Clim Dyn 27:401–420. https:// doi. org/ 10. 1007/ 
s00382- 006- 0140-x

Strommen K (2020) Jet latitude regimes and the predictability of the 
North Atlantic Oscillation. Q J R Meteorol Soc 146:2368–2391. 
https:// doi. org/ 10. 1002/ qj. 3796

Strommen K, Palmer T (2018) Signal and noise in regime systems: a 
hypothesis on the predictability of the North Atlantic Oscillation. 
Q J R Meteorol Soc 145:147–163. https:// doi. org/ 10. 1002/ qj. 3414

Thompson DWJ, Barnes EA, Deser C et al (2015) Quantifying the 
role of internal climate variability in future climate trends. J Clim 
28:6443–6456. https:// doi. org/ 10. 1175/ jcli-d- 14- 00830.1

Thornton HE, Scaife AA, Hoskins BJ, Brayshaw DJ (2017) The rela-
tionship between wind power, electricity demand and winter 
weather patterns in Great Britain. Environ Res Lett 12:064017. 
https:// doi. org/ 10. 1088/ 1748- 9326/ aa69c6

Timlin MS, Alexander MA, Deser C (2002) On the reemergence of 
North Atlantic SST anomalies. J Clim 15:2707–2712. https:// doi. 
org/ 10. 1175/ 1520- 0442(2002) 015< 2707: OTRON A>2. 0. CO;2

Uvo CB, Berndtsson R (2002) North Atlantic Oscillation; a climatic 
Indicator to predict hydropower availability in Scandinavia. 
Hydrol Res 33:415–424. https:// doi. org/ 10. 2166/ nh. 2002. 0016

Watanabe M, Tatebe H (2019) Reconciling roles of sulphate aerosol 
forcing and internal variability in Atlantic multidecadal climate 
changes. Clim Dyn 53:4651–4665. https:// doi. org/ 10. 1007/ 
s00382- 019- 04811-3

Wilks DS (2006) Statistical methods in the atmospheric sciences, sec-
ond. Elsevier, Amsterdam

Wu R, Chen S (2020) What leads to persisting surface air temperature 
anomalies from winter to following spring over mid- to high-
latitude Eurasia? J Clim 33:5861–5883. https:// doi. org/ 10. 1175/ 
JCLI-D- 19- 0819.1

Wunsch C (1999) The interpretation of short climate records, with 
comments on the North Atlantic and Southern oscillations. Bull 
Am Meteorol Soc 80:245–255. https:// doi. org/ 10. 1175/ 1520- 
0477(1999) 080< 0245: tiosc r>2. 0. co;2

Zanardo S, Nicotina L, Hilberts AGJ, Jewson SP (2019) Modulation 
of economic losses from European floods by the North Atlantic 
Oscillation. Geophys Res Lett 46:2563–2572. https:// doi. org/ 10. 
1029/ 2019g l0819 56

Zhang W, Kirtman BP, Siqueira L et al (2021) Understanding the 
signal-to-noise paradox in decadal climate predictability from 
CMIP5 and an eddying global coupled model. Clim Dyn 56:2895–
2913. https:// doi. org/ 10. 1007/ s00382- 020- 05621-8

Publisher’s Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1017/9781009157896.006
https://www.metoffice.gov.uk/pub/data/weather/uk/ukcp18/science-reports/UKCP18-Overview-report.pdf
https://www.metoffice.gov.uk/pub/data/weather/uk/ukcp18/science-reports/UKCP18-Overview-report.pdf
https://doi.org/10.1029/2022gl099083
https://doi.org/10.1029/2022gl099083
https://doi.org/10.1175/jcli3653.1
https://doi.org/10.1175/jcli3653.1
https://doi.org/10.5194/gmd-9-3461-2016
https://doi.org/10.1038/s43247-021-00268-7
https://doi.org/10.1175/jamc-d-15-0102.1
https://doi.org/10.1038/s41612-018-0038-4
https://doi.org/10.1038/s41612-018-0038-4
https://doi.org/10.1029/2005gl023226
https://doi.org/10.1002/grl.50099
https://doi.org/10.1002/2014gl059637
https://doi.org/10.1007/s00382-008-0451-1
https://doi.org/10.1007/s00382-008-0451-1
https://doi.org/10.1088/1748-9326/acc477
https://doi.org/10.1088/1748-9326/acc477
https://doi.org/10.1175/jcli-d-18-0168.1
https://doi.org/10.1038/s41586-020-2525-0
https://doi.org/10.1038/s41586-020-2525-0
https://doi.org/10.3389/fclim.2022.955414
https://doi.org/10.1002/(sici)1097-0088(200001)20:1<1::aid-joc456>3.0.co;2-p
https://doi.org/10.1002/(sici)1097-0088(200001)20:1<1::aid-joc456>3.0.co;2-p
https://doi.org/10.1007/s00382-006-0140-x
https://doi.org/10.1007/s00382-006-0140-x
https://doi.org/10.1002/qj.3796
https://doi.org/10.1002/qj.3414
https://doi.org/10.1175/jcli-d-14-00830.1
https://doi.org/10.1088/1748-9326/aa69c6
https://doi.org/10.1175/1520-0442(2002)015<2707:OTRONA>2.0.CO;2
https://doi.org/10.1175/1520-0442(2002)015<2707:OTRONA>2.0.CO;2
https://doi.org/10.2166/nh.2002.0016
https://doi.org/10.1007/s00382-019-04811-3
https://doi.org/10.1007/s00382-019-04811-3
https://doi.org/10.1175/JCLI-D-19-0819.1
https://doi.org/10.1175/JCLI-D-19-0819.1
https://doi.org/10.1175/1520-0477(1999)080<0245:tioscr>2.0.co;2
https://doi.org/10.1175/1520-0477(1999)080<0245:tioscr>2.0.co;2
https://doi.org/10.1029/2019gl081956
https://doi.org/10.1029/2019gl081956
https://doi.org/10.1007/s00382-020-05621-8

	Recalibration of missing low-frequency variability and trends in the North Atlantic Oscillation
	Abstract
	1 Introduction
	2 Data and methods
	2.1 Observation and model data
	2.2 Definition of the NAO trend series
	2.3 Distribution of moving window trends
	2.4 Reddening methods
	2.5 Autocorrelation in the observed NAO index

	3 Improved distribution of historical NAO trends in climate models
	3.1 Autocorrelation of NAO index series
	3.2 Variability of NAO multi-decadal trend series
	3.3 Distribution of NAO extreme multi-decadal trends

	4 Future distributions of NAO trends
	4.1 Future projections of NAO multidecadal variability
	4.2 Distribution of NAO extreme trends in future climate projections
	4.3 Distribution of NAO near-term future climate projections
	4.4 Distribution of NAO long-term future climate projections

	5 Discussion and conclusions
	Appendix 1: Table of CMIP6 Models
	Appendix 2: Accounting for CGCMs with non-zero autocorrelation function
	AR(1) reddening
	FD reddening

	Acknowledgements 
	References




