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ABSTRACT

The skill in predicting spatially varying weather/climate maps depends on the definition of the
measure of similarity between the maps. Under the justifiable approximation that the anomaly
maps are distributed multinormally, it is shown analytically that the choice of weighting metric,
used in defining the anomaly correlation between spatial maps, can change the resulting probab-
ility distribution of the correlation coefficient. The estimate of the numbers of degrees of freedom
based on the variance of the correlation distribution can vary from unity up to the number of
grid points depending on the choice of weighting metric. The (pseudo-)inverse of the sample
covariance matrix acts as a special choice for the metric in that it gives a correlation distribution
which has minimal kurtosis and maximum dimension. Minimal kurtosis suggests that the
average predictive skill might be improved due to the rarer occurrence of troublesome outlier
patterns far from the mean state. Maximum dimension has a disadvantage for analogue predic-
tion schemes in that it gives the minimum number of analogue states. This metric also has an
advantage in that it allows one to powerfully test the null hypothesis of multinormality by
examining the second and third moments of the correlation coefficient which were introduced
by Mardia as invariant measures of multivariate kurtosis and skewness. For these reasons, it
is suggested that this metric could be usefully employed in the prediction of weather/climate
and in fingerprinting anthropogenic climate change. The ideas are illustrated using the bivariate
example of the observed monthly mean sea-level pressures at Darwin and Tahitifrom 1866—~1995.

1. Introduction

When predicting the weather and climate, it is
often necessary to have an objective measure of
similarity for comparing two spatial weather or
climate maps. Numerous approaches have been
used to define such similarity measures, and they
can be broadly categorised into three classes:
statistical, dynamical, and geographical. The stat-
istical approach often uses correlations and root
mean square measures, the dynamical approach
uses physical quantities such as energy and poten-
tial vorticity believed to be quasi-conserved, and
the geographical approach compares quantities
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deemed to be of human interest such as rainfall
averaged over a certain geographical region. This
article presents an analytical statistical approach
to this problem and suggests a similarity measure
which may be useful in future prediction studies.
In weather and short-term climate prediction, skill
is often judged by the spatial correlation (on the
grid) between the predicted and the observed maps
at various lead times (Miyakoda et al. 1972;
Simmons et al. 1995; Palmer and Anderson 1994,
and references therein). And in anthropogenic
climate change studies, model predictions are also
now being used as fingerprints which are then
correlated with recent observed interdecadal cli-
mate changes (Barnett and Schiesinger 1987
Karoly et al. 1994; Santer et al. 1995; Tett et al.
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1996; and references therein). In both these
approaches, in order to evaluate the significance
of the correlation, it is necessary to know how
much correlation could occur solely by chance. In
other words, in assessing predictive skill, it is
necessary to have some idea about the probability
distribution of the correlation coefficient. This is
the focus of this study where it is shown that the
distribution is dependent on the choice of metric
used in defining the correlation coefficient and
that this choice has some important implications
for predictability.

There is an extensive literature on similarity
measures especially in the context of the predicta-
bility of Northern Hemisphere (NH) extra-tropical
atmospheric flow patterns. Lorenz (1969) applied
a root mean square (RMS) measure to the geo-
potential height in order to search in past flow
patterns for close states, known as analogues.
Using such analogues, it was hoped that it would
be possible to use their evolution to predict the
future evolution of the current state. However,
Lorenz (1969) found that the probability distribu-
tion of the RMS distances was best approximated
by a y? distribution with 44 degrees of freedom
(d.of), and hence there was only a very small
chance of a state in such a high dimensional space
being close to the current state, represented by the
origin. Gutzler and Shukla (1984) managed to
increase the number of analogues by spatial and
temporal filtering of the data, yet such states gave
poor predictions perhaps partly due to the loss of
useful information caused by the filtering. They
also tried two other similarity measures, COV and
COR, defined as the anomaly pattern COVariance
and CORrelation, respectively. Horel (1985) used
a COR measure in his persistence study and from
the variance of the COR he deduced the number
of statistically independent grid points to be
between 20-37 depending on the filtering. This
method of calculating the spatial degrees of free-
dom was also applied to observed and model data
by van den Dool and Chervin (1986). Toth (1991a)
performed an objective comparison of 9 different
similarity measures looking at how many ana-
logues they gave and how good the predictions
were using such analogues. He concluded that the
RMS measure produced more analogues than the
COR measure but that all the measures gave
practically no performance differences when used
to make analogue predictions (albeit slightly better
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results were obtained when using the difference in
the gradient of height.) Wallace et al. (1991) found
that with the COV, COR and RMS measures, the
probability density of the measure was was well-
fitted to distributions having about 20 degrees of
freedom. Fraedrich et al. (1995) developed a gen-
eral expression for estimating the spatial d.of. by
relating the variance of the COR measure to the
eigenvalues of the the correlation matrix. This was
then used to investigate the seasonal variation of
the spatial d.o.f.. A comprehensive review of estim-
ating spatial d.o.f. by spatial and temporal embed-
ding methods can be found in Toth (1995).

In this study, a generalised definition is made
of the covariance measure by introducing an arbit-
rary Euclidean weighting metric in the definition.
The probability distribution for the correlation
coeflicient is then derived analytically assuming a
null hypothesis of multinormally distributed
anomaly patterns. The distribution and its
moments are shown to be metric dependent.
Interesting extremal properties are shown to occur
when the metric is the (pseudo-)inverse of the
covariance matrix. Some generalised estimates of
the number of spatial degrees of freedom are also
proposed. The same analytical approach can also
be applied to the generalised RMS similarity
measure and gives similar conclusions at the
expense of more complicated mathematical expres-
sions. For this reason, we prefer to focus on the
covariance measure in this study.

2. Basic definitions

Define the anomaly pattern/map at time t; by
the p-vector of variables:

zy (t)

= 2, (%) ’ (1)

Z P (tk)
where the p variables are the anomalies at each
of the p grid points. For example, z, could repres-
ent a map of 500 hPa geopotential height anomal-
ies at time t,. Non-scalar vector and matrix

symbols appear in boldface in this article. The
sample mean over n sample times is denoted by
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the overbar:

1 n
== u, (2)

=y

a8

and is zero for the anomalies which are by defini-
tion centered. The p x p sample anomaly covari-
ance matrix is defined as S=zzT, where T denotes
the matrix transpose operation.The sample covari-
ance matrix, S, is an estimate of the population
(true) covariance matrix, X, and is frequently used
in climate variability studies since it contains much
information about the spatial structure of the
major modes of variability (teleconnections). If the
variables are first scaled (reduced) by dividing by
their standard deviations, the sample covariance
becomes the sample correlation matrix with unity
along the diagonal. In what follows, we will refer
to covariances with the understanding that we
mean correlations if the data have been pre-scaled
by their standard deviations. The generalised
Anomaly pattern Correlation Coefficient (ACC),
between anomaly patterns at times f; and ¢, is
defined as the weighted correlation

Ru=zEMz., (3)

where M is a symmetric weighting matrix defining
the metric. Commonly used choices for M have
been the covariance metric M=1 (COV) and the
correlation (scaled covariance) metric M;;=
(S:S;;)"'* (COR). The covariance metric has the
property that the ACC is dominated by regions
with large temporal variance. The correlation
metric alleviates this problem but has the disad-
vantage of sometimes introducing more noise from
regions with low temporal variance. A metric
which has not been widely used in ACC studies
but which is widely used in the study of multi-
variate statistics is the Mahalanobis metric
M=S""! (MAH) (Mardia et al, 1979). This posi-
tive definite metric is equivalent to performing
the Euclidean scalar product of the principal com-
ponents (PCs), after all have been scaled to have
unit variance. Under non-singular linear trans-
formations of the variables, z—7z'=Az, the
Mahalanobis ACC has the virtue of remaining
invariant: zTS, 'z{=z1S, 'z; since S, =AS,A".
For example, the numerical value of the
Mabhalanobis ACC remains constant even if the
data is linearly interpolated onto another grid
having the same number of grid points. This is
not the case when using other metrics and led
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Zwiers (1987) to conclude that simple tests based
on non-invariant Euclidean ACCs were capable
of being manipulated. The inverse of the covari-
ance matrix is used ubiquitously as a weighting
factor (the Gauss-Markov weights) in ordinary
least squares inverse problems such as in the
assimilation of observed data into atmosphere and
ocean models (Menke, 1989; Thacker and
Lewandowicz, 1996).

3. Probability distribution of the anomalies

The probability distribution of the ACC
depends on the p-dimensional probability density
function (p.df) of the anomalies, assuming of
course that such a unique probability density
function exists. This may not be the case due to
intransitivity and non-stationarity in climate data
but, for the sake of simplicity, as in many previous
studies, a unique probability density function will
be assumed to exist. For typical global climatic
data on a 5° grid, the phase space dimension, p,
would be of the order of 10° if all the grid points
were independent. However, not all the grid points
are independent in the sense that there exist non-
zero spatial correlations between the variables at
different grid points, and hence the total number
of d.of. is much less. For example, NH wintertime
daily 500 hPa geopotential height data has been
estimated to have about 20—40 d.o.f. (independent
dimensions). Because of the high dimensionality
of the phase space, an impossibly long time series
is necessary to visit all the space and thereby
estimate the p.d.f. For example, to estimate the
p.d.f. in 10 bins for each of (say) 30 dimensions of
the daily NH 500 hPa geopotential height data,
requires at least 10%° sampling times, or 10!7 times
the age of planet Earth for daily data! Hence, it is
necessary to make a null hypothesis about the
distribution of the anomalies.

A reasonable and tractable null hypothesis, is
that the anomalies are distributed multinormally
with a p.d.f. given by:

plz]l=(det2n E)_I/Z exp(_ % P Z) (4)

where det2zX is the matrix determinant of 2xX.
This distribution is widely used in making infer-
ences and testing hypotheses in multivariate stat-
istics (Mardia et al. 1979).The universality of the
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multinormal distribution is partly explained by
themultivariate generalisation of the central limit
theorem which states that the limiting result of
many independent multivariate processes yields a
multinormal distribution. A good representation
of this is afforded by the class of stochastic climate
models proposed by Hasselmann (1976) in which
a linear system is forced by Gaussian random
shocks. Such systems generate Gaussian red noise
whose probability distribution is multinormal. The
key idea is that the system has many degrees of
freedom which interact only weakly with one
another, as is the case in many physical systems
in statistical equilibrium. Although there are
regions of the planet having strong correlations of
climate/weather with elsewhere, many regions are
only weakly correlated especially if one considers
correlations only over short forecast times.
Statistical mechanics could therefore be appro-
priate for explaining some aspects of climate/
weather variability. The multinormal distribution
is completely determined by the first and second
moments, and if fit in this way, perfectly repro-
duces sampled second order moments such as the
energy spectrum and the teleconnections.

Previous studies have assumed that the grid
point anomalies were normally and independently
distributed which is equivalent to making the
assumption that the covariance matrix is diagonal
(e.g, Wallace et al. 1991). For NH data, the
existence of non-local correlations between the
anomalies at differing grid points (Wallace and
Gutzler, 1981) implies that the covariance matrix
is not diagonal and invalidates the null hypothesis
used in these previous studies. Due to the presence
of teleconnections, the anomalies at different grid
points are correlated and therefore it is not the
grid point variables but the principal components
which are uncorrelated and independently distrib-
uted. The teleconnection structure should be taken
into account when discussing the correlations of
weather and climate maps.

In pioneering studies, Toth (1991b) and Wallace
et al. (1991) started to investigate whether the
anomalies in NH daily 500 hPa geopotential
height were Gaussian distributed (i.e. multinor-
mal). By correlating the RMS distances between
anomaly patterns with their absolute distances
from the mean state of zero anomaly,
Toth (1991b) concluded that the wintertime extra-
tropical NH geopotential height data was phase-
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averaged multinormal and then used this to deduce
certain fundamental consequences for prediction.
The multinormal p.d.f is a Gamma function of
the squared radial distance from the origin in PC
space and the radial symmetry can be clearly seen
in Figures 13 and 14 of Marshall and Molteni
(1993) which depict the p.d.f. of model generated
500 hPa geopotential height as a function of the
two leading PCs. Wallace et al. (1991) were interes-
ted in investigating the existence of multi-modality
in the probability distribution, which they did by
examining the distributions of COV, COR and
RMS measures of similarity. They concluded that
they did not see evidence of outright bimodality
but that they did see the existence of skewness in
the distribution which was suggested to be associ-
ated with persistent blocking anomalies. The prob-
ability distribution of the NH extra-tropical
wintertime height field is still very much a matter
of open debate. It will be shown later how the
moments of the ACC calculated using the
Mahalanobis metric can be used a posteriori to
test the multinormal null hypothesis.

4. Generalised inverse covariance: the pseudo-
inverse

Because of the existence of spatial correlations
having well-defined scales, such as the Rossby
scale in mid-latitudes, there are typically less
degrees of freedom than grid points. Hence, not
all the rows in the p x p covariance matrix can be
independent and the matrix is therefore rank
deficient with a rank less than the dimension of
the matrix (r<p). Such a matrix has a non-trivial
null space and no unique inverse exists — the
population covariance matrix is singular*. The
multinormal null hypothesis requires the existence
of an inverse covariance matrix despite the fact
that in general a unique inverse does not exist.
Fortunately, there is a simple solution to the
problem by truncating the system to the comple-
ment of the null space. By the spectral decomposi-
tion theorem, the real symmetric covariance

* Furthermore, the rank of the sampled covariance
matrix cannot exceed the number of independent
samples used to construct the matrix (r <n), and in gen-
eral n<p and this is therefore an additional cause of
rank-deficiency.
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matrix can be written as £=QAQT where Q is an
orthogonal matrix and A is a diagonal matrix
with real positive eigenvalues {i;, 4,,..., 4,}
ranked in order of magnitude: 1, >4, ... >4,.
Because of the rank deficiency, only the leading r
eigenvalues are non-zero, whereas the trailing p—r
are zero and give rise to the non-invertibility. The
pseudo-inverse, X~ is obtained by truncating the
space to the first r components, and is given by
X™=QA Q" where A =diag(A7!, 7%, ..., A7,
0,0, ...,0). The pseudo-inverse satisfies the Moore-
Penrose conditions XX~ X=X and gives the min-
imum length solution in inverse problems (Menke
1989). The multinormal distribution using the
pseudo-inverse is referred to as the singular multi-
normal distribution (Mardia et al., 1979).

This procedure corresponds to working in prin-
cipal component space truncated to the first r
leading modes and can be considered as a data-
adaptive pre-filtering of the data (Barnett and
Preisendorfer, 1987). The r leading PCs are associ-
ated with eigenvalues distinguishable from zero
and represent the signal, whereas the trailing (p—r)
modes have eigenvalues statistically consistent
with being zero and can be considered to represent
noise. In general, the trailing eigenvalues are never
numerically zero, and so it is necessary to have
an algorithm for determining the rank r. A compu-
tational approach is to reject eigenvalues which
fall below a tolerance determined by the machine
accuracy. A review of more statistical approaches
can be found in Jolliffe (1986). Perhaps the most
reliable methods for efficiently separating the sub-
spaces are the jackknife methods and their analytic
extensions (Besse, 1992). In what follows, we
assume that the p-dimensional space has been
truncated in this manner so that the covariance
matrix is non-singular and has r x r elements —
in other words p=r and the inverse of the covari-
ance matrix has been replaced by its pseudo-
inverse.

5. Probability distribution of the ACC

This section presents an analytic derivation of
the probability distribution of the generalised
anomaly correlation coefficient, defined using the
arbritrary weighting metric M (not necessarily
equal to the inverse covariance matrix, S~ !). The
low order moments of the distribution will be
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discussed and a method for testing the multinor-
mal null hypothesis a posteriori will be presented.

5.1. Analytical derivation

To calculate analytically the probability distri-
bution of the generalised anomaly correlation
coefficients, it will be assumed that the anomaly
patterns are multinormally distributed. In the
following calculation, it is important to distinguish
between the p.d.f. of correlations made simultan-
eously {Ry; k=1, 2, ...} and the correlations
made at different times {Ry;; k, I=1, 2, ...; k#1}.
As in Wallace et al. (1991), it will be assumed that
there are an infinite number of serially uncorrel-
ated samples (the asymptotic limit n— oo). Instead
of considering the p.d.f, it is more convenient to
work with its Fourier transform

¢(t)= feimp(R)dR=E(eitR) : (5)

referred to as the characteristic function (c.f). The
expectation operator, denoted by E(), is given by
the multiple integral over z space using the multi-
normal distribution as the measure:

E(lﬁ)=(det2n2)‘”2j... f

x(ﬁ dz,) exp(— %zT Z"Z>l//~ (6)

For simultaneous correlations, Ry, the p-dimen-
sional integration can be performed by changing
variables and then using the identity

f f(ﬁ dz,) exp(— % TA_1z> =(det2nA4)!/?
r=1

(7)

to give ¢(t)=(det(1—2itEM))~ 2. Using the rela-
tionship log det A =Tr log A, this can be rewritten
as:

¢(t)=exp( - % Tr log(I—ZitZJW)) (8)

and for small ¢, the logarithm can be expanded
about unity to give

1 = B.(2it)"
d=exp( + 3 3 L=,

where the coefficients are defined as §,,=Tr(EM)™

)
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and are all positive when the metric M is positive
definite. The cumulants are given by k,=
2" Y m—1)1B,,.

For the case of maps at different times, Ry, is a
bilinear combination of the anomalies z, and z,,
and it is necessary to perform a double integration
over the anomaly fields z. By completing the
square in the exponent, changing variables and
using the previous identities, the 2p-dimensional
integration can be performed to give

¢(t)=exp(— %Tr log(I+ t22M2M)>, (10)
which results in

o i£)2m
¢(t)=exp(+ % 2 ﬂzm#), (11)

when the logarithm is expanded about unity.

5.2. A special case: the Mahalanobis metric

For the Mahalanobis case, the matrix product
XM is equal to £S™! and tends to the identity
matrix in the asymptotic limit, where the unbiased
sample covariance becomes equal to the popula-
tion covariance (S—X). In the asymptotic limit,
the MAH metric is unique in that all the coeffi-
cients have the same value B, =Tr(I)"=p, and
this allows the p.d.f. of the correlation coefficient,
R,y , to be written in the closed form

(R )_ ~1_ e-itht
PEI= o0 0 —2irp

This is the p.df. of a y* distribution having p
degrees of freedom, as to be expected for the
Mahalanobis case, where R,; becomes the sum of
the squares of p independent normally distributed
variables (the PCs). Furthermore, this is the
asymptotic limit of the Hotelling T? distribution
when the number of samples tends to infinity
(Kendall et al. 1983).

The distribution of the correlation coefficient,
R, is less tractable but can be written in the closed
form

(12)

1 e "Rdt
p(Ry)= +=

2n ) (1422 (15)

which can be evaluated analytically for every value
of p. For p=1, the solution is p(R)=Kqy(R)/n
where K, is the modified Bessel function of
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the second kind of zero order, also known
as the Macdonald function (Bronshtein and
Semendyayev, 1985; Page 584). This is singular as
R—0 and asymptotes to e‘R/\/ﬁ for large R. For
p=2, Cauchy integration yields the solution
p(Ry=e~R1/2, For larger values of p, the distribu-
tion becomes less exponential and more Gaussian
and tends to p(R)=(2np)~ Y2 exp(—R?*/2p) — a
normal distribution with zero mean and variance
equal to the dimension p.

5.3. Product moments of the correlation Ry,

A probability density function can often be
usefully characterised by its low order moments
which are obtainable from the derivatives of the
c.f. as follows

dm
E(R™)=(=i)" [—¢] . (14)
(=0

dr™
Under the null hypothesis of multinormality, an
anomaly pattern z, and its antilogue —z, are
equally probable and hence p(R,) is perfectly
symmetric about the origin and all its odd
moments are by definition zero. This in turn
implies that the Maclaurin expansion of the c.f.
must contain only even powers of ¢ as can be seen
to be the case in eq. (11). In this section, we will
discuss the second and fourth moments of Ry
which from eqs (11) and (14) are given by
E(R)=p, and E(R})=3p2+6p,. The moments
depend on the constants {f,} and hence on the
eigenvalue spectrum of the matrix product TM.
The variance of the ACC distribution,
E(RZ)=8,, has been previously used to estimate
the number of degrees of freedom in NH geopoten-
tial height data. In Wallace et al. (1991), the
number of d.o.f., Ny, was estimated with a COV
metric by using E(R?)=5Np! and was found to
be 20. 3 is the square of the time mean of the
spatial standard deviation and is used as a scale
to make the covariances dimensionless. The null
hypothesis in Wallace et al. (1991) is that the
different grid points have anomalies which are
independently normally distributed with variances
all equal to 5°. Under this hypothesis, one can
write 5% = E(zf Mz,) which can be re-expressed as
§2=Tr(EM)=p,. Substituting this into the
expression for Np then gives the more general
expression

No=p%/B,. (15)
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It can be seen that the dimension estimate depends
on the eigenvalue spectrum of the EM matrix and
hence depends on the choice of metric. The estim-
ate can give values from 1 to p depending on the
choice of metric. With the MAH metric in the
asymptotic limit, the matrix XM =1 has a perfectly
flat eigenvalue spectrum and hence Np=p. For a
singular metric with M having only one non-
zero eigenvalue, N becomes 1. For COV or COR
metrics, Np is a measure of the flatness of the
eigenvalue spectrum of the covariance or correla-
tion matrix respectively. For the COR metric,
Tr(EM)=Tr(C)=p and Tr(EMEM)=Tr(C?)
where C is the correlation matrix and this yields
Np=p?/TrC? which is the generalised eq. (2.5) in
Fraedrich et al. (1995).

Kurtosis is a measure of the flatness of a dist-
ribution and its deviation from 3 is a measure
of how many values lie outside the Gaussian
distribution. The kurtosis is defined as
E(RY/(E(R*))*=3+68,852 and can be shown to
be between 3+6p~! and 9 for positive definite
metrics. For all positive definite metrics, the kur-
tosis exceeds 3 and the distribution is more peaked
than normal (keptokurticy — minimal kurtosis
occurs for the Mahalanobis metric and tends to 3
for large p. The deviation of the kurtosis from 3
can be used to define a kurtosis dimension estim-
ate, N® = p%/B, where N@? is in the range 1 to p.
For example, the COV ACC frequency distribu-
tion in column 4 of Table 1 of Wallace et al.
(1991), derived from 500 hPa wintertime geopo-
tential height data on a grid with 445 grid points,
has a kurtosis of 3.364 which exceeds the minimum
bound of 3.5 obtained with the Mahalanobis
metric assuming the upper bound of p=445. The
kurtosis dimension estimate then gives N@=16.5
which is close to the dimension estimate of Np=
20 calculated using the variance of the distribution.
A distribution with a large kurtosis is characterised
by having non-negligible numbers of extreme
events lying several standard deviations from the
mean (outliers), and such events can be difficult
to predict and can have a detrimental effect on
the the average predictive skill (Simmons et al.
1995). The number of outliers depend inversely
on the dimensionality of the phase space since, as
has been shown, the deviation of the kurtosis from
3 is inversely related to the kurtosis dimension
estimate. This could be one of the reasons why
reduction of the dimension by filtering and limiting
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the spatial domain in Gutzler and Shukla (1984)
led to poorer predictive skill.

54. Generalised dimension estimates

The estimate of the number of d.of can be
generalised to

Ngn)= rzn/ﬂ2ms (16)

where m=1,2, 3, ... and m=1, 2 give, respectively,
the variance and kurtosis estimates previously
discussed. All these estimates are in the range 1
to p and by the spectral decomposition of M
can be shown to satisfy N&'*V>N® for all m.
Maximum dimensions are obtained for the
Mahalanobis metric which has N@=p for
all m. For the COR metric, one obtains
N@=(TrC™)*/TrC?". It may be of interest to
use some of these estimates to corroborate the
previous variance estimates of dimension.
However, it should be remembered that the trace
of any power of the correlation/covariance matrix
is only invariant under orthogonal rotations of
the variables in p-space, transformations where
AAT=1, and hence these estimates of dimension
are not invariant under non-singular linear trans-
formations of the data. For example, linear inter-
polations from one grid to another can cause these
estimates to change. Only the Mahalanobis metric
gives a dimension estimate, equal to the rank of
the covariance matrix, which remains invariant
under all invertible linear transformations.
Without resorting to topological approaches, the
most invariant measure of dimension is that
obtained by estimating the rank of the covariance
matrix using the procedures described in Jolliffe
(1986). The rank of the covariance matrix is of
use in deciding how many leading PCs are import-
ant and it therefore merits further attention in
observational and modelling studies.

5.5. Testing the multinormal null hypothesis

The null hypothesis of multinormally distrib-
uted anomalies was made in deriving the distribu-
tion of the ACC. This hypothesis can be tested a
posteriori by comparing the higher moments of
the ACC distribution with the expressions
obtained using egs. (9), (11) and (14). For the
MAH metric, such tests have been proposed by
Mardia (1970) and have been extensively used in
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many of the sciences dealing with multivariate
data. The asymmetry of the p.d.f. about the origin,
as measured by the deviation of the third moment,
E(R3), from zero, provides a powerful test of
the null hypothesis about the multinormality of
the anomalies. Wallace et al. (1991) examined the
skewness of the ACC distribution and concluded
using a univariate test that it was very skewed. In
testing the significance, no account was taken of
the spatial correlations which exist between the
variables at different grid points. When the
Mahalanobis metric is used, the third moment of
the ACC becomes identically equal to the multiva-
riate skewness defined by Mardia (1970):
E(R})=bh, ,. This statistic has the useful property
of being invariant under non-singular linear trans-
formations of the anomalies and is widely used as
a powerful test of multinormality (Mardia et al.
1979). For p=1, it reproduces the usual univariate
skewness test of normality: b, ; =m3/m3. The third
moment of the ACC provides a good test of
multivariate skewness, if and only if, the
Mabhalanobis metric is used. Mardia (1970) also
proposed a multinormality test making use of the
multivariate kurtosis b, , which is identical to
E(R.) when the MAH metric is used. Such
powerful tests can be shown to guarantee certain
robustness for normal theory tests on means and
covariances which is not the case for more ad hoc
tests such as that of phase-averaged multinormal-
ity (Toth 1991b, 1995). It is of interest to use these
tests to quantify the deviation from multinormality
of climate anomalies as will be demonstrated in
the following example.

6. A bivariate example: the Southern
Oscillation index

Although the methodology is applicable to sys-
tems with any number of variables, it will be
illustrated here using the bivariate p =2 contracted
description of ENSO provided by the observations
of sea-level pressure at Darwin and Tahiti from
1866—1995.

6.1. Description of the data

The SLP data from January 1866 to June 1991
are used to define the University of East Anglia,
Climate Research Unit, Southern Oscillation
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Index (CRU-SOI). The period from July 1991 to
May 1995 was completed using SLP records
obtained from the NOAA Climate Analysis Center
published in the Climate Diagnostics Bulletin. The
series and its extensions are discussed in the
articles of Ropelewski and Jones (1987) and there
is speculation about the homogeneity or non-
stationarity of the Tahiti SLPs in the mid 1930s
(Elliott and Angell, 1988). The data have been
used in previous ENSO studies — Chen (1982),
Trenberth (1984) (hereafter denoted as T84),
Wright (1985), Trenberth and Shea (1987); and
numerous other studies.

6.2. Defining interannual anomalies

Detrended interannual anomalies, having zero
mean and unit variance, have been constructed by
(a) taking the centered 12 month running mean of
the original series, (b) detrending it by subtracting
its 121-month running mean, and (c) standardising
by subtracting the mean and dividing by the
standard deviation. Although the sharp-edged
windowing in the 12 month running mean can
lead to some side-lobe leakage (T84), the proced-
ure has the advantage that it guarantees elimina-
tion of the annual cycle and its higher harmonics.
This eliminates some of the spurious minima and
maxima which occur when using the 11-point
filter proposed in T84, and gives a slightly higher
correlation between Darwin and Tahitii —0.80
compared to —0.76 quoted in T84, for the period
1935-1982. The detrending is necessary due to the
decadal drifts that occur in the series — for
example the 0.5-1mb decrease/increase in the
Tahiti/Darwin SLPs since the mid-1970s
(Trenberth and Hoar, 1996 and references therein).
The detrending has the disadvantage of shortening
the series to 1870-1990 (1440 monthly values)
since a reliable running mean cannot be defined
for the first and last 5 years when using a 121
month filter. The anti-correlated oscillations in
the standardised Darwin and Tahiti anomalies can
be clearly seen in Fig. 1. For the period 1870-1990,
the coefficient of correlation between the Darwin
and Tahiti anomalies is —0.61, and is less than
the value —0.80 obtained for the more recent
period 1935-1982 perhaps due to inhomogeneities
in the observational record. The SLP at Darwin
is strongly correlated with major El Nifios such

Tellus 49A (1997), 5
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SLP at Darwin and Tahiti (1870-1990)

SLP

SLP

SLP

1960

1990

Time in years

Fig. 1. Standardised interannual anomalies in detrended monthly mean sea-level pressures observed at Darwin (grey
shaded) and Tahiti (dashed) for the period 1866—1995. Note the clear anticorrelations corresponding to longitudinal
displacements in the convective activity associated with ENSO.

as 1982/83 and 1986/7 and anticorrelated with La
Niiias such as 1988/89.

6.3. Signal and noise

Trenberth (1984) defined the SOI signal to be
the linear combination of Darwin and Tahiti SLPs
having maximum variance whereas the noise was
defined to be the residual linear combination
explaining the least variance. The square root of
the ratio of the two variances was defined to be a
measure of the signal-to-noise ratio (S/N). The
signal and noise can be found by a bivariate
principal component analysis and are the leading
and trailing PCs of the Darwin/Tahiti SLP cor-
relation matrix. By the spectral decomposition

Tellus 49A (1997), 5

theorem, the real symmetric correlation matrix, S,
can be diagonalised as follows

A0 L)
sl )

where r is the Darwin/Tahiti correlation (—0.61).
The principal components, 7/, are rotated com-
binations of the SLPs at Darwin and Tahiti
(z7=0%z) and their variances are given by
the eigenvalues (1—r) and (1+r). Hence,
the signal-to-noise ratio is given by

S/N = J(1=n)/(1+71)(=2.0). By defintion, the SOI

S=QAQ =

(17)
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signal has a correlation of /(1 —r)/2(=0.90) with
Darwin and ./(1—r)/2(=—090) with Tahiti —
the equality in magnitude of correlation is a special
consequence of having only two variables. Fig. 2
shows the signal (SOI) and noise time series,
where the noise time series has a quarter of the
variance of that of the signal time series, thereby
giving a S/N ratio of 2. Furthermore, the noise
time series has less coherence at low frequencies
than does the signal time series which is more
influenced by the slowly evolving sea surface tem-
perature boundary conditions.

6.4. The ACC distribution

Fig. 3 shows the probability density function
for the anomaly correlation R,; calculated using
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three different metrics: M=1I1 (COR), M=S""
(MAH2), and M=S~ (MAHI1). The inverse
covariance metric (MAH2) is given by M=8"'=
Q diag{(1~r)~1 (1+r) '} QF and corresponds
to calculating the correlation coefficient as the
Euclidean scalar product in 2-dimensional PC
space. The metric M=X =Qdiag{(1—r)"%, 0}
Q7 is the rank one pseudo-inverse of the covari-
ance metric and corresponds to calculating the
correlations using only the signal PC (the SOI).
This is reasonable since the SOT signal is consid-
ered to be the ENSO-related predictable compon-
ent whereas the noise part is considered to be
more due to internal atmospheric processes and
observational uncertainties and hence is consid-
ered to be less predictable.

Signal (D~T) and noise (D+T) (1870-1990)

18%

" 1900 1910

SLP

B T

SLP

-4
1950

1970

1980

Time in years

Fig. 2. The first (gi€y shaded) and second (dashed) principal components of the two time series shown in Fig. 1.
The first PC is an optimal definition of the Southern Oscillation Index (SOI) and the second PC represents internal
atmospheric and observational noise. The ratio of signal-to-noise standard deviations is 2.0.
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LOG10 of the P.D.F of Rij

-~=-- CORR M=l
——— MAH2 M=8-1
—— MAH1 M=S-

P.D.F of Rij (log scale)

L . L L 2 . L s
-5 -4 3 -2 - 0 1 2 3 4 5
ANOMALY CORRELATION COEFFICIENT Rij

Fig. 3. The probability distributions of the anomaly cor-
relation coefficient R,,=z{ Mz, (logarithmic scale) for 3
different metrics. The bin size was chosen to be 0.1 and
no smoothing has been applied.

From the linearity in Fig. 3, it can be seen that
the MAH2 p.d.f. decays exponentially whereas the
MAHI1 p.df. decays more rapidly, in agreement
with the analytical expressions obtained in
Subsection 5.2. Table 1 tabulates the low order
moments of Ry, for the three metrics. The first-
order moment is identically zero as a result of the
mean of the anomalies being defined to be zero.
The values expected assuming multinormally dis-
tributed anomalies have been calculated using the
previously derived expressions with the coefficients
given by f,,=(1—r)"+(1+r)" for the COR metric
and f,,=p for the Mahalanobis metrics (p=1, 2).
The values in Table 1 are close to the values
expected assuming multinormality which suggests
that the null hypothesis was reasonable.
Examination of Table 1 reveals that the MAH2
metric gives the smallest kurtosis whereas MAH1
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gives the largest kurtosis. The COR metric gives
an intermediate kurtosis in agreement with its
variance dimension N{=p2/B,=2/(1+7r?) which
has the value 1.5, and therefore lies between 1 for
the MAH1 metric and 2 for the MAH2 metric.

6.5. Are the anomalies multinormally distributed?

The agreement with the values in parentheses
in Table 1, suggests that the mulitnormal null
hypothesis is valid. This can be tested rigorously
by using the multinormal skewness test proposed
by Mardia (1970) where the multinormal skewness
is defined as b; ,=E(R}) calculated using the
metric MAH2 (i.e., b, ,=0.122). Critical values for
this statistic are tabulated in Table 2 of Mardia
(1974). Assuming 100 d.o.f. in the time series (i.e.,
about one independent d.o.f. per year), gives a 5%
critical value of b, , of 0.581. Hence at 5% con-
fidence, we can accept the null hypothesis that
the anomalies are multinormally distributed.
Examination of the table of critical values, reveals
that there would have to be at least 4000 d.o.f. in
the time series (certainly a huge overestimate)
before the null hypothesis could be rejected at 5%.

The multinormality of the anomalies in this
bivariate case can be checked more directly by
plotting their p.d.f’s against that of a Gaussian
(Fig. 4). It can be seen that the values from the
Darwin, Tahiti, SOI signal and noise time series
all lie close to the inverted parabola expected for
the log of a Gaussian curve. The deviation from
normality can be tested by using the univariate
skewness, b;=m2/m3, which takes the values of
0.065, 0.014, 0.002, and 0.069 for the time series of
Darwin, Tahiti, signal (SOI) and noise, respect-
ively. For one hundred degrees of freedom, the
critical value at 5% of b, is 0.151 (Pearson and
Hartley, 1972). Hence at 5% confidence, the SLP

Table 1. Moments of Ry=zI Mz, and kurtosis for Darwin and Tahiti SLP anomalies using three different
metrics M=1I, §~, and S~ ; values expected assuming multinormally distributed anomalies are shown in

parentheses for comparison

Moment/metric COR MAH2 MAH1
E(Ry) 0.000 (0.00) 0.000 (0.00) 0.000 (0.00)
E(R2) 2.735 (2.74) 1.994 (2.00) 0.998 (1.00)
E(R3, 0.044 (0.00) 0.122 (0.00) —0.007 (0.00)
E(R}) 55.80 (62.9) 27.00 (24.0) 8.000 (9.00)
E(R})/E(R%)? 7.46 (8.38) 6.79 (6.0) 8.02 (9.0)
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LOG10 of the P.D.F.

P.D.F. of value (log scale)
S

—— Gaussian
@ Darwin (D)
O Tahiti (T)
W Signal (T-D)

B Noise (T+D)

2 -1 0 1 2 3
Centered value (in standard deviations)

Fig. 4. The probability density functions of the time
series depicted in Figs. 1, 2 (logarithmic scale). The solid
curve is the parabola expected for the logarithm of a
Gaussian distribution. The bin size was chosen to be 0.2
and no smoothing has been applied.

anomalies and their PCs are Gaussian distributed
thereby confirming our null hypothesis and previ-
ous statements (Chu and Katz, 1985). The spatial
and temporal averaging involved in defining
monthly mean SLPs together with the central
limit theorem, helps to explain why the SLP
anomalies should be close to normally distributed.

7. Concluding remarks

The probability density function for a gen-
eralised anomaly correlation coefficient defined
with an arbritrary weighting metric, has been
derived analytically under the assumption that the
anomaly patterns are multinormally distributed.
The resuiting distribution and its moments depend
on the choice of metric used in defining the
correlation coefficient. The moments can be used
to estimate the number of spatial dimensions in
the anomaly patterns and a generalised expression
is presented. Such dimension estimates depend on
the choice of metric and are generally not invariant
under linear transformations of the anomalies.
The kurtosis of the distribution depends inversely
on the number of d.of. and hence reducing the
dimensionality in order to increase the number of
analogues will have the undesirable effect of
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increasing the number of outliers in the distribu-
tion. For example, correlating over a smaller geo-
graphical region for regional forecasts will reduce
the number of d.o.f. but at the expense of giving
correlation coefficients having more outliers. The
null hypothesis of multinormal anomalies can be
tested a posteriori by examining the moments of
the correlation coefficient distribution.

As in ordinary least squares linear prediction,
the (pseudo-)inverse of the covariance matrix plays
a special role as the metric defining the matrix of
weights used for correlating two patterns.

1. It gives an ACC that is invariant under linear
transformations of the grid point variables (z— A47).
For example, invertible linear interpolation of the
data onto another grid with the same number of
points will not change the results.

2. The different principal modes of variability
are given equal weight and hence spatial correla-
tions (teleconnections) have been taken into
account. Naively correlating using the same weight
for all the grid points (COR metric) treats all grid
points as equal and takes no account of the
teleconnection structure between values at differ-
ent grid points.

3. The use of a pseudo-inverse helps to eliminate
the noisy part of the signal which is believed to
be unpredictable. For example, in the Darwin/
Tahiti case, it is the leading PC which is believed
to be predictable (SOI) and not the trailing PC
which represents observational error and internal
atmospheric processes — hence the S~ pseudo-
inverse is an appropriate metric for improving the
signal-to-noise ratio in predictions.

4. The use of the pseudo-inverse rather than
the inverse substantially lowers the dimensionality
of the phase space from the number of grid points
down to the rank of the covariance matrix. This
has the advantage of making the search for ana-
logues in a lower dimensional space more tractable
(Van den Dool, 1994) whilst hopefully retaining
the essential modes containing the signal.

S. The resulting ACC distribution is the closest
to Gaussian, and has the least kurtosis. There are
less outliers, which are difficult to predict and can
therefore reduce the average predictive skill.

6. The moments of the ACC distribution give
dimension estimates equal to the rank of the
covariance matrix, and this is invariant under
non-singular linear transformations, which is not
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the case for dimension estimates made with
other metrics.

7. The second and third moments of the ACC
are equal to the multivariate kurtosis and skewness
measures introduced by Mardia (1970) and pro-
vide powerful ways to test the multinormality null
hypothesis.

For cases where a unique inverse of the covari-
ance matrix exists, Bell (1982,1986) and
Hasselmann (1993) have demonstrated that the
inverse covariance matrix gives optimal finger-
prints for detecting climate change and recom-
mended its use in detecting such changes. Thacker
(1996b) also noted that the use of such a metric
has a simple geometric interpretation in terms of
scalar products. In this study, it has been argued
that the inverse of the covariance matrix does not
in general exist, and therefore the best one can do
is to use the pseudo-inverse of the covariance
matrix which corresponds to the minimum length
solution. The use of such a truncated Mahalanobis
metric corresponds to taking the Euclidean scalar
product of the first r principal components (scaled
to have unit variance), where r is the estimated
rank of the sample covariance matrix. In other
words, instead of correlating spatial maps over all
the grid points, correlations are made using the
leading r principal components. The truncation is
necessary since not all the principal components
represent predictable signal and hence it makes
no sense to include these in the correlation coeffi-
cient. In future studies of weather prediction and
climate change fingerprinting, it will be of interest
to define the correlation coefficients using the
truncated Mahalanobis metric as a weight — in
this way the multivariate nature of the data will
be taken into account and the noisy unpredictable
components will be discarded. For this approach
to be effective, care should be taken to estimate
the sample covariance matrix as robustly as pos-
sible using all the available data. It should be
pointed out that in this study and in other studies
such as that of Hasselmann (1993), the implicit
assumption has been made that the predicted
anomalies have come from the same population
as the observed ones, which is only the case if the
model is perfect and the observations are free from
systematic measurement errors. In practice, sys-
tematic errors will cause the covariance matrix of
the model generated anomalies to differ from the
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covariance matrix of the observed anomalies as
may be witnessed by differences between the model
and observed eigenvectors. In such cases, an
optimal strategy would be to assess predictions
by performing a canonical correlation analysis
between modelled and observed anomalies in their
appropriately truncated PC spaces (Barnett and
Preisendorfer, 1987), and this approach can be
considered as a statistical way of correcting for
systematic errors and optimally reducing noise.

The approach adopted to derive the p.d.f. of the
generalised covariance can also be applied to
obtain the p.d.f. of the generalised root mean
square measure, albeit at the expense of more
complicated mathematical expressions. The above
conclusions concerning the invariance, dimension,
kurtosis, and noise reduction properties of the
Mahalanobis metric remain the same. The root
mean squared error in Mahalanobis space is equal
to the square root of the sum of the squares of
the leading principal components and hence can
be interpreted geometrically as the distance of a
point from the origin in PC-space. Such a simple
interpretation is not possible if one uses the RMS
in grid point space (as is often done in practise),
since the variables are correlated and hence the
distance is given by the cosine law rather than by
the simple pythagorean sum. The simple geometric
interpretation obtained with the Mahalanobis
metric could be usefully employed in the hyper-
sphere method used to define covering sets for
estimating the local probability density of phase
space (Toth, 1993).

The Mahalanobis metric can be used no matter
what one chooses as anomalies, for example, one
could use anomalies of geopotential height,
streamfunction, vorticity etcetera. As previously
mentioned, the resulting ACC is invariant under
non-singular linear transformations and so differ-
ent anomalies can sometimes give identical results.
In general, however, the anomalies are not related
by non-singular linear transformations. For
example, vorticity is given by the Laplacian of the
streamfunction and hence the streamfunction is
only determined up to a constant — in this case,
the transformation is linear yet singular and hence
vorticity and streamfunction could give different
results. The choice of anomaly field should be
decided using dynamical arguments and physical
conservation laws but then the truncated
Mahalanobis metric should be used as the
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weighting. Such an approach would represent the
best of both dynamical and statistical considera-
tions. In general, the eigenvectors of the sample
covariance matrix do not correspond to Fourier
modes and the truncated Mahalanobis metric is
therefore not equivalent to energy or enstrophy
norms which are local in wavenumber space
(Palmer et al.,, 1997). In some cases, such as in
predicting total rainfall amounts, the multinormal
null hypothesis may be inappropriate, and it may
be better to work with transformed quantities
such as the square root of the rainfall which is
more normally distributed. This corresponds to
using a non-flat metric which gives more weight
to anomalies nearer the origin. There are also
other theoretical reasons why non-flat metrics may
prove to be useful as ideal measures of real fluid
flows (Pasmanter, 1996). The choice of optimal
similarity measures for predictability studies and
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the underlying probability distributions of weather
and climate anomalies remain challenges which
require further attention.
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