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ABSTRACT

The Indian summer monsoon rainfall is the net result of an ensemble of synoptic disturbances, many of which
are extremely intense. Sporadic systems often bring extreme amounts of rain over only a few days, which can
have sizable impacts on the estimated seasonal mean rainfall. The statistics of these outlier events are presented
both for observed and model-simulated daily rainfall for the summers of 1986 to 1989. The extreme events
cause the wet-day probability distribution of daily rainfall to be far from Gaussian, especially along the coastal
regions of eastern and northwestern India. The gamma and Weibull distributions provide good fits to the wet-
day rainfall distribution, whereas the lognormal distribution is too skewed. The impact of extreme events on
estimates of space and time averages can be reduced by nonlinearly transforming the daily rainfall amounts.
The square root transformation is shown to improve the predictability of ensemble forecasts of the mean Indian
rainfall for June 1986–89.

1. Introduction

Monthly and seasonal mean rainfall amounts, al-
though often used to describe the general behavior of
the Asian summer monsoon, can give the misleading
impression that the monsoon is a robust slowly evolving
system. The mean rainfall, however, is the rainfall av-
eraged over many sporadic weather events having spa-
tial scales from 100 to 1000 km. For example, on 25
August 1997, the Times of India reported that:

At least 23 people including four children and two wom-
en have died and thousands rendered homeless all over
the state in the heavy rains that continued to batter Mum-
bai [Bombay] and other parts of Maharashtra for the third
consecutive day on Sunday. The city, which recorded the
highest daily rainfall in six years—407.6 mm in Colaba
and 445.6 in Santa Cruz till 8:30 am on Sunday morning
was gradually limping back to normalcy after the utter
chaos witnessed during the last two days with the break-
down in the rail, road and air network . . . .

Typical June–September wet-day average rainfall at
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Mumbai (Bombay) is around 18 mm day21 with a daily
standard deviation of 28 mm day21; hence, more than
400 mm of rain in one day represents an extreme event
or outlier more than 10 standard deviations greater than
the mean. Outliers are not uncommon in Indian mon-
soon rainfall and are due to convection mainly associ-
ated with monsoon depressions (Sikka 1977) and mid-
tropospheric cyclones (Keshavamurthy 1973). Seasonal
mean monsoon rainfall is a statistical average over many
individual weather events and can only be perfectly
forecast by knowing the precise future evolution of all
the events. However, for nonlinear systems such as the
atmosphere, initial perturbations (small uncertainties)
can diverge exponentially fast, thereby imposing a fun-
damental limit on our ability to predict weather events
beyond a certain time horizon (Lorenz 1963). A measure
of this horizon is given by the time needed for initial
perturbations to double in amplitude, which for mid-
latitude geopotential height appears to be of the order
of 1–2 days and for monsoon rainfall could be even
less. The inability to perfectly predict the synoptic evo-
lution throughout the whole season has led some authors
to conclude pessimistically that prediction of climatic
features, not directly tied to the annual march of the
seasons, is doomed to fail (Ramage 1971). Nevertheless,
more slowly evolving environmental factors, such as
land and sea surface temperatures and planetary-scale
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atmospheric circulations, can influence the formation
and development of rain-bearing systems (Charney and
Shukla 1981). These factors often lead to predictable
signals that can be projected out by compiling statistics
over all the weather events (e.g., seasonal rainfall totals),
and it is this hope that underlies current attempts to
produce seasonal rainfall forecasts. Statistical estimates,
however, contain unpredictable sampling noise caused
by natural weather fluctuations, which are sometimes
misleadingly referred to as ‘‘chaos’’ (Palmer 1994). For
example, a single unpredictable extreme daily weather
event at Mumbai can easily contribute 400 mm to the
total seasonal rainfall and, thereby, increase the seasonal
mean rainfall by more than 3 mm day21. When one
compares this with the interannual standard deviation
of the mean June–September Mumbai rainfall of 4 mm
day21, one realizes that isolating the predictable signal
from the noise may be a rather delicate problem. Rod-
well (1997) also cited a case in which a single strong
monsoon depression over northwest India on 12–14 July
1994 could easily be identified in the seasonal mean all-
India rainfall anomaly. Such extreme events act as a
source of severe sampling noise that can easily spoil
sample estimates of seasonal mean rainfall.

This study investigates extreme rainfall events and
the impact that they have on ensemble forecasts of In-
dian monsoon rainfall. Section 2 of this article discusses
the observed and model-generated daily rainfall data
used in the study. Section 3 summarizes the rainfall
behavior over India and shows that extreme rainfall
events are more prevalent on the east and northwest
coasts of India. The probability distribution of the wet-
day daily rainfall is briefly discussed in section 4, where
it is demonstrated that good fits are provided by the
gamma and Weibull distributions but not by the log-
normal distribution. Section 5 reviews the use of non-
linear transformations as a way of reducing the contri-
bution from extreme events, and section 6 then illus-
trates the impact of the square root transformation on
the evolution of a generalized all-India rainfall index.
Section 7 demonstrates how the square root transfor-
mation can improve ensemble forecasts of Indian rain-
fall for June 1986–89. Section 8 concludes the article
with a brief summary.

2. Data sources and treatment

This study focuses on Indian monsoon daily rainfall
data over the short period of 488 days covering June–
September 1986–1989. India received spatially aver-
aged rainfall totals of 743 mm (1986 normal monsoon),
697 mm (1987 weak monsoon), 962 mm (1988 strong
monsoon), and 867 mm (1989 normal monsoon). These
summers have been the focus for the European monsoon
project SHIVA (Studies of the Hydrology, Influence and

Variability of the Asian Summer Monsoon).1 The short-
period time slice allows us to focus in detail on the daily
rainfall, yet is long enough to justify the conclusions
made in this preliminary study. More reliable estimates
may be obtained by considering longer periods, but at
the risk of encountering complications due to epochal
nonstationarities and/or measurement inhomogeneities
(Pant et al. 1988).

a. Observed Indian daily rainfall amounts 1986–89

This study uses a dense network of about 400 rain-
measuring stations (gauges) spread homogeneously
throughout the nonmountainous part of India (Fig. 1).
Not all the station reports are available each day, and
from June to September 1986–89 only 212 stations re-
ported rainfall totals on more than 75% of the days.
Only the quality-controlled time series from the subset
of 212 stations obtained from the archives at the India
Meteorological Department (IMD, Pune) have been
used to make the statistics. The statistics have then been
gridded onto a 18 resolution grid by using an inverse
square distance kernel with a search radius limited to
500 km, similar to the method proposed by Cressman
(1959). Kriging was also tested and gave similar results.

b. Model-simulated rainfall 1986–89

To assess how a state-of-the-art climate model sim-
ulates daily extremes in monsoon rainfall, we also pre-
sent results based on gridded daily rainfall amounts pro-
duced by the Météo-France general circulation model:
ARPEGE. General circulation models capture some of
the broad-scale features of the Asian summer monsoon
yet are generally poor at simulating regional-scale fea-
tures such as the monsoon over India (Stephenson et al.
1998a). Nevertheless, a preliminary comparison has
been made of the model rainfall statistics with those
obtained from Indian station data. Unfortunately, be-
cause of the lack of rain gauge measurements and the
overly large errors in satellite-based daily estimates,
comparison is not possible over the Indian Ocean where
it rains the most.

ARPEGE is a state-of-the-art 19-level spectral cli-
mate model developed from the weather forecasting
model operationally employed at Météo-France and the
European Centre for Medium-Range Weather Forecasts
(ECMWF). Deep subgridscale cumulus convection is
parameterized using a Kuo-type scheme that requires
both low-level large-scale moisture convergence and a
conditionally unstable moist-adiabatic temperature pro-
file for convection to occur. Shallow convection is pa-
rameterized using a modified Richardson number

1 The SHIVA project is described in detail online at http://
www.met.rdg.ac.uk/shiva/shiva.html.
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FIG. 1. Location of the rain gauge stations used in the present study. Altitude is indicated by
contour lines marked in meters above sea level.

scheme, and stratiform cloudiness is calculated by com-
paring the humidity profile to that of a critical profile.
Surface land temperature, deep soil temperatures, and
surface water content are calculated prognostically us-
ing an interactive soil–biosphere scheme. The depen-
dence of the mean summer monsoon on horizontal res-
olution has been investigated by performing simulations
spectrally truncated at 21, 31, 42, and 63 zonal wave-
numbers. This study will only present statistics for the
most realistic monsoon simulation made at the medium
horizontal resolution of 300 km (T42 truncation). A full
description of the model and the monsoon results can
be found in Stephenson et al. (1998a).

c. Wet and dry days

Precipitation is a discontinuous process consisting of
both wet and dry days. Daily rainfall amounts are de-
scribed by the mixed distribution p(x) 5 p(x | dry)pdry

1 p(x | wet)pwet, where x is the daily rainfall total and

pwet 5 1 2 pdry is the probability of having a wet day.
A number of difficulties can be avoided by focusing on
rainfall amounts on only the wet days. For example, the
normal onset date of the monsoon rainfall varies be-
tween the start of June in the south of India to the start
of July in the northwest of India and hence northwest
India generally has less wet days in June than does
southern India. Including both wet and dry days leads
to northwest India having a smaller mean and a larger
skewness than southern India. Such biases are undesir-
able and therefore only the rainfall on wet days have
been used to calculate the statistics presented in this
study. Since rainfall totals are recorded at IMD in tenths
of millimeters, 0.1 mm represents an obvious cutoff for
defining wet days and has been adopted in this study
both for the station data and for the model-generated
gridpoint data. Other definitions are possible, such as
rainy days being those receiving more than 2.5 mm (0.1
in.) of rainfall per day (Soman and Krishna Kumar
1990). Statistics characterizing extreme behavior mea-
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FIG. 2. Frequency of occurrence of wet days for (a) the Indian observations, and (b) the rainfall
simulated by the model over the Asian region, estimated over the June–September summers 1986–
89. A wet day is defined as a day receiving more than 0.1 mm of total rainfall.

TABLE 1. Observed wet-day statistics for a selection of Indian stations. The arithmetic mean (in mm day21), standard deviation (std dev
in mm day21), coefficient of variation (CV), skewness, and kurtosis statistics are calculated for the wet days having more than 0.1 mm of
total rainfall. Max gives the maximum daily rainfall totals (in mm) recorded during this period, and NWD gives the sample size, that is,
the number of recorded wet days out of the total of 488 days in June–September 1986–89.

Station Location Mean Std dev CV Ïb1 b2 2 3 Max NWD

Jalpaiguri
Goa
Trivandrum
Nagpur
Mumbai
Tezpur

26.58N, 88.78E
15.58N, 73.98E
8.508N, 77.08E
21.18N, 79.18E
18.98N, 72.88E
26.68N, 92.88E

36.4
24.2
11.2
13.4
18.5
15.9

45.3
32.6
15.9
19.8
28.2
24.3

1.24
1.35
1.41
1.48
1.52
1.52

2.3
3.4
2.7
2.4
2.5
3.5

6.6
21.3

9.6
6.2
6.7

16.6

288
335
119
107
183
185

303
402
319
249
395
278

Calcutta
Jammu
Hyderabad
New Delhi
Pune
Visakhapatnam
Kakinada

22.58N, 88.38E
32.58N, 75.08E
17.58N, 78.58E
28.68N, 77.28E
18.58N, 73.98E
17.78N, 83.28E
16.98N, 82.28E

17.1
22.9
11.1
11.7

8.2
13.4
10.6

26.5
36.3
17.9
20.0
14.6
25.3
23.3

1.55
1.59
1.61
1.71
1.78
1.89
2.20

4.0
3.2
3.3
3.7
4.3
3.3
8.2

25.2
14.2
14.9
19.9
27.7
12.7
91.3

259
270
141
159
142
178
296

341
186
238
150
287
205
247

sure the large rainfall tail of the probability distribution
and are, therefore, relatively insensitive to the choice of
the small nonzero wet-day rainfall cutoff. A different
threshold of 1 mm day21 was found to give very similar
results to those presented here. In this preliminary in-
vestigation, the total number of wet days at a particular
station or grid point in India is typically between 100
and 400. Figure 2a shows the frequency of occurrence
of wet days observed over India for June–September
1986–89. Typically 40%–60% of the days are wet with
less wet days occurring over the northwestern desert
region of India. The model gives a similar northwest–
southeast gradient (Fig. 2b) yet has a much larger frac-
tion of wet days over most parts of India. This is ex-
plained by the model’s convection scheme having a ten-
dency to drizzle, and also gridded model rainfall data
being an average over a grid box rather than being point-
like station data (Skelly and Henderson-Sellers 1996).

3. Geographical variations in wet-day rainfall
characteristics

Table 1 presents statistics for selected stations in India
calculated using rainfall observations on wet days in
June–September 1986–89. Similar statistics have been
calculated at all the quality-controlled stations in India
and have been gridded to produce the maps in Fig. 3.
The mean wet-day rainfall rate is 10–20 mm day21 with
two distinct maxima located along the southwest coast
and over northeast India (Fig 3a). Since standard de-
viations are somewhat larger around 15–30 mm day21

yet exhibit a similar spatial distribution to that of the
mean, it is more instructive to present the ratio of the
standard deviation to the mean, referred to as the co-
efficient of variation (Fig. 3b). The coefficient of vari-
ation (CV) has typical values of 1.2–2.0 with largest
values occurring in the highly variable east coast region
of Andra Pradesh and the west coast region around Gu-
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FIG. 3. Statistics of observed wet-day daily rainfall estimated over the June–September summers
1986–89 (488 days): (a) mean (mm day21), (b) coefficient of variation (standard deviation/mean),
(c) maximum daily rainfall amount (mm day21), and (d) moment measure of skewness ( b1).Ï
Statistics were calculated for each of the Indian stations having available rainfall records and
then were interpolated onto a 18 latitude–longitude grid before plotting (refer to section 2a for
details of interpolation).

jarat. These transition regions lie to the south and north,
respectively, of regions receiving a large amount of rain-
bearing systems, and occasionally receive strong syn-
optic systems. Such intermittency leads to low values
of mean rainfall while standard deviations remain typ-
ical and, thereby, give rise to larger values of CV. Typ-
ical maximum daily rainfall totals recorded over the
June–September periods of 1986–89 are around 100–
250 mm day21 and have largest values in the afore-
mentioned coastal regions (Fig. 3c). The east coast max-
ima are often associated with monsoon depressions that
develop over the Bay of Bengal, whereas the west coast
maxima are mainly due to cyclones and troughs origi-
nating over the Arabian Sea. The maximum daily values
are roughly 10 standard deviations larger than the typ-
ical mean values and, therefore, would have a 1 in 5 3
1020 chance of occurring if the rainfall were Gaussian
distributed!

The deviation of a probability distribution from nor-
mality (Gaussian) can be quantitatively assessed by es-
timating the skewness (asymmetry) g1 5 b1 5 m3Ï

, and kurtosis (flatness) g2 5 b2 2 3 5 m4 223/2 22m m2 2

3, where mk 5 E(x 2 x)k is the estimate of the kth-
order moment about the sample mean (Kendall et al.
1983). These statistics quantify intermittency and ex-
treme behavior and are zero for Gaussian-distributed
variables. Skewness b1 has been calculated for all theÏ
Indian stations and is presented in Fig. 3d and for se-

lected stations in Table 1. Values typically exceed 3 over
much of India, with largest values occurring on the east
coast near Kakinada (16.98N, 82.28E) and along the
northwest coast north of Mumbai—regions where the
coefficient of variation was also found to be largest.
Assuming 100 degrees of freedom, there is less than
1% chance that a Gaussian distribution would give b1Ï
greater than 0.75 (Pearson and Hartley 1972). The spa-
tial distribution of kurtosis was also found to qualita-
tively resemble that of skewness (Stephenson et al.
1998b). An alternative more robust measure of skewness
is given by the difference between the mean and the
mode/median (Shea and Sontakke 1995). Karl Pearson
considered the dimensionless measure of skewness giv-
en by the difference between the mean and the mode
divided by the standard deviation (Kendall et al. 1983).
For rainfall amounts, where the mode is close to zero,
Pearson’s skewness becomes approximately equal to the
inverse of the coefficient of variation, in apparent con-
tradiction with the moment measure of skewness b1,Ï
which is strongly positively correlated with CV in Table
1 and Fig. 3. The paradox is resolved by noting that the
rainfall distribution does not have a vanishing gradient
at its mode and, therefore, does not belong to the well-
behaved Pearson class of distributions (Kendall et al.
1983). The Pearson measure of skewness can therefore
be very misleading when applied to rainfall amounts
and should be avoided in such studies.
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FIG. 4. Statistics of modeled wet-day daily rainfall estimated over the June–September summers
1986–89 (488 days): (a) mean (mm day21), (b) coefficient of variation (standard deviation/mean),
(c) maximum daily rainfall amount (mm day21), and (d) moment measure of skewness ( b1).Ï
Statistics were calculated for each of the model grid points spaced roughly every 2.88. Note that
contours are every 5 mm day21 in (a) compared to every 3 mm day21 for the observations in Fig.
3a.

Figure 4 shows similar wet-day statistics calculated
for the model-generated daily gridded rainfall amounts.
There is excessive mean rainfall over the southern slopes
of the eastern Himalaya, and the mean rainfall maximum
over India is displaced too far south (Fig. 4a). These
are common problems often encountered in model sim-
ulations of the monsoon and are discussed in Stephenson
et al. (1998a). The coefficient of variation has values
close to 1.5 similar to those observed yet fails to capture
the local maxima along the Indian coasts that were noted
in the observed skewness (Fig. 4b). In Fig. 4c, the max-
imum daily rainfall amounts are around 100–175 mm
day21 and are, therefore, slightly smaller than those not-
ed in the observations over India. Whereas standard
deviations stay approximately constant, maximum daily
values were found to increase with increasing model
horizontal resolution from values around 100 mm day21

at 600-km resolution (T21 truncation) up to more re-
alistic values around 200 mm day21 at 200-km resolu-
tion (T63 truncation). East coast extreme events are of-
ten caused by monsoon depressions having spatial scales
of around 500 km (Krishnamurti et al. 1975), which are
now beginning to be resolved by higher-resolution at-
mospheric models (Lal et al. 1995). Although an ad-
vantage for weather prediction, the existence of more
extreme events could lead to undesirable noisiness in
climate statistics generated by future models having
higher horizontal resolutions. The model gives com-

parable values of skewness to those observed with a
maximum of 3.5 over the head of the Bay of Bengal
(Fig. 4d).

4. Probability distribution of wet-day rainfall
amounts

The probability distribution of monthly mean Indian
rainfall was first discussed in the studies by Sankar-
anarayanan (1933) and Pramanik and Jagannathan
(1953). In a later study, Mooley and Crutcher (1968)
demonstrated that the gamma distribution provides good
fits to monthly mean rainfall totals observed at numer-
ous Indian stations. The gamma distribution has been
extensively used to fit rainfall amounts in other studies
(Barger and Thom 1949; Thom 1958; Ison et al. 1971;
Shenton and Bowman 1973). For gamma-distributed
rainfall amounts, the probability dF of an amount oc-
curring between x and x 1 dx is given by

ga
2ax g21dF 5 e x dx, (1)

G(g)

where g is the shape parameter, a is the inverse scale
parameter, and G(g) is the gamma function given in
mathematical tables. The distribution has a mean of g/a,
a standard deviation of g/a, a coefficient of variationÏ
of 1/ g, a skewness b1 5 2/ g (twice the coefficientÏ Ï Ï
of variation), and a kurtosis b2 2 3 5 6/g. In the Gauss-
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FIG. 5. Scatterplot of the skewness vs the coefficient of variation
for the 13 Indian stations given in Table 1 (filled circles). Also shown
are the functional relationships expected for the gamma distribution
(solid line), the Weibull distribution (long dashes), and the lognormal
distribution (short dashes). The 3 signs mark points with g 5 0.5
for the gamma distribution and a 5 0.72 for the Weibull distribu-
tion.

ian limit as g → `, the skewness and kurtosis tend to
zero. For g , 1, the coefficient of variation exceeds
unity and the distribution is strongly positively skewed
with the mode at zero (an inverted J-shape distribution).

The shape parameter g can be crudely estimated by
equating the coefficient of variation to 1/ g (methodÏ
of moments). The CV for daily wet-day Indian rainfall
is typically about 1.5 giving an estimate of g ø 0.5. A
gamma distribution with g 5 0.5 has skewness b1 5Ï
3 and kurtosis b2 2 3 5 12, both of which are consistent
with the observed values in Table 1. Larger values of
skewness and kurtosis occur at certain locations (e.g.,
Kakinada), where maximum likelihood estimates of g
are found to be slightly less than 0.5 (Stephenson et al.
1998b). Figure 5 shows a scatterplot of the skewness
and CV values for the stations in Table 1. The cloud of
points lie close to the b1 5 2CV linear relationshipÏ
expected for a gamma distribution. Figure 5 also in-
cludes curves for two other distributions that have been
applied to rainfall totals: the lognormal distribution
(Kedem et al. 1990; Kedem et al. 1994; Wilheit et al.
1991), and the Weibull distribution (Weibull 1951; Es-
senwanger 1986; Wong 1977; Wilks 1989). The Weibull
distribution also fits the station data and has the advan-
tage of having a simple cumulative distribution F(x) 5
1 2 , where a is a shape parameter (Stephensona2(ax)e
et al. 1998b). The lognormal distribution, which as-
sumes that logx is Gaussian distributed, is too skewed
(and leptokurtic) to fit the station observations (Fig. 5).
This finding is in apparent contradiction to that of Ked-
em et al. (1990) and Kedem et al. (1994) who found
that the lognormal distribution gave better x2 fits than
did the gamma distribution. In their studies, however,
more skewed instantaneous rainfall rates were being ex-
amined rather than daily totals. Nevertheless, a x2 least
squares approach is inappropriate for fitting or judging
highly skewed distributions that necessitate instead the
use of maximum likelihood and Kolmogorov–Smirnov
methods (Kendall et al. 1983). Other possible distri-
butions are concisely reviewed in Öztürk (1981).

The gamma distribution is routinely used to provide
confidence limits for forecasts of monthly and seasonal
mean rainfall amounts (Ropelewski and Jalickee 1983;
Ropelewski et al. 1985). Numerical integrations are in-
variably required to obtain such confidence limits. How-
ever, for the special case when g 5 0.5, the probability
of a wet day having more than X millimeters of rainfall
is simply given by P(x . X) 5 2F(z . X 1/2m21/2), where
m is the mean rainfall amount and F(z . Z) is the area
under the standard normal curve for values of z . Z
(Stephenson et al. 1998b). For example, this implies that
there is approximately only 10% chance of wet-day In-
dian rainfall daily totals exceeding four times their mean
values. Finally, for independent gamma-distributed data,
the arithmetic mean over n days (or n stations) is also
gamma distributed, yet with a larger shape parameter
of ng (Kendall et al. 1983). Such an increase in the
shape parameter for longer time averages can be noted
in the gamma values for Mumbai: 0.5 for daily totals
(this study), 4.9 for monthly totals (Mooley 1973a,b),
and 13.6 for seasonal 4-month total (Mooley and Appa
Rao 1971). It might be possible to exploit this scaling
property of the gamma distribution to extrapolate cli-
mate forecasts of rainfall down to regional or point val-
ues, for example, for downscaling studies similar to that
in Osborn and Hulme (1997).

5. Reducing the impact of extreme events

Spatial maps of daily monsoon rainfall often reveal
conspicuous small-scale bull’s-eye patterns associated
with extreme events. These noisy features are often de-
emphasized in rainfall maps by choosing unevenly
spaced contours such as 1, 2, 4, 8, etc. millimeters per
day. This is equivalent to contouring nonlinearly trans-
formed rainfall totals using evenly spaced contours. The
resulting maps are less noisy and more clearly reveal
larger-scale features. The use of nonlinear transforma-
tions to reduce outlier noise not only improves the visual
quality of contour maps but can also be used to improve
the robustness of statistical analyses (Dolby 1963). Re-
liable statistical estimation often depends on the sam-
pled data being close to Gaussian, thereby ensuring the
relatively rare occurrence of troublesome outliers.
Monotonic nonlinear transformations are often applied
by statisticians to make data more Gaussian before being
analyzed. Katz (1983) concluded his study of proce-
dures for making inferences about precipitation changes
by stating that, ‘‘transformations other than the loga-
rithm could be applied to precipitation intensities in an
attempt to obtain data having a more nearly Gaussian
distribution.’’ In particular, the class of power law trans-
formations, y 5 (x 1 l)n, have been widely used by
statisticians (Haldane 1938; Box and Cox 1964, and
many others). The parameter n determines the strength
of the transformation and is typically chosen to be be-
tween zero and unity (Tukey 1955). The logarithmic
transformation y 5 log(x 1 l) is obtained as the special
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FIG. 6. (a) Daily rainfall totals (in mm) measured at Colaba observatory (Mumbai) for June–
September 1986–89, and (b) square root of the daily rainfall totals for the same period. Note the
emergence of more low-amplitude structure in (b) compared to (a).

FIG. 7. Moment measure of skewness ( b1) for the square root ofÏ
daily wet-day rainfall amounts observed during June–September
1986–89. Note the marked reduction in skewness compared to that
of the untransformed values shown in Fig. 3d.

limiting case when n → 01. Transformation strengths
can be determined using many different methods (Box
and Cox 1964). Aleksic and Jovanovic (1983) investi-
gated the strength of the power law needed to minimize
the sum of the squares of g1 and g2 for various gamma
distributions and found that n 5 0.15 was optimal for
gamma distributions with a shape parameter of 0.5. The
Weibull distribution suggests a strength of n 5 a/3.6
to transform the data to be closest to Gaussian. (Ste-
phenson et al. 1998b). Both these strength estimates are

close to the fourth-root transformation n 5 0.25 used
by Simpson (1972) to test the significance of cloud seed-
ing experiments. Power law transformations can also
have the desirable effect of making the variance less
dependent on the mean value, referred to as variance
stabilization (Kendall et al. 1983). When the mean rain-
fall is small, the variance is also constrained to be small
since rainfall amounts can never be negative. This can
lead to nonstationary variations in the variance of time
series (heteroskedasticity), which are not accounted for
by simple autoregressive processes (e.g., persistence
forecasts), or in power spectra analyses. The square root
transformation is the optimal variance stabilizing trans-
formation for a Poisson process and is, therefore, likely
to be beneficial in stabilizing the variance of sporadic
rainfall time series.

Our main aim is to reduce the relative contribution
from extreme events, and so for the sake of simplicity
we will focus on the intermediate strength n 5 0.5
square root transformation that has previously been been
successfully used to obtain reliable estimates of power
spectra of intermittent non-Gaussian signals (Blackmon
and Tukey 1958; Bloomfield 1975). Figure 6 shows the
impact of this transformation on daily rainfall recorded
at Mumbai for June–September 1986–89, where it can
be noted that the transformed totals are less dominated
by extreme events. The more Gaussian behavior is con-
firmed by smaller skewnesses around 1.2 after the trans-
formation (Fig. 7) compared to typical skewnesses ex-
ceeding 3 of the raw data (Fig. 3d). The fourth-root
transformation has also been tested on the observed In-
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dian rainfall totals and leads to even smaller values of
skewness (about 0.5), yet at the expense of giving neg-
ative values of kurtosis (about 20.5) as to be expected
from arguments based on the Weibull distribution (Ste-
phenson et al. 1998b). We have therefore chosen to use
the square root transformation in the rest of this study.

6. Generalizing the all-India rainfall index

Despite daily monsoon rainfall amounts differing
enormously from one station to another, it is useful to
summarize the general monsoon behavior by averaging
over all the available station data to make an ‘‘all-India
rainfall’’ index. Such an index has been calculated from
1871 to 1993 using the area-weighted average of 306
district stations covering the nonmountainous regions
of India (Mooley and Parthasarathy 1984; Parthasarathy
et al. 1994) and is defined as

n

A XO i i
i51^X& 5 , (2)n

AO i
i51

where n is the daily varying number of stations having
data, Xi is the rainfall daily total at station i, and the
weight Ai is the area associated with station i. Area
weighting aims to reduce the potential biases caused by
inhomogeneities in the rain gauge network, yet in prac-
tice the area-weighted average differs only slightly from
the simple arithmetic mean having equal weights. The
all-India rainfall index is physically relevant for under-
standing the hydrological budget yet is not guaranteed
to always be well sampled or always give reliable and
meaningful statistical estimates. When one extreme lo-
cal event can severely bias the overall mean value, as
is the case for the all-India rainfall index, the represen-
tativeness of the mean can become highly debatable. In
such cases, it can be advantageous to modify the phys-
ically motivated measure to be more statistically robust.
One way of doing this is by using power law transfor-
mations to generalize the definition of mean to

n 1/n 
nA XO i i i51n 1/n^X& 5 ^X & 5 , (3) n n AO i i51

where n is a strength parameter between zero and one.
The familiar arithmetic mean is obtained for n 5 1, and
the geometric mean is obtained in the limit as n → 01.
Generalized means all summarize the average value but
differ in the relative importance they give to large com-
pared to small values. When n is small, large values of
Xi contribute less to the overall mean. A rational com-
promise between the arithmetic and the geometric means
is obtained by taking n 5 0.5, which defines the square
mean root (smr). The smr is equivalent to taking the

square root of the data before performing the arithmetic
mean and then performing the inverse transform (squar-
ing) on the resulting mean in order to regain the correct
dimensional units (e.g., mm day21).

We have calculated three different all-India rainfall
indices by gridding the irregular station data onto a reg-
ular 18 grid (using the algorithm described in section
2a) and then calculating the arithmetic mean, the square
mean root, and the median of the rainfall amounts of
the grid points lying within India’s national borders.
Both wet and dry days were included in the spatial
averages. Figure 8 shows the daily time series of the
three different indices for June–September of 1987 and
1988. The smr value is always smaller than the arith-
metic mean value as to be expected from Jensen’s in-
equality for n1 $ n2 (Rao 1965). The smr^X& $ ^X&n n1 2

is much closer to the median value than to the arithmetic
mean and is less biased by extreme events such as those
at the end of September 1988 (day 110), for example.
The onset of the monsoon rainfall in June is more grad-
ual in the smr and the median compared to that in the
arithmetic mean. During the monsoon onset, small frac-
tions of India are covered by often intense rainfall
amounts that dominate the arithmetic mean but do not
represent the overall relatively dry situation over India.
The median and smr measures are more robust measures
of the mean rainfall over the whole of India than is the
arithmetic mean, which can be biased by strong local
events. The intraseasonal oscillations in August 1987
(days 60–90) are also more clearly revealed in the smr
and median measures than in the arithmetic mean. The
smr offers some of the robustness advantages of the
median yet with much less computational effort. The
square root reduces the relative contribution of the local
rapid extreme events and so might, therefore, be ex-
pected to lead to more persistence in the all-Indian rain-
fall. Figure 9 shows the autocorrelation functions for
the arithmetic mean, median, and smr daily time series,
estimated over the summers of 1986–89. The median
and smr autocorrelation functions are similar and both
have similar larger autocorrelations than does the arith-
metic mean over time lags from 5 to 15 days. In other
words, the signal is more persistent in the smr and me-
dian time series than in the arithmetic mean time series.

7. Ensemble forecasts of Indian rainfall

To test whether the square root transformation can
improve general circulation model forecasts of Indian
rainfall, we have performed an ensemble of nine fore-
casts for the month of June for each of the years 1986–
89. June was chosen due to the marked differences noted
between the arithmetic mean and the smr AIR indices
for this month (Fig. 8). The ARPEGE model at T42
truncation was used to produce the forecasts and was
briefly described in section 2b. A time-lagged approach
was used to generate the ensemble members, with the
atmosphere and land inital conditions set equal to the
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FIG. 8. All-India rainfall daily time series for the summers of (a) 1987 and (b) 1988. All-India
rainfall indices have been estimated by taking the arithmetic mean (upper curve), the square mean
root (middle curve), and the median (dark line) of the daily rainfall amounts at grid points over
India. The gridded data on a 18 grid was obtained from the station data by the interpolation procedure
described in section 2a.

TABLE 2. June mean forecasts of arithmetic mean daily rainfall
amounts (in mm day21) calculated over the 80 gridpoint values in
the Indian region (58–258N, 708–958E). Mean is the arithmetic mean
(in mm day21), and var is the interensemble variance of the ensemble
values for each individual year [in (mm day21)2]. Obs is a verification
value calculated similarly using ECMWF reanalyses of observations
(in mm day21).

Forecast 1986 1987 1988 1989

23 May
24 May
25 May
26 May
27 May

7.63
8.18
9.00
7.66
9.17

5.99
6.91
7.04
7.22
6.18

8.21
7.21
7.02
7.98
7.09

5.27
6.05
6.30
6.56
8.16

28 May
29 May
30 May
31 May

7.60
7.57
7.74
8.13

6.16
8.23
8.06
9.10

9.66
6.75
6.25
8.11

8.98
7.29
7.44
6.86

Mean
Var
Obs

8.08
0.34
7.99

7.21
1.01
6.29

7.59
0.92
7.09

6.99
1.13
8.71

FIG. 9. Autocorrelation functions for the arithmetic mean, the smr,
and the median daily AIR indices. An increase in autocorrelation can
be discerned for lags of 5–15 days in both the smr and median es-
timates.

ECWMF reanalyses at 1200 UTC on the 9 days pre-
ceding 1 June for each year (23–31 May). Sea surface
temperatures were linearly interpolated for each day of
the forecast between the monthly mean observed values.

Daily Indian rainfall indices were calculated for each
ensemble member extended-range forecast by taking
both arithmetic mean and the smr of the 80 gridpoint
values in the region covering India and its adjacent seas
(58–258N, 708–958E). Monthly means were then ob-
tained by taking the arithmetic mean of the indices over
the 31 days in each June.

Arithmetic mean Indian rainfall forecasts for June
1986–89 are given in Table 2 and shown in Fig. 10a.
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FIG. 10. Ensemble forecasts of monthly mean rainfall averages for
June 1986–89. (a) The monthly mean of daily arithmetic averages
made over the 80 gridpoint values in the region (58–258N, 708–958E).
(b) The monthly mean of the daily square mean root averages of the
same 80 gridpoint values. Also depicted are the ECMWF verification
reanalyses of observed data calculated in a similar fashion (*) and
the arithmetic means of the nine ensemble values for each year (filled
circles).

TABLE 3. June mean forecasts of square mean root daily rainfall
amounts (in mm day21) calculated over the 80 gridpoint values in
the Indian region (58–258N, 708–958E). Mean is the mean (in mm
day21), and var is the interensemble variance of the ensemble values
for each individual year [in (mm day21)2]. Obs is a verification value
calculated similarly using ECMWF reanalyses (in mm day21).

Forecast 1986 1987 1988 1989

23 May
24 May
25 May
26 May
27 May

4.79
5.42
6.15
5.23
6.08

4.13
4.58
4.92
4.46
3.76

5.51
4.66
4.19
5.09
4.49

3.15
3.71
4.19
4.31
5.69

28 May
29 May
30 May
31 May

5.16
5.24
5.17
5.57

3.66
5.54
5.17
5.63

5.91
3.84
3.74
5.59

6.13
5.06
4.38
4.17

Mean
Var
Obs

5.42
0.18
4.28

4.65
0.47
2.85

4.78
0.55
3.24

4.53
0.78
4.38

A verification analysis has also been included by cal-
culating an index in an identical fashion using the daily
ECMWF rainfall reanalyses interpolated spectrally onto
the T42 model grid. There is a wide spread between the
ensemble forecasts in each of the years and this can be
considered to be a form of unpredictable sampling noise
caused by individual weather events. Outlier forecasts
are also clearly apparent, such as the extremely wet
forecast in 1988, which biased the mean toward a higher
value. Potential predictability can be quantified by cal-
culating the signal-to-noise F ratio of the interannual
variance of the means of the ensemble forecasts to the
mean of the interensemble variances for each year (Mad-
den 1976; Leith 1978). The interannual variance of the
ensemble means (0.41 mm day21)2, is considerably less
than the 1986–89 mean of the interensemble variances
(0.92 mm day21)2, resulting in a small F ratio of 0.20.
There is much less variance in the predictable signal
than there is in the sampling noise. The F ratios are
smaller than those of Shea et al. (1995) because forecasts
are made here only for one month rather than for a whole

season, and it is also quite likely that the model un-
derestimates the interannual signal in the Indian region.

Table 3 and Figure 10b present ensemble forecasts of
the square mean root of the gridded Indian rainfall
amounts. There are fewer outliers in the smr forecasts
than were present in the forecasts of the arithmetic mean.
The interannual variance of the means of the forecasts
is (0.35 mm day21)2 compared to the mean interensem-
ble variance of (0.70 mm day21)2, and therefore the F
ratio of the smr forecasts is 0.25. While this ratio is still
small indicating not much potential predictability, it is
encouraging to note that the F ratio is 25% larger than
that for the arithmetic means. This increase results from
having both more persistence in the daily time series
(as shown in section 6), and also having more reliable
smaller estimates of the interensemble variance due to
having less outlying forecasts. More reliable estimates
of the interensemble variance could improve the noted
poor ability of ensemble forecasts to predict the spread
in forecast rainfall amounts (Hammill and Colucci
1998).

Despite the potential predictability being small, and
the period 1986–89 being short, it is interesting to ask
whether or not the skill of interannual forecasts of smr
Indian rainfall was higher than that of forecasting the
arithmetic mean Indian rainfall. If one judges the fore-
cast skill by the correlation between the verification
analyses and the mean of the ensemble forecasts, one
finds some skill for the smr forecasts (r 5 0.35) rather
than almost no skill for the forecasts of the arithmetic
mean (r 5 20.01). Most of this gain in skill comes
from an improvement in the poor mean forecast in June
1989 and suggests that the square root transformation
of daily rainfall amounts can improve the skill of rainfall
forecasts. A possible explanation for this improvement
is suggested by the study of D’Amato and Lebel (1998),
which demonstrated that interannual variability of Sahel
rainfall is linked to the number rather than the magnitude
of the rainfall events. The square root transformation
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can also be beneficial for forecasts over either smaller
regions or shorter periods, such as statistical predictions
of regional rainfall (Feddersen et al. 1999). The square
root transformation gives less weight to anomalies in
large rainfall amounts and can be considered as equiv-
alent to using a non-Euclidean positively curved mea-
sure of forecast skill (Stephenson 1997).

8. Concluding remarks

Daily rainfall amounts are often extreme events many
standard deviations above the expected mean value, and
such outliers can cause large sampling errors in esti-
mated rainfall statistics. The spatial distribution of In-
dian rainfall extreme events has been analyzed in this
study using statistics such as the coefficient of variation
and skewness. The most extreme variability occurs over
the coastal regions of eastern and northwestern India.
Similar values yet different spatial patterns are obtained
for daily rainfall data generated by the ARPEGE at-
mospheric model. We have also demonstrated that while
gamma and Weibull distributions provide reasonable
fits, the lognormal distribution is too skewed to provide
a good fit to the low-order moments of Indian wet-day
daily rainfall totals.

Evidence has been presented showing how individual
daily rainfall events can have a large impact even on
seasonal mean rainfall amounts. Higher-order statistics
such as variances and covariances are even less robust
than means in the presence of extreme events, and there-
fore extreme care should be exercised when interpreting
such quantities based on rainfall amounts. For example,
eigenvectors of the estimated rainfall-covariance have
been used in previous studies to isolate dominant modes
of monsoon intraseasonal variability, yet such quantities
explain only a small fraction of the total variance and
are poorly estimated due to the the presence of outliers
(Ferranti et al. 1997 and references therein). Estimates
of power and singular spectra are also prone to sampling
errors, which can give rise to spurious peaks especially
on intraseasonal and shorter timescales. Fortunately, a
simple method exists for reducing the relative contri-
bution from extreme events. By nonlinearly transform-
ing the daily rainfall amounts, the resulting time series
become closer to Gaussian and contain less troublesome
extreme events. The square root transformation is easy
to apply and appears to work well for Indian rainfall.
It has the advantage over the logarithm transformation
that it is not singular for zero rainfall amounts. Such a
transformation is easily applied to daily data before per-
forming the desired statistical analyses and helps make
the results more robust. The advantages of using more
robust statistics are reviewed in Lanzante (1996).

When forecasting climatic quantities, it is important
to be aware of how robust the quantities are in the
presence of sampling fluctuations caused by individual
weather events. For example, area averages over large
regions are generally more robust than averages over

small regions and, therefore, can generally be forecast
with more skill. Not all quantities of human interest are
sufficiently robust to be predicted accurately and one
should therefore focus attention on robust quantities if
one wishes to avoid poor predictions. Because of the
immense complexity of the climate system, it will not
be possible to produce accurate forecasts for all quan-
tities of interest, yet it may sometimes be possible to
transform variables to obtain quantities that can be re-
liably predicted. The arguments presented in this article
are general and are, therefore, applicable to other se-
verely skewed quantities wherever they occur.
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